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In this chapter we begin with a review of elementary linear algebra, and in
particular the geometry of Euclidean vector space Rn. The main purpose of
this first section is to fix our conventions on notation and terminology. We then
introduce the concept of a lattice, the main object of study throughout this
book, and prove some basic lemmas about these structures. The last section
of the chapter recalls some essential facts from the geometry of numbers, by
which is meant the interplay between Euclidean geometry and the theory of
numbers. Throughout this book we will use the following standard notation:

Z the domain of integers

Q the field of rational numbers

R the field of real numbers

C the field of complex numbers

Fp the field of congruence classes modulo the prime number p

1.1 Euclidean space Rn

We regard n-tuples of elements from a field F as either column vectors or as
row vectors, and denote them by boldface roman letters:

x =




x1

x2

...
xn


 ∈ Fn, x =

[
x1, x2, · · · , xn

]
∈ Fn.

1
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2 Lattice Basis Reduction

We use the column format when we consider an n×n matrix acting as a linear
operator on Rn by left multiplication on column vectors. However, we will be
primarily concerned with operations on a basis of Rn, and for this reason it is
convenient to represent the basis vectors x1, x2, . . . , xn as the rows of an n×n
matrix X . We can then represent operations on the basis as elementary row
operations on the matrix. More generally, we can represent a general change
of basis as left multiplication of X by an invertible n× n matrix C.

Definition 1.1. For any field F, and any positive integer n, the vector space
Fn consists of all n-tuples of elements from F, with the familiar operations of
vector addition and scalar multiplication defined by

x + y =




x1

x2

...
xn


+




y1
y2
...
yn


 =




x1 + y1
x2 + y2

...
xn + yn


 , ax = a




x1

x2

...
xn


 =




ax1

ax2

...
axn


 ,

for any x,y ∈ Fn and any a ∈ F.

Throughout this book, we will be primarily concerned with the vector
space Rn.

Definition 1.2. The Euclidean space Rn consists of all n-tuples of real
numbers. We use dot notation for the scalar product of vectors x,y ∈ Rn:

x · y =




x1

x2

...
xn


 ·




y1
y2
...
yn


 = x1y1 + x2y2 + · · ·+ xnyn =

n∑

i=1

xiyi.

We use single vertical bars for the length (or norm) of a vector x ∈ Rn:

|x| =
√

x · x =
√
x2

1 + x2
2 + · · ·+ x2

n =

( n∑

i=1

x2
i

)1/2

.

We often use the square-length instead of the length of a vector x ∈ Rn:

|x|2 = x2
1 + x2

2 + · · ·+ x2
n =

n∑

i=1

x2
i .

We usually do computations for which the input consists of vectors in Qn

or Zn: the components are rational numbers or integers. We want to store the
intermediate results as exact rational numbers, in order to avoid the issue of
rounding error with floating-point arithmetic, and so we use the square-length
(which is rational) instead of the length (which is usually irrational).
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Introduction to Lattices 3

Definition 1.3. The angle θ between nonzero vectors x,y ∈ Rn is given by

x · y = |x| |y| cos θ, cos θ =
x · y
|x| |y| , θ = arccos

(
x · y
|x| |y|

)
.

Lemma 1.4. Two vectors x,y ∈ Rn are orthogonal if and only if x · y = 0.

Proof. The cosine is 0 if and only if the angle is an odd multiple of π/2.

The angle formulas of Definition 1.3 are closely related to the following
famous inequality.

Lemma 1.5. Cauchy-Schwarz inequality. For any two vectors x,y ∈ Rn,

|x · y| ≤ |x| |y|.

(On the left side, the vertical bars denote the absolute value of the scalar
product; on the right side, they denote the lengths of the vectors.)

Given a vector x ∈ Rn and a nonzero vector y ∈ Rn, it is often convenient
to express x as a sum of two vectors, x = u + v, where u is parallel to y (we
write u ‖ y) and v is orthogonal to y (we write v ⊥ y). If we write u = λy
where λ ∈ R, then v = x− u = x− λy is orthogonal to y, and hence

(x− λy) · y = 0.

Using the bilinearity of the scalar product we can solve for the scalar λ:

λ =
x · y
y · y =

x · y
|y|2 .

It is important for computational reasons to note that if x,y ∈ Qn then λ ∈ Q.

Definition 1.6. Given vectors x,y ∈ Rn with y 6= 0, we write u and v for
the components (or projections) of x parallel and orthogonal to y:

u =

(
x · y
y · y

)
y, v = x−

(
x · y
y · y

)
y.

Example 1.7. Consider the triangle in R3 with these points as its vertices:

A = (6, 2,−4), B = (−8,−6, 6), C = (1,−3, 9).

The two sides of the triangle originating at vertex A are

x =
−−→
AB =



−14
−8
10


 , y =

−→
AC =



−5
−5
13


 .

The scalar product of these vectors is

x · y = 240.

© 2012 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

M
on

as
h 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 1

7:
32

 1
6 

Fe
br

ua
ry

 2
01

5 



4 Lattice Basis Reduction

The lengths of these vectors are

|x| =
√

360, |y| =
√

219.

