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1 Introduction

In this chapter we describe some of the recent progress in lattice-based cryptography. Lattice-based cryp-
tographic constructions hold a great promise for post-quantum cryptography, as they enjoy very strong
security proofs based on worst-case hardness, relatively efficient implementations, as well as great simplicity.
In addition, lattice-based cryptography is believed to be secure against quantum computers. Our focus here
will be mainly on the practical aspects of lattice-based cryptography and less on the methods used to es-
tablish their security. For other surveys on the topic of lattice-based cryptography, see, e.g., [60, 36, 72, 51]
and the lecture notes [50, 68]. The survey by Nguyen and Stern [60] also describes some applications of
lattices in cryptanalysis, an important topic that we do not discuss here. Another useful resource is the
book by Micciancio and Goldwasser [53], which also contains a wealth of information on the computational
complexity aspects of lattice problems.

Figure 1: A two-dimensional lattice and two possible bases.
So what is a lattice? A lattice is a set of points in n-dimensional space with a periodic structure, such

as the one illustrated in Figure 1. More formally, given n-linearly independent vectors by, ..., b, € R", the
lattice generated by them is the set of vectors

L(by,...,b,) = {inbi : xieZ}.
=1

The vectors by, ..., b, are known as a basis of the lattice.
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The way lattices can be used in cryptography is by no means obvious, and was discovered in a break-
through paper by Ajtai [4]. His result has by now developed into a whole area of research whose main
focus is on expanding the scope of lattice-based cryptography and on creating more practical lattice-based
cryptosystems. Before discussing this area of research in more detail, let us first describe the computational
problems involving lattices, whose presumed hardness lies at the heart of lattice-based cryptography.

1.1 Lattice problems and algorithms

Lattice-based cryptographic constructions are based on the presumed hardness of lattice problems, the most
basic of which is the shortest vector problem (SVP). Here, we are given as input a lattice represented by an
arbitrary basis, and our goal is to output the shortest nonzero vector in it. In fact, one typically considers
the approximation variant of SVP where the goal is to output a lattice vector whose length is at most some
approximation factor y(n) times the length of the shortest nonzero vector, where n is the dimension of the
lattice. A more precise definition of SVP and several other lattice problems appears in Section 2.

The most well known and widely studied algorithm for lattice problems is the LLL algorithm, developed
in 1982 by Lenstra, Lenstra, and Lovész [39]. This is a polynomial time algorithm for SVP (and for most
other basic lattice problems) that achieves an approximation factor of 20(") where n is the dimension of
the lattice. As bad as this might seem, the LLL algorithm is surprisingly useful, with applications ranging
from factoring polynomials over the rational numbers [39], to integer programming [31], as well as many
applications in cryptanalysis (such as attacks on knapsack-based cryptosystems and special cases of RSA).

In 1987, Schnorr presented an extension of the LLL algorithm leading to somewhat better approximation
factors [74]. The main idea in Schnorr’s algorithm is to replace the core of the LLL algorithm, which involves
2 x 2 blocks, with blocks of larger size. Increasing the block size improves the approximation factor (i.e.,
leads to shorter vectors) at the price of an increased running time. Schnorr’s algorithm (e.g., as implemented
in Shoup’s NTL package [76]) is often used by experimenters. Several variants of Schnorr’s algorithm exist,
such as the recent one by Gama and Nguyen [15] which is quite natural and elegant. Unfortunately, all these
variants achieve more or less the same exponential approximation guarantee.

If one insists on an ezact solution to SVP, or even just an approximation to within poly(n) factors, the best
known algorithm has a running time of 2°(") [7]. The space requirement of this algorithm is unfortunately
also exponential which makes it essentially impractical (but see [61] for a recent implementation that can
handle dimensions up to 50). Other algorithms require only polynomial space, but run in 20(nlogn) time
(see [31] and the references in [61]).

The above discussion leads us to the following conjecture.

Conjecture 1.1 There is no polynomial time algorithm that approximates lattice problems to within poly-
nomial factors.

Less formally, it is conjectured that approximating lattice problems to within polynomial factors is a hard
problem (see also [73]). As we shall see later, the security of many lattice-based cryptographic constructions is
based on this conjecture. As a further evidence for this conjecture, we note that progress in lattice algorithms
has been stubbornly difficult, with no significant improvement in performance since the 1980s. This is in
contrast to number theoretic problems such as factoring for which we have some remarkable subexponential
time algorithms like the number field sieve [38]. We should note, though, that approximating lattice problems
to within factors above y/n/logn is not NP-hard unless the polynomial time hierarchy collapses [37, 19, 2];
NP-hardness results for lattice problems are known only for much smaller approximation factors such as
nO(/loglogn) (see [78, 3, 12, 14, 48, 33, 25] and the survey [34]).

When applied to “real-life” lattices or lattices chosen randomly from some natural distribution, lattice
reduction algorithms tend to perform somewhat better than their worst-case performance. This phenomenon
is still not fully explained, but has been observed in many experiments. In one such recent investigation [16],
Gama and Nguyen performed extensive experiments with several lattice reduction algorithms and several
distributions on lattices. One of their conclusions is that known lattice reduction algorithms provide an
approximation ratio of roughly ¢ where n is the dimension of the lattice and § is a constant that depends



on the algorithm. The best § achievable with algorithms running in reasonable time is very close to 1.012.
Moreover, it seems that approximation ratios of (1.01)" are outside the reach of known lattice reduction
algorithm. See Section 3 for a further discussion of the Gama-Nguyen experiments.

1.2 Lattice-based cryptography

As mentioned in the beginning of this chapter, lattice-based cryptographic constructions hold a great promise
for post-quantum cryptography. Many of them are quite efficient, and some even compete with the best
known alternatives; they are typically quite simple to implement; and of course, they are all believed to be
secure against quantum computers (a topic which we will discuss in more detail in the next subsection).

In terms of security, lattice-based cryptographic constructions can be divided into two types. The first
includes practical proposals, which are typically very efficient, but often lack a supporting proof of security.
The second type admit strong provable security guarantees based on the worst-case hardness of lattice
problems, but only a few of them are sufficiently efficient to be used in practice. We will consider both types
in this chapter, with more emphasis on the latter type.

In the rest of this subsection, we elaborate on the strong security guarantees given by constructions of
the latter type, namely that of worst-case hardness. What this means is that breaking the cryptographic
construction (even with some small non-negligible probability) is provably at least as hard as solving several
lattice problems (approximately, within polynomial factors) in the worst case. In other words, breaking the
cryptographic construction implies an efficient algorithm for solving any instance of some underlying lattice
problem. In most cases, the underlying problem is that of approximating lattice problems such as SVP to
within polynomial factors, which as mentioned above, is conjectured to be a hard problem.

Such a strong security guarantee is one of the distinguishing features of lattice-based cryptography.
Virtually all other cryptographic constructions are based on average-case hardness. For instance, breaking
a cryptosystem based on factoring might imply the ability to factor some numbers chosen according to a
certain distribution, but not the ability to factor all numbers

The importance of the worst-case security guarantee is twofold. First, it assures us that attacks on the
cryptographic construction are likely to be effective only for small choices of parameters and not asymptot-
ically. In other words, it assures us that there are no fundamental flaws in the design of our cryptographic
construction. In fact, in some cases, the worst-case security guarantee can even guide us in making design
decisions. Second, in principle the worst-case security guarantee can help us in choosing concrete parameters
for the cryptosystem, although in practice this leads to what seems like overly conservative estimates, and
as we shall see later, one often sets the parameters based on the best known attacks.

1.3 Quantum and lattices

As we have seen above, lattice problems are typically quite hard. The best known algorithms either run in
exponential time, or provide quite bad approximation ratios. The field of lattice-based cryptography has
been developed based on the assumption that lattice problems are hard. But is lattice-based cryptography
suitable for a post-quantum world? Are lattice problems hard even for quantum computers?

The short answer to this is “probably yes”: There are currently no known quantum algorithms for solving
lattice problems that perform significantly better than the best known classical (i.e., non-quantum) algorithms
(but see [41]). This is despite the fact that lattice problems seem like a natural candidate to attempt to
solve using quantum algorithms: because they are believed not to be NP-hard for typical approximation
factors, because of their periodic structure, and because the Fourier transform, which is used so successfully
in quantum algorithms, is tightly related to the notion of lattice duality.

Attempts to solve lattice problems by quantum algorithms have been made since Shor’s discovery of the
quantum factoring algorithm in the mid-1990s, but have so far met with little success if any at all. The
main difficulty is that the periodicity finding technique, which is used in Shor’s factoring algorithm and
related quantum algorithms, does not seem to be applicable to lattice problems. It is therefore natural to
consider the following conjecture, which justifies the use of lattice-based cryptography for post-quantum

cryptography:



Conjecture 1.2 There is no polynomial time quantum algorithm that approximates lattice problems to
within polynomial factors.

The above discussion, however, should not be interpreted as saying that the advent quantum algorithms
had no influence on our understanding of lattice problems. Although actual quantum algorithms for lattice
problems are not known, there are a few very intriguing connections between quantum algorithms and lattice
problems. The first such connection was demonstrated in [70] where it was shown that a certain extension
of the period finding problem to non-Abelian groups can be used to give quantum algorithms for lattice
problems. This approach, unfortunately, has so far not led to any interesting quantum algorithms for lattice
problems.

A possibly more interesting connection is the use of a quantum hardness assumption in the lattice-
based cryptosystem of [71]. A detailed discussion of this cryptosystem and its applications will appear in
Subsection 5.4. For now, we briefly discuss the way quantum algorithms are used there. The main observation
made there is that quantum algorithms can be useful in solving lattice problems, albeit somewhat unnatural
ones. Consider the following scenario. We are given an oracle that is able to answer queries of the following
type: on input a lattice £ and a point x that is somewhat close to £, it outputs the closest lattice point to x.
If x is not close enough to £, the output of the oracle is undefined. In some sense, such an oracle seems quite
powerful: the best known algorithms for performing such a task require exponential time. Nevertheless,
there seems to be absolutely no way to do anything “useful” with this oracle classically! Indeed, it seems
that the only way to generate inputs to the oracle is the following: somehow choose a lattice point y € £
and let x =y + z for some small perturbation vector z. We can now feed x to the oracle since it is close to
the lattice. But the result we get, y, is totally useless since we already know it!

It turns out that in the quantum setting, such an oracle is quite useful. Indeed, being able to compute y
from x allows to uncompute y. More precisely, it allows to transform the quantum state |x,y) to the state
|x,0) in a reversible (i.e., unitary) way. This ability to erase the content of a memory cell in a reversible way
seems useful only in the quantum setting. By using this together with the Fourier transform, it is shown
in [71] how to use such an oracle in order to find short lattice vectors in the dual lattice.

1.4 Organization

The rest of this chapter is organized as follows. In Section 2 we provide some preliminaries on lattices. In
Section 3 we consider a certain lattice problem that lies at the heart of many lattice-based cryptographic
constructions, and discuss the best known algorithms for solving it. This will be used when we suggest
concrete parameters for lattice-based constructions. The next three sections discuss three main cryptographic
primitives: hash functions (Section 4), public key cryptosystems (Section 5), and digital signature schemes
(Section 6). Some recent constructions of other cryptographic primitives are mentioned in Section 7. Finally,
in Section 8 we list some of the main open questions in the area.

2 Preliminaries

All logarithms are base 2 unless otherwise indicated. We use column notation for vectors and use (z1, ..., 2n)
to denote the column vector with entries z1,...,z,. We use square brackets to enclose matrices and row
vectors.

Lattices: A lattice is defined as the set of all integer combinations
L(by,...,b,) = {inbi: z;€Zforl1<i< n}
i=1

of n linearly independent vectors by, ..., b, in R™ (see Figure 1). The set of vectors by,..., b, is called a
basis for the lattice. A basis can be represented by the matrix B = [by,...,b,] € R®*™ having the basis



vectors as columns. Using matrix notation, the lattice generated by a matrix B € R™*" can be defined as
L(B) = {Bx: x € Z"}, where Bx is the usual matrix-vector multiplication.

It is not difficult to see that if U is a unimodular matrix (i.e., an integer square matrix with determinant
+1), the bases B and BU generate the same lattice. (In fact, £(B) = £(B’) if and only if there exists a
unimodular matrix U such that B’ = BU.) In particular, any lattice admits multiple bases, and this fact is
at the core of many cryptographic applications.

The determinant of a lattice is the absolute value of the determinant of the basis matrix det(£(B)) =
|det(B)|. The value of the determinant is independent of the choice of the basis, and geometrically corre-
sponds to the inverse of the density of the lattice points in R™. The dual of a lattice £ in R”, denoted L*,
is the lattice given by the set of all vectors y € R™ satisfying (x,y) € Z for all vectors x € L. It can be seen
that for any B € R**", £(B)* = £L((B~!)). From this it follows that det(£*) = 1/ det(L).

g-ary lattices: Of particular importance in lattice-based cryptography are g-ary lattices. These are lattices
L satisfying ¢Z™ C L C Z" for some (possibly prime) integer ¢. In other words, the membership of a vector x
in £ is determined by x mod g. Such lattices are in one-to-one correspondence with linear codes in Z;. Most
lattice-based cryptographic constructions use g-ary lattices as their hard-on-average problem. We remark
that any integer lattice £L C Z" is a g-ary lattice for some ¢, e.g., whenever ¢ is an integer multiple of the
determinant det(L£). However, we will be mostly concerned with g-ary lattices with ¢ much smaller than
det(L).

Given a matrix A € Zy*™ for some integers ¢, m,n, we can define two m-dimensional g-ary lattices,

AyA)={y€Z™ : y=ATs mod g for some s € Z"}
AF(A)={y €Z™ : Ay =0 mod ¢}.

q

The first g-ary lattice is generated by the rows of A; the second contains all vectors that are orthogonal
modulo g to the rows of A. In other words, the first g-ary lattice corresponds to the code generated by the
rows of A whereas the second corresponds to the code whose parity check matrix is A. It follows from the
definition that these lattices are dual to each other, up to normalization; namely, Ay (A) = ¢ - Ay(A)* and
Ag(A) =q- A (A)".

Lattice problems: The most well known computational problems on lattices are the following.
e Shortest Vector Problem (SVP): Given a lattice basis B, find the shortest nonzero vector in £(B).

e Closest Vector Problem (CVP): Given a lattice basis B and a target vector t (not necessarily in the
lattice), find the lattice point v € £(B) closest to t.

e Shortest Independent Vectors Problem (SIVP): Given a lattice basis B € Z™*", find n linearly
independent lattice vectors S = [s1,...,s,] (where s; € £(B) for all i) minimizing the quantity
S]] = max; [si]-

In lattice-based cryptography, one typically considers the approximation variant of these problems, which
are denoted by an additional subscript v indicating the approximation factor. For instance, in SVP, the
goal is to find a vector whose norm is at most v times that of the shortest nonzero vector. Finally, let us
mention that all problems can be defined with respect to any norm, but the Euclidean norm ||x|| = />, 2
is the most common (see [67]).

3 Finding Short Vectors in Random ¢-ary Lattices

Consider the following problem. We are given a random matrix A € Zy*™ for some ¢,n and m > n and
we are asked to find a short vector in Aé‘(A). What is the shortest vector that we can hope to find in a
reasonable amount of time? Notice that this is equivalent to asking for a short solution to a set of n random



equations modulo ¢ in m variables. There are two main methods to find such solutions, which we review
in the next paragraphs. Before addressing the algorithmic question, let us try to estimate the length of the
shortest nonzero vector. For this, assume ¢ is prime. Then with high probability (assuming m is not too
close to n), the rows of A are linearly independent over Z,. In such a case, the number of elements of Ly
that belong to Aj-(A) is exactly ¢" " from which it follows that det(A; (A)) = ¢". We can now heuristically
estimate A1 (A (A)) as the smallest radius of a ball whose volume is ¢, i.e.,

2me

M(AL(A) & g™ - ((m/2)™ 7= g [

where we used the formula for the volume of a ball in m dimensions. For reasonable values of m (that are not
too close to n nor too large) this estimate seems to be very good, as indicated by some of our experiments in
low dimensions. The above estimate applies if we are interested in vectors that have small Euclidean length.
Similar arguments apply to other norms. For example, we can expect the lattice to contain nonzero vectors
with coordinates all bounded in absolute value by

n/m __ 1
AR (AL(A)) ~ QT
Lattice reduction methods. We now get back to our original algorithmic question: what is the shortest
vector that we can hope to find in a reasonable amount of time? In order to answer this question, we rely on
the extensive experiments made by Gama and Nguyen in [16]. Although their experiments were performed
on a different distribution on lattices, their results seem to apply very well also to the case of random g-ary
lattices. Indeed, in all our experiments we observed the same behavior reported in their paper, with the
exception that a “trivial” vector of length ¢ can always be found; namely, the length of the vector obtained
by running the best known algorithms on a random m-dimensional g-ary lattice AqL(A) is close to

min{g, (det(A; (A)))"/™ - 6™} = min{q,¢"/" 6™} (1)

where the equality holds with high probability. The parameter § depends on the algorithm used. Faster
algorithms (which are unavoidable when the dimension is several hundreds) provide § & 1.013 whereas slower
and more precise algorithms provide d &~ 1.012 or even § ~ 1.011. Lower values of § seem to be impossible
to obtain with our current understanding of lattice reduction. Gama and Nguyen in fact estimate that a
factor of 1.005 is totally out of reach in dimension 500.

We now try to understand the effect that m has on the hardness of the question. A simple yet important
observation to make is that the problem cannot become harder by increasing m. Indeed, we can always fix
some of the variables (or coordinates) to 0 thereby effectively reducing to a problem with smaller m. In
lattice terminology, this says that A (A) contains as a “sublattice” Ay (A’) where A’ is obtained from A
by removing some of its columns. (More precisely, since the two lattices are of different dimensions, we need
to append zero coordinates to the latter in order for it to be a true sublattice of the former.)

In Figure 2 we plot ¢"/™3™ as a function of m. It is easy to see that the minimum of the function
is 22vnlogalogd an( is obtained for m = y/nlogq/logs. This means that when applying lattice reduction
algorithms to Aql(A), the shortest vectors are produced when m = y/nloggq/logd. For smaller m, the
lattice is too sparse and does not contain short enough vectors. For larger m, the high dimension prevents
lattice reduction algorithms from finding short vectors. In such a case, one is better off removing some of
the columns of A in order to arrive at a lower dimensional problem. We note that this phenomenon has
showed up clearly in our experiments.

To summarize, based on the experiments made by Gama and Nguyen, we can conclude that the shortest
vector one can find in AqL(A) for a random A € Zy*™ using state of the art lattice reduction algorithms is
of length at least

min{q, 22\/nlogqlog6}, (2)
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Figure 2: Estimated length of vector found with § = 1.01, ¢ = 4416857, and n = 100 as a function of m.

where § is not less than 1.01. Notice that the above expression is independent of m. This indicates that the
difficulty of the problem depends mainly on n and ¢ and not so much on m. Interestingly, the parameter m
plays a minor role also in Ajtai’s worst-case connection, giving further evidence that n and ¢ alone determine
the difficulty of the problem.