The cosine of the angle θ at vertex A is

cos θ =
240√

360
√

219
≈ 0.8547476863.

Therefore
θ ≈ 0.5457317946 radians≈ 31.26812857 degrees.

The projection coefficient for x in the direction of y is

λ =
x · y
y · y =

80

73
.

We obtain the decomposition x = u + v where

u =
80

73



−5
−5
13


 , v =

2

73



−311
−92
−155


 .

We have u ‖ y and v ⊥ y, and hence u · v = 0.

Definition 1.8. The vectors x1,x2, . . . ,xk ∈ Rn are linearly dependent if
one of the vectors is a linear combination of the other k−1 vectors; equiva-
lently, if there is a non-trivial solution (not all the coefficients are zero) of the
equation

a1x1 + a2x2 + · · ·+ akxk = 0 (a1, a2, . . . , ak ∈ R).

The vectors x1, x2, . . . , xk are linearly independent if this equation has
only the trivial solution ai = 0 for i = 1, 2, . . . , k. This implies that k ≤ n.

The vectors x1,x2, . . . ,xk ∈ Rn span Rn if every vector y ∈ Rn is a linear
combination of the vectors; equivalently, for every y ∈ Rn, the equation

a1x1 + a2x2 + · · ·+ akxk = y,

has a solution a1, a2, . . . , ak ∈ R. This implies that k ≥ n.
The vectors x1,x2, . . . ,xk ∈ Rn form a basis of Rn if they are linearly

independent and they span Rn. This implies that k = n.
The standard basis vectors in Rn will be denoted e1, e2, . . . , en; by

definition, ei has 1 as its i-th component and 0 as its other components.

There are many excellent modern textbooks on elementary linear algebra;
we mention in particular those by Anton [11] and Nicholson [112]. At a more
advanced level, two standard classical references are Hoffman and Kunze [64]
and Jacobson [68]. Computational methods are presented in Golub and van
Loan [49] and Trefethen and Bau [137].
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Introduction to Lattices 5

1.2 Lattices in Rn

We now introduce the main objects of study in the remainder of this book.

Definition 1.9. Let n ≥ 1 and let x1, x2, . . . , xn be a basis of Rn. The
lattice with dimension n and basis x1, x2, . . . , xn is the set L of all linear
combinations of the basis vectors with integral coefficients:

L = Zx1 + Zx2 + · · ·+ Zxn =
{ n∑

i=1

aixi | a1, a2, . . . , an ∈ Z
}
.

The basis vectors x1, x2, . . . , xn are said to generate or span the lattice.
For i = 1, 2, . . . , n we write xi = (xi1, . . . , xin) and form the n × n matrix
X = (xij). The determinant of the lattice L with basis x1, x2, . . . , xn is

det(L) = | det(X) |.

Note that in this definition we regard the basis vectors as row vectors. We
do this so that operations on the basis vectors can be expressed in terms of
elementary row operations on the matrix X ; equivalently, left multiplication
of the matrix X by an integer matrix C with determinant ±1.

We will prove shortly (Corollary 1.11) that the determinant of the lattice L
does not depend on which basis we use. In fact, det(L) has a natural geometric
interpretation: it is the n-dimensional volume of the parallelipiped in Rn whose
edges are the basis vectors x1, x2, . . . , xn.

In the trivial case n = 1, the lattice L generated by the nonzero real
number x consists of all integral multiples of x. The lattice L = Zx has only
two bases, namely x and −x.

If n ≥ 2, then every lattice has infinitely many different bases. Let L ⊂ Rn

be the lattice with basis x1, x2, . . . , xn. Let C = (cij) be any n×nmatrix with
entries in Z and det(C) = ±1; then C−1 also has entries in Z (see Exercise
1.7). Define vectors y1, y2, . . . , yn by

yi =

n∑

j=1

cijxj (i = 1, 2, . . . , n),

and let Y be the n×n matrix with yi in row i. We have the matrix equations

Y = CX, X = C−1Y.

It follows that any integral linear combination of x1, x2, . . . , xn is also an
integral linear combination of y1, y2, . . . , yn, and conversely. Hence y1, y2,
. . . , yn is another basis for the same lattice L. In fact any two bases for the
same lattice are related in this way, as the next lemma shows.
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6 Lattice Basis Reduction

Lemma 1.10. Let x1, x2, . . . , xn and y1, y2, . . . , yn, be two bases for the
same lattice L ⊂ Rn. Let X (respectively Y ) be the n × n matrix with xi

(respectively yi) in row i for i = 1, 2, . . . , n. Then Y = CX for some n × n
matrix C with integer entries and determinant ±1.

Proof. Every yi belongs to the lattice with basis x1, x2, . . . , xn, and every xi

belongs to the lattice with basis y1, y2, . . . , yn. It follows that

xi =

n∑

j=1

bijyj , yi =

n∑

j=1

cijxj (i = 1, 2, . . . , n),

where B = (bij) and C = (cij) are n×n matrices with integer entries. Writing
these two equations in matrix form gives X = BY and Y = CX , and hence
X = BCX and Y = CBY . Since both x1, x2, . . . , xn and y1, y2, . . . , yn

are bases of Rn, the corresponding matrices X and Y are invertible, and can
be canceled from the equations. Therefore BC = I and CB = I, and so
det(B) det(C) = 1. Since B and C have integer entries, it follows that either
det(B) = det(C) = 1 or det(B) = det(C) = −1.