Combinatorial methods. It is interesting to consider also combinatorial methods to find short vectors in
a g-ary lattice, as for certain choices of parameters these methods perform better than lattice reduction. The
best combinatorial methods to find short vectors in g-ary lattices are variants of the algorithms presented
[9, 79], e.g., as described in [45] in the context of attacking lattice-based hash functions.

The method works as follows. Given a matrix A € Zy*™, say we want to find a lattice point in A;-(A)
with coordinates all bounded in absolute value by b. We proceed as follows:

e Divide the columns of A into 2* groups (for some k to be determined), each containing m/2* columns.

e For each group, build a list containing all linear combinations of the columns with coefficients in

{~b,...,b}.

e At this point we have 2% lists, each containing L = (2b + 1)m/2k vectors in Zg. Combine the lists in
pairs. When two lists are combined, take all the sums x + y where x is an element of the first list, y
is an element of the second list, and their sum x +y is zero in the first log, L coordinates. Since these
coordinates can take ¢'°%¢ % = L values, we can expect the list resulting from the combination process
to have size approximately equal to L - L/L = L.

e At this point we have 2571 lists of size L containing vectors that are zero in their first log, L coordinates.
Keep combining the lists in pairs, until after k iterations we are left with only one list of size L containing
vectors that are 0 in their first k - log, L coordinates. The parameter k is chosen in such a way that
n = (k+1)log, L, or equivalently,

28 mlog(2b+1) 5

k+1" nlogqg 3)

For such a value of k, the vectors in the last list are zero in all but their last n — klog, L ~ log, L
coordinates. So, we can expect the list to contain the all zero vector.

The all zero vector found in the last list is given by a combination of the columns of A with coefficients
bounded by b, so we have found the desired short lattice vector. Differently from lattice reduction, we can
always expect this attack to succeed when A is random. The question is: what is the cost of running the
attack? It is easy to see that the cost of the attack is dominated by the size of the lists L, which equals
(2b+ l)m/2k, where k is the largest integer satisfying (3). In certain settings (e.g., the construction of lattice-
based hash functions presented in Section 4) lattice-based attacks stop finding short enough vectors well
before the combinatorial attack becomes infeasible. So, the combinatorial attack can be used to determine
the value of the parameters necessary to achieve a certain level of security.



Another difference between the combinatorial attack and those based on lattice reduction is that the
combinatorial attack does take advantage of the large value of m. Larger values of m allow to use larger
values for k, yielding shorter lists and more efficient attacks.

4 Hash Functions

A collision resistant hash function is a function A : D — R mapping a domain D to a much smaller set
R, |R| < |D] such that it is computationally hard to find collisions, i.e., input pairs x1,z2 € D such that
x1 # 2 and still A(zy) = h(xz). Technically, hash functions are often defined as keyed function families,
where a collection of functions {hy: D — R} is specified, and the security property is that given a randomly
chosen k, no attacker can efficiently find a collision in hj, even though such collisions certainly exist because
D is larger than R. Collision resistant hash functions are very useful cryptographic primitives because they
allow to compress a long message x € D to a short digest h(z) € R, and still the digest is (computationally)
bound to a unique x because of the collision resistance property.

For efficiency reasons, hash functions currently used in practice are based on ad-hoc design principles,
similar to those used in the construction of block ciphers. Such functions, however, have been subject
to attacks, raising interest in more theoretical constructions that can be proved secure based on some
underlying mathematical problem. Collision resistant hash functions can be built starting from standard
number theoretic problems (like the hardness of factoring integers, or the RSA problem), similar to those
used in public key cryptography, but such constructions are unsatisfactory for two reasons: they are much
slower than block ciphers, and they can be broken by quantum computers.

In this section we present various constructions of collision resistant hash functions based on lattices,
starting from Ajtai’s original work, and ending with SWIFFT, a highly efficient recent proposal based on
a special class of lattices. These have several benefits over competing constructions: they admit supporting
proofs of security (based on worst-case complexity assumptions), they appear to be resistant to quantum
attacks, and the most efficient of them approaches efficiency levels comparable to those of traditional block
cipher design. Finally, many techniques used in other lattice-based cryptographic constructions have been
first developed in the context of collision resistant hashing. So, hash functions offer an excellent starting
point to discuss the methods of lattice-based cryptography at large.

4.1 Ajtai’s construction and further improvements

The first lattice-based cryptographic construction with worst-case security guarantees was presented in the
seminal work of Ajtai [4]. Ajtai presented a family of one-way functions whose security is based on the
worst-case hardness of n°-approximate SVP for some constant ¢ > 0. In other words, he showed that being
able to invert a function chosen from this family with non-negligible probability implies the ability to solve
any instance of n°-approximate SVP.

Followup work concentrated on improving Ajtai’s security proof. Goldreich et al. [20] showed that Ajtai’s
function is collision resistant, a stronger (and much more useful) security property than one-wayness. Most
of the subsequent work focused on reducing the value of the constant ¢ [11, 49, 54], thereby improving the
security assumption. In the most recent work, the constant is essentially ¢ = 1 [54]. We remark that all
these constructions are based on the worst-case hardness of a problem not believed to be NP-hard (since
c>3).

The main statement in all the above results is that for an appropriate choice of ¢,n,m, finding short
vectors in Aé‘(A) when A is chosen uniformly at random from Zg*™ is as hard as solving certain lattice
problems (such as approximate SIVP and approximate SVP) in the worst case. This holds even if the
algorithm is successful in finding short vectors only with an inverse polynomially small probability (over the
choice of matrix A and its internal randomness).

Once such a reduction is established, constructing a family of collision resistant hash functions is easy (see
Algorithm 1). The hash function is parameterized by integers n,m, q,d. A possible choice is d = 2, ¢ = n?,
and m > nlogq/logd. The choice of n then determines the security of the hash function. The key to the hash



function is given by a matrix A chosen uniformly from Zy*™. The hash function fa : {0,...,d=1}" — Ly
is given by fa(y) = Ay mod ¢. In terms of bits, the function maps mlogd bits into nloggq bits, hence
we should choose m > nloggq/logd in order to obtain a hash function that compresses the input, or more
typically m = 2nlog g/ logd to achieve compression by a factor 2.

Notice that a collision fa(y) = fa(y’) for some y # y’' immediately yields a short non-zero vector
y—-y € Aé‘(A). Using a worst-case to average-case reduction as above, we obtain that finding collisions for
function fa (even with an inverse polynomially small probability), is as hard as solving approximate SIVP
and approximate SVP in the worst case.

Algorithm 1 A hash function following Ajtai’s construction.

e Parameters: Integers n,m,q,d > 1.
e Key: A matrix A chosen uniformly from Zy*™.

e Hash function: fa :{0,...,d —1}" — Z} given by fa(y) = Ay mod q.

It is worth noting that this hash function is extremely simple to implement as it involves nothing but
addition and multiplication modulo ¢, and ¢ is a O(logn) bit number which comfortably fits into a single
memory word or processor register. So, all arithmetic can be performed very efficiently without the need of
the arbitrary precision integers commonly used in number theoretic cryptographic functions. As we shall see
later, this is typical of lattice-based cryptography. Further optimizations can be obtained by choosing ¢ to
be a power of 2, and d = 2 which allows to represent the input as a sequence of m bits as well as to avoid the
need for multiplications. Nevertheless, these hash functions are not particularly efficient because the key size
grows at least quadratically in n. Consider for example setting d = 2, ¢ = n?, and m = 2nlogq = 4nlogn.
The corresponding function has a key containing mn = 4n?logn elements of Z,, and its evaluation requires
roughly as many arithmetic operations. Collisions are given by vectors in Aj‘(A) with entries in {1,0,—1}.
The combinatorial method described in Section 3 with bound b = 1 and parameter k = 4, yields an attack
with complexity L = 3™/16 ~ 2m/10 S0, in order to get 100 bits of security (L ~ 2'°°), one needs to set
m = 4nlogn ~ 1000, and n > 46. This yields a hash function with a key size of mn logq ~ 500,000 bits, and
computation time of the order of mn = 50,000 arithmetic operations. Although still reasonable for a public
key encryption function, this is considered unacceptable in practice for simpler cryptographic primitives like
symmetric block ciphers or collision resistant hash functions.

4.2 Efficient hash functions based on cyclic and ideal lattices

The efficiency of lattice-based cryptographic functions can be substantially improved replacing general ma-
trices by matrices with special structure. For example, in Algorithm 1, the random matrix A € Zjy*™ can
be replaced by a block-matrix

A=[AW | | Am/)] (4)

where each block A € ZZX” is a circulant matrix
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i.e., a matrix whose columns are all cyclic rotations of the first column a(® = (agi), e ag )). Using matrix

notation, A = [a® Ta® .. . T 1a®] where

o” | 1

I o’ (5)

is the permutation matrix that rotates the coordinates of al?) cyclically. The circulant structure of the blocks
has two immediate consequences:

o It reduces the key storage requirement from nm elements of Z, to just m elements, because each block
A s fully specified by its first column al® = (agl), ceey agf)).

e It also reduces (at least asymptotically) the running time required to compute the matrix-vector prod-
uct Ay mod ¢, from O(mn) arithmetic operations (over Zg), to just O(m) operations, because multi-
plication by a circulant matrix can be implemented in O(n) time using the Fast Fourier Transform.

Of course, imposing any structure on matrix A, immediately invalidates the proofs of security [4, 11, 49,
54] showing that finding collisions on the average is at least as hard as approximating lattice problems in
the worst case. A fundamental question that needs to be addressed whenever a theoretical construction is
modified for the sake of efficiency, is if the modification introduces security weaknesses.

The use of circulant matrices in lattice-based cryptography can be traced back to the NTRU cryptosystem
[29], which is described in Section 5. However, till recently no theoretical results were known supporting the
use of structured matrices in lattice-based cryptography. Several years after Ajtai’s worst-case connection
for general lattices [4] and the proposal of the NTRU cryptosystem [29], Micciancio [52] discovered that the
efficient one-way function obtained by imposing a circulant structure on the blocks of (4) can still be proved
to be hard to invert on the average based on the worst-case hardness of approximating SVP, albeit only over
a restricted class of lattices which are invariant under cyclic rotation of the coordinates. Interestingly, no
better algorithms (than those for general lattices) are known to solve lattice problems for such cyclic lattices.
So, it is reasonable to assume that solving lattice problems on these lattices is as hard as the general case.

Micciancio’s adaptation [52] of Ajtai’s worst-case connection to cyclic lattices is non-trivial. In particular,
Micciancio could only prove that the resulting function is one-way (i.e., hard to invert), as opposed to
collision resistant. In fact, collisions can be efficiently found: in [43, 62] it was observed that if each block
A is multiplied by a constant vector ¢; - 1 = (¢iy...,ci), then the output of fa is going to be a constant
vector ¢ -1 too. Since ¢ can take only ¢ different values, a collision can be found in time ¢ (or even
O(,/q), probabilistically), which is typically polynomial in n. Similar methods were later used in [45] to find
collisions in the compression function of LASH, a practical hash function proposal modeled after the NTRU
cryptosystem. The existence of collisions for these functions demonstrates the importance of theoretical
security proofs whenever a cryptographic construction is modified.

While one-way functions are not strong enough security primitives to be directly useful in applications,
the results of [52] stimulated theoretical interest in the construction of efficient cryptographic functions based
on structured lattices, leading to the use of cyclic (and other similarly structured) lattices in the design of
many other more useful primitives [62, 43, 44, 42], as well as further investigation of lattices with algebraic
structure [63]. In the rest of this section, we describe the collision resistant hash functions of [62, 43], and
their most recent practical instantiation [45]. Other cryptographic primitives based on structured lattices
are described in Sections 5, 6, and 7.

4.2.1 Collision resistance from ideal lattices

The problem of turning the efficient one-way function of [52] into a collision resistant function was indepen-
dently solved by Peikert and Rosen [62], and Lyubashevsky and Micciancio [43] using different (but related)
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methods. Here we follow the approach used in the latter work, which also generalizes the construction of
[52, 62] based on circulant matrices, to a wider range of structured matrices, some of which admit very
efficient implementations [45]. The general construction, shown in Algorithm 2, is parametrized by integers
n,m,q,d and a vector f € Z", and it can be regarded as a special case of Algorithm 1 with structured keys A.
In Algorithm 2, instead of choosing A at random from the set of all matrices, one sets A to a block-matrix
as in Eq. (4) with structured blocks A() = F*a(®) defined as

OT
Fa® =[a®) Fa® .. F"'a®] where F = A . —f
The circulant matrices discussed earlier are obtained as a special case by setting f = (—1,0,...,0), for which

F = T is just a cyclic rotation of the coordinates. The complexity assumption underlying the function is that
lattice problems are hard to approximate in the worst case over the class of lattices that are invariant under
transformation F (over the integers). When f = (—1,0,...,0), this is exactly the class of cyclic lattices,
i.e., lattices that are invariant under cyclic rotation of the coordinates. For general f, the corresponding
lattices have been named ideal lattices in [43], because they can be equivalently characterized as ideals of
the ring of modular polynomials Z[z]/{f(x)) where f(z) = 2™ + f,a" ' +--- + f1 € Z[z]. As for the class
of cyclic lattices, no algorithm is known that solves lattice problems on ideal lattices any better than on
general lattices. So, it is reasonable to assume that solving lattice problems on ideal lattices is as hard as
the general case.

Algorithm 2 Hash function based on ideal lattices.

e Parameters: Integers ¢,n, m,d with n|m, and vector f € Z".
e Key: m/n vectors ay, ..., a,,/, chosen independently and uniformly at random in Ly.

e Hash function: fa : {0,...,d -1} — Z given by

faly) =[F ai |...|F*a,,/,]y mod q.

Even for arbitrary f, the construction described in Algorithm 2 still enjoys the efficiency properties of the
one-way function of [52]: keys are represented by just m elements of Z,, and the function can be evaluated
with O(m) arithmetic operations using the Fast Fourier Transform (over the complex numbers). As usual,
collisions are short vectors in the lattice A ([F*ay | ... | F*a,,/,]). But, are short vectors in these lattices
hard to find? We have already seen that in general the answer to this question is no: when f = (—1,0,...,0)
short vectors (and collisions in the hash function) can be easily found in time O(q). Interestingly, [43] proves
that finding short vectors in A ([F*a; | ... | F*a,,;,]) on the average (even with just inverse polynomial
probability) is as hard as solving various lattice problems (such as approximate SVP and SIVP) in the worst
case over ideal lattices, provided the vector f satisfies the following two properties:

e For any two unit vectors u, v, the vector [F*u]v has small (say, polynomial in n, typically O(y/n))
norm.

e The polynomial f(z) = 2™ + f,2" "' + .-+ f1 € Z[z] is irreducible over the integers, i.e., it does not
factor into the product of integer polynomials of smaller degree.

Notice that the first property is satisfied by the vector f = (—1,0,...,0) corresponding to circulant matrices,
because all the coordinates of [F*u]v are bounded by 1, and hence ||[F*u]v|| < y/n. However, the polynomial
2™ — 1 corresponding to f = (—1,0,...,0) is not irreducible because it factors into (z — 1)(z"~! + 272 +
-4+ x + 1), and this is why collisions can be efficiently found. So, f = (—1,0,...,0) is not a good choice
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to get collision resistant hash functions, but many other choices are possible. For example, some choices of
f considered in [43] for which both properties are satisfied (and therefore, result in collision resistant hash
functions with worst-case security guarantees) are

o f=(1,...,1) € Z" where n + 1 is prime, and
e £=(1,0,...,0) € Z" for n equal to a power of 2.

The latter choice turns out to be very convenient from an implementation point of view, as described in
the next subsection. Notice how ideal lattices associated to vector (1,0,...,0) are very similar to cyclic
lattices: the transformation F is just a cyclic rotation of the coordinates, with the sign of the coordinate
wrapping around changed, and the blocks of A are just circulant matrices, but with the elements above
the diagonal negated. This small change in the structure of matrix A has dramatic effects on the collision
resistance properties of the resulting hash function: If the signs of the elements above the diagonals of the
blocks is not changed, then collisions in the hash function can be easily found. Changing the sign results
in hash functions for which finding collisions is provably as hard as the worst-case complexity of lattice
approximation problems over ideal lattices.

4.2.2 The SWIFFT hash function

The hash function described in the previous section is quite efficient and can be computed asymptotically in
O(m) time using the Fast Fourier Transform over the complex numbers. However, in practice, this carries a
substantial overhead. In this subsection we describe the SWIFFT family of hash functions proposed in [45].
This is essentially a highly optimized variant of the hash function described in the previous section, and is
highly efficient in practice, mainly due to the use of the FFT in Z,.

We now proceed to describe the SWIFFT hash function. As already suggested earlier, the vector f is set
to (1,0,...,0) € Z™ for n equal to a power of 2, so that the corresponding polynomial 2™ 4 1 is irreducible.
The novelty in [45] is a clever choice of the modulus ¢ and a pre/post-processing operation applied to the key
and the output of the hash function. More specifically, let ¢ be a prime number such that 2n divides ¢ — 1,
and let W € Zy*" be an invertible matrix over Z, to be chosen later. The SWIFF'T hash function maps a
key aM), ... a(™/™) consisting of m/n vectors chosen uniformly from Zq and an input y € {0,...,d—1}™
to W - fa(y) mod ¢ where A = [F*a® ... F*a(™/™)] is as before and a®) = W~'a(®) mod ¢q. As we shall
see later, SWIFFT can be computed very efficiently (even though at this point its definition looks more
complicated than that of fa).

Notice that multiplication by the invertible matrix W1 maps a uniformly chosen a € Zg to a uniformly
chosen a € Zy. Moreover, W - fa(y) = W - fa(y’) (mod ¢) if and only if fa(y) = fa(y’) (mod gq).
Together, these two facts establish that finding collisions in SWIFFT is equivalent to finding collisions
in the underlying ideal lattice function fa, and the claimed collision resistance property of SWIFFT is
supported by the connection [43] to worst case lattice problems on ideal lattices.

Algorithm 3 The SWIFFT hash function.

e Parameters: Integers n,m,q,d such that n is a power of 2, ¢ is prime, 2n|(¢g — 1) and n|m.

e Key: m/n vectors a, ..., a,,/, chosen independently and uniformly at random in Zg.
e Input: m/n vectors y(M ... y(™/™ c{0,... d—1}"

e Output: the vector Z;i/ln al o (Wy®) e Zy, where © is the component-wise vector product.