Corollary 1.11. The determinant of a lattice does not depend on the basis.

Proof. Suppose the lattice L ⊂ Rn has two bases x1, x2, . . . , xn and y1, y2,
. . . , yn. Using the notation in the proof of Lemma 1.10, we have

| det(Y ) | = | det(CX) | = | det(C) det(X)| = | ± det(X)| = | det(X)|.

Since the two bases are arbitrary, this completes the proof.

Definition 1.12. An n× n matrix with integer entries and determinant ±1
will be called unimodular.

Definition 1.13. A unimodular row operation on a matrix is one of the
following elementary row operations:

• multiply any row by −1;

• interchange any two rows;

• add an integral multiple of any row to any other row.

To generate examples of n × n unimodular matrices, we start with the
identity matrix In, and then apply any finite sequence of unimodular row
operations. The result will be an n × n unimodular matrix, and in fact any
such matrix can be obtained in this way.

If we apply unimodular row operations to the matrixX whose rows contain
a basis of the lattice L, then we obtain another basis of the same lattice.

© 2012 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

M
on

as
h 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 1

7:
32

 1
6 

Fe
br

ua
ry

 2
01

5 



Introduction to Lattices 7

Example 1.14. Start with the 2×2 identity matrix, and apply this sequence
of unimodular row operations: add 4 times row 2 to row 1, add 9 times row
1 to row 2, change the sign of row 1, add −4 times row 2 to row 1, change
the sign of row 1, change the sign of row 2. We obtain this 2× 2 unimodular
matrix:

C =

[
37 152
−9 −37

]
, det(C) = −1.

Let L be the lattice in R2 spanned by the rows of this matrix:

X =

[
7 9
6 −5

]
, det(X) = −89.

Applying the same sequence of row operations to X gives this matrix Y :

Y = CX =

[
1171 −427
−285 104

]
.

Writing the the basis vectors as column vectors gives

x1,x2 =

[
7
9

]
,

[
6
−5

]
and y1,y2 =

[
1171
−427

]
,

[
−285

104

]
.

It is far from obvious that these two bases generate the same lattice in R2.
We can perform any number of further row operations; a pseudorandom

sequence of 100 operations provides this third basis for the same lattice:

z1, z2 =

[
91202814184
−26536463447

]
,

[
10682859399
−3108295621

]
.

We can clearly continue this process as long as we want and find bases for the
same lattice consisting of arbitrarily long vectors.

The last example shows how easy it is to start with a basis for a lattice
consisting of short vectors, and then produce other bases for the same lattice
consisting of much longer vectors. Of course, it is much more interesting and
important to do exactly the opposite: Given a basis for a lattice, which in
general consists of long vectors, we want to find another “reduced” basis for
the same lattice, that is, a basis consisting of short vectors. This is the problem
of lattice basis reduction, the fundamental problem that we will be studying
throughout this book.

We now generalize the concept of lattice basis and lattice determinant to
any set of m linearly independent vectors in Rn (m ≤ n).

Definition 1.15. Let n ≥ 1 and let x1, x2, . . . , xm (m ≤ n) be a set of m
linearly independent vectors in Rn. The m-dimensional lattice spanned by
these vectors in n-dimensional Euclidean space is defined to be

L = Zx1 + Zx2 + · · ·+ Zxm =
{ m∑

i=1

aixi | a1, a2, . . . , am ∈ Z
}
.
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8 Lattice Basis Reduction

For i = 1, . . . ,m we write xi = (xi1, . . . , xin) and form the m × n matrix
X = (xij). The Gram matrix ∆(L) of the lattice L is the m×m matrix in
which the (i, j) entry is the scalar product of the i-th and j-th basis vectors:

∆(L) =
(
xi · xj

)
= XXt.

The determinant of the Gram matrix is always positive (see Exercise 1.11),
and we define the determinant of the lattice L to be its square root:

det(L) =
√

det(XXt).

If m = n then X is a square matrix, and so

(
det(L)

)2
= det(XXt) = det(X) det(Xt) =

(
det(X)

)2
,

which agrees with the previous definition of lattice determinant.
As before, it can easily be shown that the determinant of a lattice does

not depend on the choice of basis (see Exercise 1.12). The geometric interpre-
tation is also the same: the determinant is the m-dimensional volume of the
parallelipiped in Rn whose edges are the lattice basis vectors.

Example 1.16. Consider the 3-dimensional lattice L in 5-dimensional Eu-
clidean space spanned by the rows of this matrix:

X =



−7 −7 4 −8 −8

1 6 −5 8 −1
−1 1 4 −7 8




We compute the Gram matrix:

∆(L) = XXt =



−7 −7 4 −8 −8

1 6 −5 8 −1
−1 1 4 −7 8







−7 1 −1
−7 6 1

4 −5 4
−8 8 −7
−8 −1 8




=




242 −125 8
−125 127 −79

8 −79 131



 .

The Gram matrix has determinant 618829, and so det(L) =
√

618829.

In the rest of this section, we consider the problem of extending a linearly
independent set of lattice vectors to a basis for the lattice. Our exposition
follows Cassels [22], pages 11–14, but we express the results in matrix form as
much as possible.

Definition 1.17. Let L ⊂ Rn be the lattice with basis x1,x2, . . . ,xn. Suppose
that y1,y2, . . . ,yn ∈ L are linearly independent, and letM ⊂ Rn be the lattice
generated by y1,y2, . . . ,yn. We call M a sublattice of L and write M ⊆ L.
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Introduction to Lattices 9

Each basis vector yi for the sublattice M belongs to the lattice L, and so

yi =

n∑

j=1

cijxj (i = 1, 2, . . . , n),

where cij ∈ Z for all i, j. As a matrix equation, this says that

Y = CX,

where C = (cij) is the non-singular n × n matrix of integer coefficients, and
X (respectively Y ) is the n× n matrix containing xi (respectively yi) in row
i. Taking the determinant on both sides of this equation gives

det(Y ) = det(C) det(X), det(C) =
det(Y )

det(X)
.

Definition 1.18. The index ρ of a sublattice M in a lattice L is defined by

ρ = | det(C) | = | det(Y ) |
| det(X) | =

det(M)

det(L)
.

The index is an integer, since the determinant of the sublatticeM is an integral
multiple of the determinant of the lattice L. (The basis vectors for M span a
larger parallelipiped than the basis vectors for L.) It is clear from the above
equations that the index depends only on L and M , not on the choice of bases.

Definition 1.19. For any n×n matrix C, the (i, j) minor is the determinant
det(Cij) of the (n−1) × (n−1) matrix Cij obtained by deleting row i and
column j, and the (i, j) cofactor is (−1)i+j det(Cij). The adjoint matrix is
the transpose of the matrix of cofactors:

(
adj(C)

)
ij

= (−1)i+j det(Cji).

Lemma 1.20. The inverse of any non-singular matrix C can be expressed in
terms of its adjoint matrix and its determinant:

C−1 =
1

det(C)
adj(C).

Proof. See any textbook on elementary linear algebra.

Returning to the above discussion of the sublattice M (with matrix Y ) of
the lattice L (with matrix X), we see that the equation Y = CX implies

X = C−1Y =
1

det(C)
adj(C)Y,

and hence
ρX = | det(C) |X = ± adj(C)Y.

Since the entries of C are integers, so are the entries of adj(C), and hence
every row of the matrix ρX is an integer linear combination of the rows of the
matrix Y . We conclude that the lattice ρL, consisting of all multiples by the
integer ρ of the vectors in L, is a sublattice of the lattice M .
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10 Lattice Basis Reduction

Lemma 1.21. If L is a lattice and M is a sublattice of index ρ then

ρL ⊆M ⊆ L.

We now prove a theorem relating the bases of a lattice L and the bases
of a sublattice M . As a corollary we will obtain a necessary and sufficient
condition for extending a set of linearly independent lattice vectors to a basis
for the lattice.

Theorem 1.22. (Cassels [22], Theorem I, page 11) Let L be a lattice in Rn

and let M be a sublattice of L. If x1,x2, . . . ,xn is a basis of L, then there exists
a basis y1,y2, . . . ,yn of M such that Y = CX where C is a lower-triangular
n× n integer matrix with nonzero entries on the diagonal. That is, we have

y1 = c11x1

y2 = c21x1 + c22x2

...
yn = cn1x1 + cn2x2 + · · ·+ cnnxn





where cij ∈ Z, cii 6= 0 for all i, j.

Conversely, if y1,y2, . . . ,yn is any basis of M then there exists a basis
x1,x2, . . . ,xn of L satisfying the same conditions.

Proof. Lemma 1.21 shows that ρL ⊆ M , and hence ρxi ∈ M for all i. It
follows that there exist vectors yi ∈M (not necessarily forming a basis for M)
and integers cij satisfying the conditions of the theorem (in fact, we can take
cii = ρ for all i, and cij = 0 for all i 6= j). Thus the set of all n-tuples of vectors
yi ∈M satisfying the conditions of the theorem is non-empty, and so for each
i we may take yi ∈M to be the vector for which the coefficient cii is positive
and as small as possible. We will show that the resulting vectors y1,y2, . . . ,yn

form a basis of the sublattice M . Suppose to the contrary that there is a vector
z ∈ M which is not an integral linear combination of y1,y2, . . . ,yn. Writing
z as an integral linear combination of x1,x2, . . . ,xn gives

z = t1x1 + t2x2 + · · ·+ tkxk, where k ≤ n and tk 6= 0.

We choose z so that the index k is as small as possible. By assumption ckk 6= 0,
and so we may perform integer division with remainder of tk by ckk, obtaining

tk = qckk + r, 0 ≤ r < ckk.

We now consider the vector

z− qyk = (t1x1 + t2x2 + · · ·+ tkxk)− q(ck1x1 + ck2x2 + · · ·+ ckkxk)

= (t1 − qck1)x1 + (t2 − qck2)x2 + · · ·+ (tk − qckk)xk.