We now explain the efficient implementation of SWIFFT given in Algorithm 3. By our choice of ¢, the
multiplicative group Z; of the integers modulo ¢ has an element w of order 2n. Let

W = [w(%—l)(j—l)]?w

i=1,j=1
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| n | m | q [d] w | key size (bits) | input size (bits) | output size (bits) |
[64 [ 1024 [ 257 2] 42| 8192 | 1024 | 513 |

Table 1: Concrete parameters for the SWIFFT hash function achieving 100 bits of security.

2 5 2n—1

be the Vandermonde matrix of w, w3, w®,...,w?” 1. Since w has order 2n, the elements w, w3, w®, ..., w
are distinct, and hence the matrix W is invertible over Z, as required. Moreover, it is not difficult to see
that for any vectors a, b € Zy, the identity

W([F*a]b) = (Wa) ® (Wb) mod ¢
holds true, where ® is the component-wise vector product. This implies that Algorithm 3 correctly computes

W faly) = Z WIF*a®]y() = Z a® o (Wy®).
i=1

i=1

The most expensive part of the algorithm is the computation of the matrix-vector products Wy ®.
These can be efficiently computed using the FFT over Z, as follows. Remember that the FFT algorithm
over a field Z, with an nth root of unity ¢ (where n is a power of 2) allows to evaluate any polynomial
p(z) = co+ 1+ -+ + cp12"t € Zy[z] at all nth roots of unity (¢ (for i = 0,...,n — 1) with just
O(nlogn) arithmetic operations in Z,. Using matrix notation and ¢ = w?, the FFT algorithm computes
the product Ve where V = [w?(=D0U =1, - is the Vandermonde matrix of the roots w®, w?, ..., w21 and
¢ = (co,...,cn—1). Going back to the SWIFFT algorithm, the matrix W can be factored as the product
W = VD of V by the diagonal matrix D with entries d; ; = w/~1. So, the product Wy = VDy® can
be efficiently evaluated by first computing Dy (i.e., multiplying the elements of y(® component-wise by
the diagonal of D), and then applying the FFT algorithm over Z, to Dy® to obtain Wy (®).

Several other implementation-level optimizations are possible, including the use of look-up tables and
SIMD (single instruction multiple data) operations in the FFT computation. An optimized implementation
of SWIFFT for the choice of parameters given in Table 1 is given in [45], which achieves throughput
comparable to the SHA-2 family of hash functions.

Choice of parameters and security. The authors of [45] propose the set of parameters shown in Table 1.
It is easy to verify that ¢ = 257 is a prime, 2n = 128 divides ¢g—1 = 256, n = 64 divides m = 1024, w = 42 has
order 2n = 128 in Z7, and the resulting hash function fa : {0,1}"™ — Zj has compression ratio approximately
equal to 2, mapping m = 1024 input bits to one of ¢" = (28 + 1)% < 2513 possible outputs. An issue to
be addressed is how to represent the vector in Zy output by SWIFFT as a sequence of bits. The easiest
solution is to represent each element of Z, as a sequence of 9 bits, so that the resulting output has 9-64 = 576
bits. It is also easy to reduce the output size closer to 513 bits at very little cost. (See [45] for details.)

We now analyze the security of SWIFFT with respect to combinatorial and lattice-based attacks. The
combinatorial method described in Section 3 with bound b = 1 and parameter k£ = 4 set to the largest integer
satisfying (3), yields an attack with complexity L = 3™/16 > 2100,

Let us check that lattice-based attacks are also not likely to be effective in finding collisions. Collisions in
SWIFFT are vectors in the m-dimensional lattice Ay ([F*ay | ... | F*a,,/,]) with coordinates in {1,0, —1}.
Such vectors have Euclidean length at most /m = 32. However, according to estimate (2) for § = 1.01,
state of the art lattice reduction algorithms will not be able to find nontrivial lattice vectors of Euclidean

length bounded by
92Vnlogalogd ~ 49,

So, lattice reduction algorithms are unlikely to find collisions. In order to find lattice vectors with Euclidean
length bounded by 32, one would need lattice reduction algorithms achieving § < 1.0085, which seems out
of reach with current techniques, and even such algorithms would find vectors with short Euclidean length,
but coordinates not necessarily in {1,0, —1}.
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5 Public Key Encryption Schemes

Several methods have been proposed to build public key encryption schemes based on the hardness of lattice
problems. Some are mostly of theoretical interest, as they are still too inefficient to be used in practice, but
admit strong provable security guarantees similar to those discussed in Section 4 for hash functions: breaking
the encryption scheme (on the average, when the key is chosen at random) can be shown to be at least as
hard as solving several lattice problems (approximately, within polynomial factors) in the worst case. Other
schemes are practical proposals, much more efficient than the theoretical constructions, but often lacking a
supporting proof of security.

In this section we describe the main lattice-based public key encryption schemes that have been proposed
so far. We start from the GGH cryptosystem, which is perhaps the most intuitive encryption scheme based
on lattices. We remark that the GGH cryptosystem has been subject to cryptanalytic attacks [58] even for
moderately large values of the security parameter, and should be considered insecure from a practical point
of view. Still, many of the elements of GGH and its HNF variant [47], can be found in other lattice-based
encryption schemes. So, due to its simplicity, the GGH/HNF cryptosystem still offers a good starting point
for the discussion of lattice-based public key encryption. Next, we describe the NTRU cryptosystem, which
is the most practical lattice-based encryption scheme known to date. Unfortunately, neither GGH nor NTRU
is supported by a proof of security showing that breaking the cryptosystem is at least as hard as solving some
underlying lattice problem; they are primarily practical proposals aimed at offering a concrete alternative to
RSA or other number theoretic cryptosystems.

The rest of this section is dedicated to theoretical constructions of cryptosystems that can be proved to
be as hard to break as solving certain lattice problems in the worst case. We briefly review the Ajtai-Dwork
cryptosystem (which was the first of its kind admitting a proof of security based on worst-case hardness
assumptions on lattice problems) and followup work, and then give a detailed account of a cryptosystem
of Regev based on a certain learning problem (called “learning with errors”, LWE) that can be related
to worst-case lattice assumptions via a quantum reduction. This last cryptosystem is currently the most
efficient construction admitting a known theoretical proof of security. While still not as efficient as NTRU,
it is the first theoretical construction approaching performance levels that are reasonable enough to be used
in practice. Moreover, due to its algebraic features, the LWE cryptosystem has been recently used as the
starting point for the construction of various other cryptographic primitives, as discussed in Section 7.

We remark that all cryptosystems described in this section are aimed at achieving the basic security notion
called semantic security or indistinguishability under chosen plaintext attack [23]. This is a strong security
notion, but only against passive adversaries that can intercept and observe (but not alter) ciphertexts being
transmitted. Informally, semantic security means that an adversary that observes the ciphertexts being sent,
cannot extract any (even partial) information about the underlying plaintexts (not even determining whether
two given ciphertexts encrypt the same message) under any message distribution. Encryption schemes with
stronger security guarantees (against active adversaries) are discussed in Section 7.

5.1 The GGH/HNF public key cryptosystem

The GGH cryptosystem, proposed by Goldreich, Goldwasser, and Halevi in [22], is essentially a lattice
analogue of the McEliece cryptosystem [46] proposed 20 years earlier based on the hardness of decoding
linear codes over finite fields. The basic idea is very simple and appealing. At a high level, the GGH
cryptosystem works as follows:

e The private key is a “good” lattice basis B. Typically, a good basis is a basis consisting of short,
almost orthogonal vectors. Algorithmically, good bases allow to efficiently solve certain instances of
the closest vector problem in £(B), e.g., instances where the target is very close to the lattice.

e The public key H is a “bad” basis for the same lattice L(H) = L£(B). In [47], Micciancio proposed
to use, as the public basis, the Hermite Normal Form (HNF) of B. This normal form gives a lower®

1The HNF can be equivalently defined using upper triangular matrices. The choice between the lower or upper triangular
formulation is pretty much arbitrary.
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triangular basis for £(B) which is essentially unique, and can be efficiently computed from any basis
of £(B) using an integer variant of the Gaussian elimination algorithm.? Notice that any attack on the
HNF public key can be easily adapted to work with any other basis B’ of £(B) by first computing H
from B’. So, in a sense, H is the worst possible basis for £(B) (from a cryptanalyst’s point of view),
and makes a good choice as a public basis.

e The encryption process consists of adding a short noise vector r (somehow encoding the message to
be encrypted) to a properly chosen lattice point v. In [47] it is proposed to select the vector v such
that all the coordinates of (r 4+ v) are reduced modulo the corresponding element along the diagonal
of the HNF public basis H. The vector (r 4+ v) resulting from such a process is denoted r mod H, and
it provably makes cryptanalysis hardest because r mod H can be efficiently computed from any vector
of the form (r + v) with v € £(B). So, any attack on r mod H can be easily adapted to work on any
vector of the form r + v by first computing (r + v) mod H = r mod H. Notice that r mod H can be
computed directly from r and H (without explicitly computing v) by iteratively subtracting multiples
of the columns of H from r. Column h; is used to reduce the ith element of r modulo h; ;.

e The decryption problem corresponds to finding the lattice point v closest to the target ciphertext
¢ = (r mod H) = v +r, and the associated error vector r = ¢ — v.

The correctness of the GGH/HNF cryptosystem rests on the fact that the error vector r is short enough
so that the lattice point v can be recovered from the ciphertext v + r using the private basis B, e.g., by
using Babai’s rounding procedure [8], which gives

v=B|B'(v+r)].

On the other hand, the security relies on the assumption that without knowledge of a special basis (that is,
given only the worst possible basis H), solving these instances of the closest vector problem in £(B) = £L(H)
is computationally hard. We note that the system described above is not semantically secure because the
encryption process is deterministic (and thus one can easily distinguish between ciphertexts corresponding
to two fixed messages). In practice, one can randomly pad the message in order to resolve this issue (as is
often done with the RSA function), although this is not rigorously justified.