Since z and yk are in M and q is an integer, we have z− qyk ∈M . Since z is
not an integral linear combination of y1,y2, . . . ,yn neither is z−qyk. But the
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Introduction to Lattices 11

index k was chosen as small as possible, and so we must have tk − qckk 6= 0.
This implies that the vector z− qyk ∈M is an integral linear combination of
x1, x2, . . . , xk whose coefficient of xk, namely tk − qckk = r, is nonzero and
strictly less than ckk. But this contradicts the choice of yk. It follows that such
a vector z does not exist, and hence every vector in M must be an integral
linear combination of y1,y2, . . . ,yn.

For the converse, let y1,y2, . . . ,yn be a basis of M . By Lemma 1.21 we
know that ρL ⊆ M , and so we may apply the first part of the proof to the
sublattice ρL of the lattice M . We obtain a basis ρx1, ρx2, . . . , ρxn of ρL such
that

ρx1 = d11y1

ρx2 = d21y1 + d22y2

...
ρxn = dn1y1 + dn2y2 + · · ·+ dnnyn





where dij ∈ Z, dii 6= 0 for all i, j.

We can write these equations in matrix form as ρX = DY where D = (dij) is
a lower-triangular n× n integer matrix with nonzero entries on the diagonal.
Solving for Y we obtain Y = ρD−1X . It is clear that x1,x2, . . . ,xn form a
basis of L, and since y1,y2, . . . ,yn ∈ M ⊆ L, we see that the entries of the
matrix ρD−1 must be integers, by the uniqueness of the representation of each
lattice vector as an (integral) linear combination of basis vectors.

We note an especially interesting and attractive feature of the last proof: it
clearly illustrates the principle that reduction of lattice bases can be naturally
regarded as a generalization of integer division with remainder.

We now consider a sequence of corollaries of Theorem 1.22. Recall that
Eij is the n× n matrix in which the (i, j) entry is 1 and the other entries are
0.

Corollary 1.23. In the first part of Theorem 1.22 we may assume that

cii > 0 (1 ≤ i ≤ n) and 0 ≤ cij < cjj (1 ≤ j < i ≤ n).

In the second part of Theorem 1.22 we may assume that

cii > 0 (1 ≤ i ≤ n) and 0 ≤ cij < cii (1 ≤ j < i ≤ n).

Proof. Consider the matrix form of the equations, namely Y = CX . If cii < 0
for some i then we left-multiply both sides of the matrix equation by −Eii;
this corresponds to the unimodular row operation “multiply row i by −1”. If
cij < 0 or cij ≥ cjj for some i, j then we do integer division with remainder
to write cij = qcjj + r with 0 ≤ r < cjj (we are now assuming that cjj > 0)
and then left-multiply both sides of the matrix equation by In−qEij ; this
corresponds to the unimodular row operation “subtract q times row j from row
i”. We can express the result of all these operations by the matrix equation
UY = UCX where U is a unimodular matrix. In fact it is clear that U
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12 Lattice Basis Reduction

is lower-triangular, and hence so is UC. We can therefore replace the basis
y1,y2, . . . ,yn of M , consisting of the rows of the matrix Y , by the new basis
consisting of the rows of the matrix UY . The second part of the proof is left
to the reader (see Exercise 1.16).

Corollary 1.24. Let L be an n-dimensional lattice in Rn, and let
y1,y2, . . . ,ym (m ≤ n) be linearly independent vectors in L. There is a basis
x1,x1, . . . ,xn of L satisfying the equations

y1 = c11x1

y2 = c21x1 + c22x2

...
ym = cm1x1 + cm2x2 + · · ·+ cmmxm





where





cij ∈ Z for all i, j
cii > 0 for all i
0 ≤ cij < cii for all i, j

Proof. We can find another n−m vectors ym+1, . . . ,yn in L such that the
vectors y1,y2, . . . ,yn are linearly independent. We now apply the second part
of Corollary 1.23 to the lattice M with basis y1,y2, . . . ,yn.

Corollary 1.25. Let L be an n-dimensional lattice in Rn and let
y1,y2, . . . ,ym (m < n) be linearly independent vectors in L. These condi-
tions are equivalent:

(1) There exist another n−m vectors ym+1, . . . ,yn in L such that
the vectors y1,y2, . . . ,yn form a basis of L.

(2) Any vector z ∈ L which is a (real) linear combination of
y1,y2, . . . ,ym is in fact an integral linear combination.

Proof. The implication (1) =⇒ (2) is clear. To prove (2) =⇒ (1), assume that
y1,y2, . . . ,ym satisfy condition (2). Since y1,y2, . . . ,ym are linearly indepen-
dent vectors in L, we may apply Corollary 1.24 to obtain a basis x1,x1, . . . ,xn

of L satisfying the given equations. Considering only the first m basis vectors
x1,x1, . . . ,xm we have the matrix equation Y = CX where now the matrix
C has size m × m. Hence X = C−1Y , and now condition (2) implies that
the entries of C−1 are integers. But C is lower-triangular with diagonal en-
tries c11, c22, . . . , cmm, and hence C−1 is lower-triangular with diagonal entries
c−1
11 , c

−1
22 , . . . , c

−1
mm. Thus for all i = 1, 2, . . . ,m we see that cii is an integer for

which c−1
ii is also an integer, and hence cii = ±1. Corollary 1.23 now implies

that cii = 1 for 1 ≤ i ≤ m and cij = 0 for 1 ≤ j < i ≤ m. Thus C = Im, and
so yi = xi for i = 1, 2, . . . ,m. To complete the proof we simply set yi = xi

for i = m+1, . . . , n.