Clearly, both the correctness and security depend critically on the choice of the private basis B and error
vector r. Since GGH has been subject to practical attacks, we do not review the specifics of how B and r
were selected in the GGH cryptosystem, and move on to the description of other cryptosystems.

We remark that no asymptotically good attack to GGH is known: known attacks break the cryptosystem
in practice for moderately large values of the security parameter, and can be avoided by making the security
parameter even bigger. This, however, makes the cryptosystem impractical. The source of impracticality
is similar to that affecting Ajtai’s hash function discussed in the previous section, and can be addressed
by similar means: general lattice bases require {2(n?) storage, and consequently the encryption/decryption
running times also grow quadratically in the security parameter. As we will see shortly, much more efficient
cryptosystems can be obtained using lattices with special structure, which admit compact representation.

5.2 The NTRU public key cryptosystem

NTRU is a ring-based cryptosystem proposed by Hoffstein, Pipher and Silverman in [29], which can be
equivalently described using lattices with special structure. Below we present NTRU as an instance of
the general GGH/HNF framework [22, 47] described in the previous subsection. We remark that this is
quite different from (but still equivalent to) the original description of NTRU, which, in fact, was proposed
concurrently to, and independently from [22].

Using the notation from Section 4, we let T be the linear transformation in Eq. (5) that rotates the
coordinates of the input vector cyclically, and define T*v = [v, Tv, ..., T" 1v] to be the circulant matrix of
vector v € Z™. The lattices used by NTRU, named convolutional modular lattices in [29], are lattices in even

2Some care is required to prevent the matrix entries from becoming too big during intermediate steps of the computation.
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dimension 2n satisfying the following two properties. First, they are closed under the linear transformation
that maps the vector (x,y) (where x and y are n-dimensional vectors) to (Tx, Ty), i.e., the vector obtained
by rotating the coordinates of x and y cyclically in parallel. Second, they are g-ary lattices, in the sense
that they always contain ¢Z?" as a sublattice, and hence membership of (x,y) in the lattice only depends on
(x,¥) mod ¢. The system parameters are a prime dimension n, an integer modulus ¢, a small integer p, and
an integer weight bound d¢. For concreteness, we follow the latest NTRU parameter set recommendations
[28], and assume q is a power of 2 (e.g., ¢ = 2%) and p = 3. More general parameter choices are possible, some
of which are mentioned in [28], and we refer the reader to that publication and the NTRU CRYPTOSYSTEMS
web site for details. The NTRU cryptosystem (described by Algorithm 4) works as follows:

e Private Key. The private key in NTRU is a short vector (f,g) € Z?". The lattice associated to a
private key (f,g) (and system parameter q) is Ay((T*f, T*g)”), which can be easily seen to be the
smallest convolutional modular lattice containing (f,g). The secret vectors f, g are subject to the
following technical restrictions:

— the matrix [T*f] should be invertible modulo ¢,

—fee +{p0,—p}"” and g € {p,0,—p}"™ are randomly chosen polynomials such that f — e; and
g have exactly dy + 1 positive entries and d; negative ones. (The remaining N — 2d; — 1 entries
will be zero.)

The bounds on the number of nonzero entries in f —e; and g are mostly motivated by efficiency reasons.
More important are the requirements on the invertibility of [T*f] modulo ¢, and the restriction of f —e;
and g to the set {p,0, —p}"™, which are used in the public key computation, encryption and decryption
operations. Notice that under these restrictions [T*f] =1 (mod p) and [T*g] = O (mod p) (where O
denotes the all zero matrix).

e Public Key. Following the general GGH/HNF framework, the NTRU public key corresponds to the
HNF basis of the convolutional modular lattice A,((T*f, T*g)?) defined by the private key. Due to
the structural properties of convolutional modular lattices, and the restrictions on the choice of f, the
HNF public basis has an especially nice form

o I O _ *p1—1
H= [ T*h g1 } where h = [T*f]"'g (mod gq), (6)

and can be compactly represented just by the vector h € Zy.

e Encryption. An input message is encoded as a vector m € {1,0, —1}" with exactly d; + 1 positive
entries and dy negative ones. The vector m is concatenated with a randomly chosen vector r €
{1,0,—1}" also with exactly dy + 1 positive entries and d; negative ones, to obtain a short error vector
(—r,m) € {1,0,—1}*". (The multiplication of r by —1 is clearly unnecessary, and it is performed here
just to keep our notation closer to the original description of NTRU. The restriction on the number
of nonzero entries is used to bound the probability of decryption errors.) Reducing the error vector
(—r,m) modulo the public basis H yields

[ m } mod [ Tzh q(.)I ] - [ (m+[T*E]r) mod g |

Since the first n coordinates of this vector are always 0, they can be omitted, leaving only the n-
dimensional vector ¢ = m + [T*h]r mod ¢ as the ciphertext.

e Decryption. The ciphertext ¢ is decrypted by multiplying it by the secret matrix [T*f] modulo ¢,
yielding
[T*f]c mod ¢ = [T*f]m + [T*f][T*h]r mod ¢ = [T*f]m + [T*g|r mod ¢,
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| Estimated Security (bits) | n [ ¢ | dy [ key size (bits) |

80 257 | 210 177 2570
80 449 28 [ 24 3592
256 797 | 210 [ 84 7970
256 14303 | 2% | 26 114424

Table 2: Some recommended parameter sets for NTRU public key cryptosystem. Security is expressed in
“bits”, where k-bits of security roughly means that the best known attack to NTRU requires at least an
effort comparable to about 2¢ NTRU encryption operations. The parameter dy is chosen in such a way to
ensure the probability of decryption errors (by honest users) is at most 27%. See [28] for details, and a wider
range of parameter choices.

where we have used the identity [T*f][T*h] = [T*([T*f]h)] valid for any vectors f and h. The
decryption procedure relies on the fact that the coordinates of the vector
[T*fjm + [T"g]r (7)

are all bounded by ¢/2 in absolute value, so the decrypter can recover the exact value of (7) over
the integers (i.e., without reduction modulo ¢.) The bound on the coordinates of (7) holds provided
dy < (¢/2 —1)/(4p) — (1/2), or, with high probability, even for larger values of ds. The decryption
process is completed by reducing (7) modulo p, to obtain

[T*flm + [T*g]Jr modp=1-m+ O -r =m.

Algorithm 4 The NTRU public key cryptosystem.

e Parameters: Prime n, modulus ¢, and integer bound dy. Small integer parameter p = 3 is set to a
fixed value for simplicity, but other choices are possible.

e Private key: Vectors f € e; + {p,0, —p}" and g € {p,0, —p}", such that each of f — e; and g contains
exactly dy + 1 positive entries and d; negative ones, and the matrix [T*f] is invertible modulo g¢.

e Public key: The vector h = [T*f]"'g mod ¢ € Z.

e Encryption: The message is encoded as a vector m € {1,0,—1}", and uses as randomness a vector
r € {1,0,—1}", each containing exactly d; 4+ 1 positive entries and d negative ones. The encryption
function outputs ¢ = m + [T*h]r mod q.

e Decryption: On input ciphertext ¢ € Zg, output (([T*f]c) mod ¢) mod p, where reduction modulo ¢
and p produces vectors with coordinates in [—¢/2, +q/2] and [—p/2, p/2] respectively.

This completes the description of the NTRU cryptosystem, at least for the main set of parameters
proposed in [28]. Like GGH, no proof of security supporting NTRU is known, and confidence in the security
of the scheme is gained primarily from the best currently known attacks. The strongest attack to NTRU
known to date was discovered by Howgrave-Graham [30], who combined previous lattice-based attacks of
Coppersmith and Shamir [13], with a combinatorial attack due to Odlyzko (reported in [29, 30, 28]). Based on
Howgrave-Graham’s hybrid attack, NTRU CRYPTOSYSTEMS issued a collection of recommended parameter
sets [28], some of which are reported in Table 2.

5.3 The Ajtai-Dwork cryptosystem and followup work

Following Ajtai’s discovery of lattice-based hash functions, Ajtai and Dwork [6] constructed a public-key
cryptosystem whose security is based on the worst-case hardness of a lattice problem. Several improvements
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were given in subsequent works [21, 69], mostly in terms of the security proof and simplifications to the
cryptosystem. In particular, the cryptosystem in [69] is quite simple as it only involves modular operations
on integers, though much longer ones than those typically used in lattice-based cryptography.

Unlike the case of hash functions, the security of these cryptosystems is based on the worst-case hardness
of a special case of SVP known as unique-SVP. Here, we are given a lattice whose shortest nonzero vector is
shorter by some factor v than all other nonparallel lattice vectors, and our goal is to find a shortest nonzero
lattice vector. The hardness of this problem is not understood as well as that of SVP, and it is a very
interesting open question whether one can base public-key cryptosystems on the (worst-case) hardness of
SVP.

The aforementioned lattice-based cryptosystems are unfortunately quite inefficient. It turns out that
when we base the security on lattices of dimension n, the size of the public key is O(n4) and each encrypted
bit gets blown up to O(n2) bits. So if, for instance, we choose n to be several hundreds, the public key size
is on the order of several gigabytes, which clearly makes the cryptosystem impractical.

Ajtai [5] also presented a more efficient cryptosystem whose public key scales like O(n?) and in which
each encrypted bit gets blown up to O(n) bits. The size of the public key can be further reduced to O(n)
if one can set up a pre-agreed trusted random string of length O(n2) Unfortunately, the security of this
cryptosystem is not known to be as strong as that of other lattice-based cryptosystems: it is based on a
problem by Dirichlet, which is not directly related to any standard lattice problem. Moreover, this system
has no worst-case hardness as the ones previously mentioned. Nevertheless, the system does have the flavor
of a lattice-based cryptosystem.

5.4 The LWE-based cryptosystem

In this section we describe what is perhaps the most efficient lattice-based cryptosystem to date supported
by a theoretical proof of security. The first version of the cryptosystem together with a security proof were
presented by Regev [71]. Some improvements in efficiency were suggested by Kawachi et al. [32]. Then, some
very significant improvements in efficiency were given by Peikert et al. [65]. The cryptosystem we describe
here is identical to the one in [65] except for one additional optimization that we introduce (namely, the
parameter r). Another new optimization based on the use of the Hermite Normal Form [47] is described
separately at the end of the subsection. When based on the hardness of lattice problems in dimension n, the
cryptosystem has a public key of size O(n2), requires O(n) bit operations per encrypted bit, and expands
each encrypted bit to O(1) bits. This is considerably better than those proposals following the Ajtai-Dwork
construction, but is still not ideal, especially in terms of the public key size. We will discuss these issues
in more detail later, as well as the possibility of reducing the public key size by using restricted classes of
lattices such as cyclic lattices.

The cryptosystem was shown to be secure (under chosen plaintext attacks) based on the conjectured
hardness of the learning with errors problem (LWE), which we define next. This problem is parameterized by
integers n, m, ¢ and a probability distribution x on Zg, typically taken to be a “rounded” normal distribution.
The input is a pair (A,v) where A € Z;**™ is chosen uniformly, and v is either chosen uniformly from Zj*
or chosen to be As + e for a uniformly chosen s € Zj and a vector e € Z;" chosen according to x™. The
goal is to distinguish with some non-negligible probability between these two cases. This problem can be
equivalently described as a bounded distance decoding problem in g-ary lattices: given a uniform A € Zg**"
and a vector v € Z;" we need to distinguish between the case that v is chosen uniformly from Zg" and the
case in which v is chosen by perturbing each coordinate of a random point in A,(AT) using y.

The LWE problem is believed to be very hard (for reasonable choices of parameters), with the best known
algorithms running in exponential time in n (see [71]). Several other facts lend credence to the conjectured
hardness of LWE. First, the LWE problem can be seen as an extension of a well-known problem in learning
theory, known as the learning parity with noise problem, which in itself is believed to be very hard. Second,
LWE is closely related to decoding problems in coding theory which are also believed to be very hard. Finally,
the LWE was shown to have a worst-case connection, as will be discussed below. In Section 7 we will present
several other cryptographic constructions based on the LWE problem.
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The worst-case connection: A reduction from worst-case lattice problems such as approximate-SVP
and approximate-SIVP to LWE was established in [71], giving a strong indication that the LWE problem is
hard. This reduction, however, is a quantum reduction, i.e., the algorithm performing the reduction is a
quantum algorithm. What this means is that hardness of LWE (and hence the security of the cryptosystem)
is established based on the worst-case gquantum hardness of approximate-SVP. In other words, breaking
the cryptosystem (or finding an efficient algorithm for LWE) implies an efficient quantum algorithm for
approximating SVP, which, as discussed in Subsection 1.3, would be very surprising. This security guarantee
is incomparable to the one by Ajtai and Dwork: On one hand, it is stronger as it is based on the general
SVP and not the special case of unique-SVP. On the other hand, it is weaker as it only implies a quantum
algorithm for lattice problems.

The reduction is described in detail in the following theorem, whose proof forms the main bulk of [71].
For a real a > 0 we let ¥, denote the distribution on Z4 obtained by sampling a normal variable with mean
0 and standard deviation ag/ V27, rounding the result to the nearest integer and reducing it modulo q.

Theorem 5.1 ([71]) Assume we have access to an oracle that solves the LWE problem with parameters
n,m,q, ¥, where aq > \/n, ¢ < poly(n) is prime, and m < poly(n). Then there exists a quantum algorithm
running in time poly(n) for solving the (worst-case) lattice problems SIVPé(n/a) and (the decision variant
of ) SVPO( ) in any lattice of dimension n.

n/o

Notice that m plays almost no role in this reduction and can be taken to be as large as one wishes (it is
not difficult to see that the problem can only become easier for larger m). It is possible that this reduction
to LWE will one day be “dequantized” (i.e., made non-quantum), leading to a stronger security guarantee for
LWE-based cryptosystems. Finally, let us emphasize that quantum arguments show up only in the reduction
to LWE — the LWE problem itself, as well as all cryptosystems based on it are entirely classical.

The cryptosystem: The cryptosystem is given in Algorithm 5, and is partly illustrated in Figure 3. It is
parameterized by integers n,m, ¢, t,r, q, and a real a > 0. The parameter n is in some sense the main security
parameter, and it corresponds to the dimension of the lattices that show up in the worst-case connection.
We will later discuss how to choose all other parameters in order to guarantee security and efficiency. The
message space is Zf. We let f be the function that maps the message space Z{ to Zf; by multiplying each
coordinate by ¢/t and rounding to the nearest integer. We also define an “inverse” mapping f~! which takes
an element of Zf; and outputs the element of Z! obtained by dividing each coordinate by ¢/t and rounding
to the nearest integer.

Algorithm 5 The LWE-based public key cryptosystem.

e Parameters: Integers n,m,?,t,r,q, and a real a > 0.

e Private key: Choose S € ZZ” uniformly at random. The private key is S.

e Public key: Choose A € Z;**" uniformly at random and E € ZZI”X@ by choosing each entry according
to Wo. The public key is (A, P = AS + E) € Z"™*" x Z*".

e Encryption: Given an element of the message space v € Z{, and a public key (A, P), choose a vector
a € {—r,—r+1,...,7}™ uniformly at random, and output the ciphertext (u = ATa,c = PTa+f(v)) €
7" x 7t.

q q

e Decryption: Given a ciphertext (u,c) € Zjy x Zf} and a private key S € ZZI‘”, output f~1(c — STu).

5.4.1 Choosing the parameters

The choice of parameters is meant to guarantee efficiency, a low probability of decryption errors, and security.
We now discuss these issues in detail.
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Figure 3: Ingredients in the LWE-based cryptosystem.

Efficiency: The cryptosystem is clearly very easy to implement, as it involves nothing but additions and
multiplications modulo ¢g. Some improvement in running time can be obtained by setting ¢ to be a power
two (which simplifies the task of converting an input message into an element of the message space), and by
postponing the modular reduction operations (assuming, of course, that registers are large enough so that
no overflow occurs). Moreover, high levels of parallelization are easy to obtain.

In the following we list some properties of the cryptosystem, all of which are easy to observe. All sizes
are in bits, logarithms are base 2, and the O(-) notation hides logarithmic factors.

e Private key size: nflogq

Public key size: m(n + £)logq

e Message size: {logt

Ciphertext size: (n + ¢)logq

Encryption blowup factor: (14 %)loggq/logt

n

Operations for encryption per bit: O(m(1 + 7))

Operations for decryption per bit: O(n)

Decryption errors: The cryptosystem has some positive probability of decryption errors. This probability
can be made very small with an appropriate setting of parameters. Moreover, if an error correcting code is
used to encode the messages before encryption, this error probability can be reduced to undetectable levels.

We now estimate the probability of a decryption error in one letter, i.e., an element of Z; (recall that each
message consists of £ letters). Assume we choose a private key S, public key (A, P), encrypt some message
v and then decrypt it. The result is given by

fHe—-8Tu) = fY(PTa+ f(v) —STATa)
=f(AS+E) a+ f(v) —STATa)
=[BT a+ f(v)).
Hence, in order for a letter decryption error to occur, say in the first letter, the first coordinate of ETa must
be greater than ¢/(2t) in absolute value. Fixing the vector a and ignoring the rounding, the distribution
of the first coordinate of EZa is a normal distribution with mean 0 and standard deviation aql|a||/v/27

since the sum of independent normal variables is still a normal variable with the variance begin the sum of
variances. Now the norm of a can be seen to be with very high probability close to

llal| = \/r(r+ 1)m/3.
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To see this, recall that each coordinate of a is distributed uniformly on {—r,...,r}. Hence, the expectation

squared of each coordinate is
T

1 r(r+1)
k= ——
2r+1k;T 3

from which it follows that ||a||? is tightly concentrated around r(r + 1)m/3.
The error probability per letter can now be estimated by the probability that a normal variable with
mean 0 and standard deviation ag+/7(r + 1)m/(67) is greater in absolute value than ¢/(2t), or equivalently,

1
error probability per letter ~ 2 (1 - (% ' T(T_Gf_iﬂ-l)m>> ®

where ® here is the cumulative distribution function of the standard normal distribution. For most reasonable
choices of parameters, this estimate is in fact very close to the true error probability.

Security: The proof of security, as given in [71] and [65], consists of two main parts. In the first part, one
shows that distinguishing between public keys (A, P) as generated by the cryptosystem and pairs (A, P)
chosen uniformly at random from Zg**" x Z;”XE implies a solution to the LWE problem with parameters
n,m,q, V,. Hence if we set n,m, ¢, o to values for which we believe LWE is hard, we obtain that the public
keys generated by the cryptosystem are indistinguishable from pairs chosen uniformly at random. The
second part consists of showing that if one tries to encrypt with a public key (A,P) chosen at random,
then with very high probability, the result carries essentially no statistical information about the encrypted
message (this is what [65] refer to as “messy keys”). Together, these two parts establish the security of the
cryptosystem (under chosen plaintext attacks). The argument is roughly the following: due to the second
part, being able to break to system, even with some small non-negligible probability, implies the ability to
distinguish valid public keys from uniform pairs, but this task is hard due to the first part.