Corollary 1.26. Let L be an n-dimensional lattice in Rn with basis
x1,x2, . . . ,xn. Consider an arbitrary vector z ∈ L and write

z = a1x1 + a2x2 + · · ·+ anxn (a1, a2, . . . , an ∈ Z).

These conditions are equivalent for any integer m = 1, 2, . . . , n:

© 2012 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

M
on

as
h 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 1

7:
32

 1
6 

Fe
br

ua
ry

 2
01

5 



Introduction to Lattices 13

(1) There are vectors ym+1, . . . ,yn ∈ L such that the following n
vectors form a basis of L:

x1, x2, . . . , xm−1, z, ym+1, . . . , yn.

(2) The greatest common divisor of the integers am+1, . . . , an is 1.

Proof. This follows directly from Corollary 1.25 (see Exercise 1.17).

Up to this point we have been considering “full-rank” sublattices; the di-
mension of the sublattice M is equal to the dimension of the lattice L. For
the next definition and theorem we consider a more general situation.

Definition 1.27. Let L be an n-dimensional lattice in Rn, and let M be an
m-dimensional sublattice for some m < n: that is, M is the set of all integral
linear combinations of m linearly independent vectors in L. We say that M is
a primitive sublattice if M = L ∩ V where V is a subspace of Rn.

Theorem 1.28. (Nguyen [105], Lemma 4, page 28) The m-dimensional sub-
lattice M of the n-dimensional lattice L ⊂ Rn is primitive if and only if every
basis of M can be extended to a basis of L; that is, if the vectors y1,y2, . . . ,ym

form a basis of M , then there are vectors xm+1, . . . ,xn in L such that the vec-
tors y1,y2, . . . ,ym,xm+1, . . . ,xn form a basis of L.

Proof. Exercise 1.18.

1.3 Geometry of numbers

In this final section, we recall some definitions that will be used in the rest of
the book, and state some results without proof.

Definition 1.29. Let L be an m-dimensional lattice in n-dimensional Eu-
clidean space Rn. The first minimum of the lattice, denoted Λ1(L), is the
length of a shortest nonzero vector x1 ∈ L. The second minimum of the
lattice, denoted Λ2(L), is the smallest real number r such that there exist two
linearly independent vectors x1,x2 ∈ L such that |x1|, |x2| ≤ r. In general, for
i = 1, 2, . . . ,m, the i-th successive minimum of the lattice, denoted Λi(L),
is the smallest real number r such that there exist i linearly independent vec-
tors x1,x2, . . . ,xi ∈ L such that |x1|, |x2|, . . . , |xi| ≤ r. This quantity can be
expressed more concisely by the equation

Λi(L) = min
x1,...,xi∈L

max
(
|x1|, . . . , |xi|

)
,

where the minimum is over all sets of i linearly independent vectors in L.
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14 Lattice Basis Reduction

It is easy to see that the successive minima are weakly increasing:

Λ1(L) ≤ Λ2(L) ≤ · · · ≤ Λm(L).

The best possible basis for an m-dimensional lattice L consists of vectors

x1,x2, . . . ,xm ∈ L such that |xi| = Λi(L) for i = 1, 2, . . . ,m.

However, such a basis is in general very hard to compute. It is interesting to
note that a set of m vectors x1,x2, . . . ,xm ∈ L which satisfy the conditions
|xi| = Λi(L) for i = 1, 2, . . . ,m do not necessarily form a basis of L; for an
example with m = 4 see Nguyen [105], page 32.

In order to understand better the size of the first minimum Λ1(L), we scale
it by the determinant of the lattice. More precisely, we consider

Λ1(L)
m
√

det(L)
.

Definition 1.30. Hermite’s lattice constant, denoted γm, is the supre-
mum of the following quantities as L ranges over all m-dimensional lattices:

Λ1(L)2
(
det(L)

)2/m
.

The quantities γm are very difficult to compute, and are known only for
1 ≤ m ≤ 8 and m = 24. The following table is from Nguyen [105], page 33:

m 1 2 3 4 5 6 7 8 · · · 24

γm 1
(

4
3

)1/2
21/3 21/2 81/5

(
64
3

)1/6
641/7 2 · · · 4

Definition 1.31. Let S be an arbitrary subset of n-dimensional Euclidean
space Rn. We say that S is symmetric about the origin if x ∈ S implies
−x ∈ S. We say that S is convex if x,y ∈ S implies αx + (1−α)y ∈ S for
0 ≤ α ≤ 1; that is, S contains the line segment joining x and y.

Theorem 1.32. Minkowski’s convex body theorem. Let L be an n-
dimensional lattice in n-dimensional Euclidean space Rn with determinant
det(L). Let S be a subset of Rn which is convex and symmetric about the
origin; let vol(S) denote the volume of S. If vol(S) > 2n det(L) then S contains
a nonzero vector x ∈ L.

Proof. Cassels [22], Theorem II, page 71.
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Introduction to Lattices 15

1.4 Projects

Project 1.1. Write a computer program that takes as input three points
A,B,C in Rn, verifies that the points are the vertices of a triangle (that is,
the points are not collinear), and then calculates:

(i) the lengths of the sides of the triangle,

(ii) the angles at the vertices of the triangle,

(iii) for each ordered pair of sides, the components of the first side
parallel and orthogonal to the second side.

Test your program on 10 pseudorandom choices of the points A,B,C having
coordinates with 1, 2 or 3 digits in the Euclidean space Rn for n = 2, 3, . . . , 10.

Project 1.2. Write a computer program that takes as input an operation
count k, a range parameter r, and a basis x1, x2, . . . , xn of Rn spanning a
lattice L, and then applies k unimodular row operations to the corresponding
matrix X to obtain another basis of the same lattice. The range parameter is
used to limit the scalars: the multiplier m in the third type of row operation
(“add an integral multiple of any row to any other row”) is a nonzero integer
in the range −r ≤ m ≤ r. Test your program for various values of k and r on
pseudorandom integral bases of Rn for n = 2, 3, . . . , 10. (You will also need a
parameter to limit the components of the pseudorandom basis vectors.)

Project 1.3. Write a computer program that takes as input a basis x1, x2,
. . . , xn of the n-dimensional lattice L ⊂ Rn together with m vectors y1, y2,
. . . , ym in L (1 ≤ m < n), and determines whether there exist vectors ym+1,
. . . , yn in L such that y1, y2, . . . , yn form a basis of L. Extend your program
to find vectors ym+1, . . . , yn satisfying this condition (if they exist).

Project 1.4. Write a survey report on algorithmic aspects of the geometry of
numbers and its applications, and give a seminar presentation based on your
report. The following survey papers will be useful references: Kannan [72],
Vallée [138], and Aardal [1].

1.5 Exercises

Exercise 1.1. Consider the triangle in R2 with these points as its vertices:

A = (−5,−4), B = (−5,−1), C = (5,−8).

Find the lengths of the sides of this triangle. Calculate the angles at the
vertices and verify that their sum is 180 degrees. For each ordered pair of
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16 Lattice Basis Reduction

sides, find the components of the first side parallel and orthogonal to the
second side.

Exercise 1.2. Same as Exercise 1.1 for these points in R2:

A = (45,−81), B = (−50,−22), C = (−16,−9).

Exercise 1.3. Same as Exercise 1.1 for these points in R3:

A = (2,−9, 0), B = (−8, 2,−5), C = (−9, 7, 7).

Exercise 1.4. Same as Exercise 1.1 for these points in R3:

A = (77, 9, 31), B = (20,−61,−48), C = (24, 65, 86).

Exercise 1.5. Same as Exercise 1.1 for these points in R4:

A = (4,−9,−2,−5), B = (1, 7, 8,−1), C = (−6,−8,−2,−2).

Exercise 1.6. Same as Exercise 1.1 for these points in R4:

A = (−62,−33,−68,−67), B = (42, 18,−59, 12), C = (52,−13, 82, 72).

Exercise 1.7. Let C be an n×n matrix with integer entries and determinant
±1. Prove that C−1 also has integer entries.

Exercise 1.8. Show that these three bases of R2 generate the same lattice.
For each ordered pair of bases, find a sequence of unimodular row operations
which converts from the first basis to the second:

{x1,x2 } =

{ [
−41
−82

]
,

[
1

−99

] }
,

{y1,y2 } =

{ [
−79
−461

]
,

[
−198
−1103

] }
,

{ z1, z2 } =

{ [
26080957
43756088

]
,

[
3875510
6501953

] }
.

Exercise 1.9. Same as Exercise 1.8 for these three bases of R3:

{x1,x2,x3 } =








4
−2

0



 ,




3
−3
−3



 ,




−1
−6
−1







 ,

{y1,y2,y3 } =








143
−20

19



 ,




−241
−64
−45



 ,




110
−5
16







 ,

{ z1, z2, z3 } =







−26357

13270
2307


 ,




4836
−2438
−424


 ,



−105971

53351
9275






 .
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Introduction to Lattices 17

Exercise 1.10. Same as Exercise 1.8 for these three bases of R4:







5
0
−5
−1


 ,




−7
0
−6

7


 ,




1
−2
−7

4


 ,




−1
7
−3

1







,








82
−371

271
−129


 ,




−101
425
−303

149


 ,




−705
2915
−2090

1039


 ,




−2100
8689
−6240

3102







,









21463771
1248392

−30241207
−775616


 ,




79458521
4621448

−111952377
−2871329


 ,




−2726297
−158475
3841129

98526


 ,




7377273
428791

−10393946
−266612








.

Exercise 1.11. Let X be any m×n matrix (m ≤ n) with real entries. Prove
that the determinant of the matrix XXt is always non-negative, and equals 0
if and only if the rows of X are linearly dependent.

Exercise 1.12. Let x1,x2, . . . ,xm be m linearly independent vectors in Rn

spanning the lattice L, and let X be the m × n matrix with xi as row i.
Let y1,y2, . . . ,ym be another basis for L with corresponding matrix Y . Prove
that there exists a unimodular matrix C such that Y = CX and X = C−1Y .
Deduce that det(XXt) = det(Y Y t), and hence the determinant of L does not
depend on the choice of basis.

Exercise 1.13. In each case, find the Gram matrix and the determinant of
the m-dimensional lattice L in n-dimensional Euclidean space Rn spanned by
the rows x1,x2, . . . ,xm of the m× n matrix X :

(a) X =

[
−5 −4 6
−1 1 −5

]
,

(b) X =

[
25 62 58
53 17 −37

]
,

(c) X =

[
−156 −142 27

901 560 −733

]
,

(d) X =

[
5166 3296 −1487
−7461 7833 −5023

]
.

Exercise 1.14. Same as Exercise 2.6 for these matrices:

(a) X =




7 0 6 3 7
8 −1 −2 −9 −2
9 6 1 −8 −6


 ,

(b) X =




−59 −23 −2 −31 29

99 −73 −83 38 17
58 30 −84 −77 −63



 ,
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18 Lattice Basis Reduction

(c) X =




−932 −95 −672 −139 784

989 −504 193 −489 334
−978 −312 −712 −39 −19



 .

Exercise 1.15. Same as Exercise 2.6 for these matrices:

(a) X =




−9 −6 7 4 2 3 −8
−6 2 −4 9 −2 1 −8
−8 −2 7 −8 7 2 5

7 −7 −3 6 −9 1 9


 ,

(b) X =




−46 −42 12 76 −51 −97 37
−77 −84 85 92 −34 88 92
−51 65 41 −59 −4 88 23
−77 54 −78 −89 0 −63 47


 ,

(c) X =




323 209 −629 480 889 91 −104
−894 205 691 768 281 −242 63
−842 137 −399 730 353 586 56
−227 −605 130 89 −769 −409 −236


 .

Exercise 1.16. Complete the proof of Corollary 1.23.

Exercise 1.17. Complete the proof of Corollary 1.26.

Exercise 1.18. Prove Theorem 1.28.

Exercise 1.19. (Cassels [22], Lemma 2, page 15). Let x1, x1, . . . , xn be a
basis for the n-dimensional lattice L ⊂ Rn. Consider m lattice vectors,

yi =

n∑

j=1

aijxj , aij ∈ Z, i = 1, 2, . . . ,m.

Let A = (aij) be the m× n matrix of coefficients. Prove that the vectors y1,
y2, . . . , ym can be extended to a basis of L if and only if the

(
n
m

)
determinants

of size m×m obtained by taking m columns of A have no common factor.

Exercise 1.20. Let C be an n × n matrix with integer entries, and sup-
pose that only the first m rows of C are known for some m = 1, 2, . . . , n−1.
Find necessary and sufficient conditions on the first m rows in order that the
remaining n−m rows can be filled in (with integers) to give a unimodular
matrix.

Exercise 1.21. Consider the lattice L ⊂ R2 with basis x1, x2 and the vector
y1 ∈ L. Determine whether there exists a vector y2 ∈ L such that y1, y2 is a
basis of L, and find such a vector if it exists:

x1,x2 =

[
4
−7

]
,

[
−7
−8

]
; y1 =

[
−79
−44

]
.
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Introduction to Lattices 19

Exercise 1.22. Same as Exercise 1.21 for

x1,x2 =

[
−72
−32

]
,

[
−2
−74

]
; y1 =

[
−632

304

]
.

Exercise 1.23. Consider the lattice L ⊂ R3 with basis x1, x2, x3 and the
vectors y1,y2 ∈ L. Determine whether there exists a vector y3 ∈ L such that
y1, y2, y3 is a basis of L, and find such a vector if it exists:

x1,x2,x3 =



−6
−5
−4


 ,




5
−1

1


 ,



−8
−5
−3


 ; y1,y2 =




33
33
15


 ,



−54
−16
−15


 .

Exercise 1.24. Same as Exercise 1.23 for

x1,x2,x3 =




31
43
12


 ,



−50

25
−2


 ,



−80

94
50


 ; y1,y2 =



−795

267
74


 ,




317
−712
−392


 .

Exercise 1.25. Consider the lattice L ⊂ R3 with basis x1, x2, x3 and the
vector y1 ∈ L. Determine whether there exist vectors y2,y3 ∈ L such that y1,
y2, y3 is a basis of L, and find such vectors if they exist:

x1,x2,x3 =




7
4
−5



 ,




8
−9

5



 ,




−1
−2
−4



 ; y1 =




−31

8
−4



 .

Exercise 1.26. Same as Exercise 1.25 for

x1,x2,x3 =




18
−62
−67



 ,




−59
−33

22



 ,




12
−68

14



 ; y1 =




178
46

−678



 .
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