In order to guarantee security, our choice of parameters has to be such that the two properties above
are satisfied. Let us start with the second one. Our goal is to guarantee that when (A,P) is chosen
uniformly, the encryptions carry no information about the message. For this, it would suffice to guarantee
that (ATa,PTa) € Z7 x Z. is essentially uniformly distributed (since in this case the shift by f(v) is
essentially unnoticeable). By following an argument similar to the one in [71, 65], one can show that a
sufficient condition for this is that the number of possibilities for a is much larger than the number of
elements in our range, i.e.,

(2r +1)™ > ¢" . (9)

More precisely, the statistical distance from the uniform distribution is upper bounded by the square root
of the ratio between the two quantities, and hence the latter should be negligible, say 2700,

We now turn to the first property. Our goal is to choose n,m, q,« so that the LWE problem is hard.
One guiding principle we can use is the worst-case connection, as described in Theorem 5.1. This suggest
that the choice of m is inconsequential, that ¢ should be prime, that ag should be bigger than /n, and that
a should be as big as possible (as it leads to harder worst-case problems). Unfortunately, the worst-case
connection does not seem to provide hints on actual security for any concrete choice of parameters. For this,
one has to take into account experiments on the hardness of LWE, as we discuss next.

In order to estimate the hardness of LWE for a concrete set of parameters, recall that the LWE can be
seen as a certain bounded distance decoding problem on g-ary lattices. Namely, we are given a point v that
is either close to A,(AT) (with the perturbation in each coordinate chosen according to ¥, ) or uniform. One
natural approach to try to distinguish between these two cases is to find a short vector w in the dual lattice
Ay(AT)* and check the inner product (v, w): if v is close to the lattice, this inner product will tend to be
close to an integer. This method is effective as long as the perturbation in the direction of w is not much
bigger than 1/||w||. Since our perturbation is (essentially) Gaussian, its standard deviation in any direction
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(and in particular in the direction of w) is agq/+v/2m. Therefore, in order to guarantee security, we need to
ensure that

aq/V2r > 1/||lw].

A factor of 1.5 between the two sides of the inequality is sufficient to guarantee that the observed distribution
of (v,w) mod 1 is within negligible statistical distance of uniform.

Using the results of Section 3, we can predict that the shortest vector found by the best known lattice
reduction algorithms when applied to the lattice A,(AT)* = %Aj(AT) is of length

. min{q, 22\/71 log g log 6}

[[wll ~

| =

and that in order to arrive at such a vector (assuming the minimum is achieved by the second term) one
needs to apply lattice reduction to lattices of dimension

vnloggq/logd. (10)

We therefore obtain the requirement
1
a> 1.5\/27rmax{—,2*%”10%‘110%5}. (11)
q

The parameter m again seems to play only a minor role in the practical security of the system.

Choice of parameters: By taking the above discussion into account, we can now finally give some concrete
choices of parameters that seem to guarantee both security and efficiency. To recall, the system has seven
parameters, n, ¢, q,r,t,m and a. In order to guarantee security, we need to satisfy Eqgs. (9) and (11). To
obtain the former, we set

m = ((n+¢)log q + 200)/log(2r + 1).

Next, following Eq. (11), we set
L 2 /nlogql
a:4-max{—,2 \/m}.
q

Our choice of § = 1.01 seems reasonable for the lattice dimensions with which we are dealing here; one can
also consider more conservative choices like § = 1.005.

We are thus left with five parameters, n, £, q,r, and t. We will choose them in an attempt to optimize
the following measures.

e Public key size: m(n + £)loggq

e Encryption blowup factor: (1 + %)logq/logt

1 6w
2 (1_(1) (% T(T’+1)m>>

e Lattice dimension involved in best known attack: y/nlogg/log(1.01)

e Error probability per letter:

As a next step, notice that £ should not be much smaller than n as this makes the encryption blowup factor
very large. For concreteness we choose £ = n, which gives a fair balance between the encryption blowup
factor and the public key size. Denoting N = nlogq, we are thus left with the following measures.

e Public key size: 2N (2N + 200)/log(2r + 1)
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e Encryption blowup factor: 2loggq/logt
e Error probability per letter:

2 (1 - (é min{g, 22V N 10e(1-0D)1 . \/ (
r

6m
r+1)(2N +200)/log(2r + 1) ))

e Lattice dimension involved in best known attack: y/N/log(1.01)

Finally, once we fix N = nloggq, we should choose ¢ as small as possible and r and t as large as possible
while still keeping the error probability within the desired range.

Some examples are given in Table 3. In all examples we took £ = n, and tried to minimize either the
public key size or the encryption blowup factor while keeping the error probability below 1%. To recall,
this error probability can be made negligible by using an error correcting code. The public key size can be

decreased by up to a factor of 2 by choosing a smaller ¢ (at the expense of higher encryption blowup).

n 136 166 192 214 233 233

l 136 166 192 214 233 233
m 2008 1319 1500 1333 1042 4536

q 2003 4093 8191 16381 32749 32749
r 1 4 5 12 59 1

t 2 2 4 4 2 40

@ 0.0065 0.0024 0.0009959 | 0.00045 | 0.000217 | 0.000217
Public key size in bits 6 x10% | 5.25 x 10° | 7.5 x 10° | 8 x 10% | 7.3 x 10° | 31.7 x 10°
Encryption blowup factor 21.9 24 13 14 30 5.6
Error probability 0.9% 0.56% 1% 0.8% 0.9% 0.9%
Lattice dimension in attack 322 372 417 457 493 493

Table 3: Some possible choices of parameters using § = 1.01.

Further optimizations: If all users of the system have access to a trusted source of random bits, they can
use it to agree on a random matrix A € Zg**". This allows us to include only P in the public key, thereby

reducing its size to mfloggq, which is O(n) if £ is chosen to be constant and m = O(n). This observation,
originally due to Ajtai [5], crucially relies on the source of random bits being trusted, since otherwise it might
contain a trapdoor (see [17]). Moreover, as already observed, choosing small ¢ results in large ciphertext
blowup factors. If £ is set to O(n) in order to achieve constant encryption blowup, then the public key will
have size at least O(n?) even if a common random matrix is used for A.

Another possible optimization results from the HNF technique of [47] already discussed in the context of
the GGH cryptosystem. The improvement it gives is quantitatively modest: it allows to shrink the public
key size and encryption times by a factor of (1 —n/m). Still, the improvement comes at absolutely no cost,
so it seems well worth adopting in any implementation of the system. Recall that the public key consists of
a public lattice A,(AT) represented by a matrix A € Zy*™, and a collection AS + E mod ¢ of perturbed
lattice vectors As; € Ay(AT). As in the HNF modification of the GGH cryptosystem, cryptanalysis only
gets harder if we describe the public lattice by its lower triangular HNF basis, and the perturbed lattice
vectors are replaced by the result of reducing the error vectors (i.e., the columns of E) by such a basis.

In more detail, let A € Zg**™ be chosen uniformly as before. For simplicity, assume A has full rank
(which happens with probability exponentially close to 1), and that its first n rows are linearly independent
over Z, (which can be obtained by permuting its rows). Under these conditions, the g-ary lattice A,(AT)
has a very simple HNF basis of the form

H— [ I O ]

A q¢I
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where A’ € ngfn)xn. Let E be an error matrix chosen as before, and write it as E = (E”,E’) where
E’ € ZZXZ and E' € Z((Imfn)xe. Reducing the columns of E modulo the HNF public basis H yields vectors
(0,P’) where P! = E/ — A'E” € Z{"~™**. The public key consists of (I, A’) € Z7**" and (O, P’) € ZI"*".
Since I and O are fixed matrices, only A’ and P’ need to be stored as part of the public key, reducing the
public key bit-size to (m — n)(n + £)logq. Encryption proceeds as before, i.e., the ciphertext is given by

(u,¢) = (" + (A)"a, (P")Ta’ + f(v))

where a = (a”,a’). Notice that the secret matrix S used by the original LWE cryptosystem has disappeared.
The matrix E” € nge is used instead for decryption. Given ciphertext (u,c), the decrypter outputs
f~t(c+ (E”)Tu). Notice that the vector ¢ + (E”)Tu still equals (ETa) + f(v), so decryption will succeed
with exactly the same probability as the original LWE cryptosystem. The security of the system can be
established by a reduction from the security of the original cryptosystem. To conclude, this modification
allows us to shrink the public key size and encryption time by a factor of (1 — n/m) at no cost.

6 Digital Signature Schemes

Digital signature schemes are among the most important cryptographic primitives. From a theoretical point
of view, signature schemes can be constructed from one-way functions in a black-box way without any further
assumptions [56]. Therefore, by using the one-way functions described in Section 4 we can obtain signature
schemes based on the worst-case hardness of lattice problems. These black-box constructions, however, incur
a large overhead and are impractical. In this section we survey some proposals for signature schemes that
are directly based on lattice problems, and are typically much more efficient.

The earliest proposal for a lattice-based signature scheme was given by Goldreich et al. [22], and is based
on ideas similar to those in their cryptosystem described in Subsection 5.1. In 2003, the company NTRU
CRYPTOSYSTEMS proposed an efficient signature scheme called NTRUSIGN [26]. This signature scheme can
be seen as an optimized instantiation of the GGH scheme, based on the NTRU lattices. Unfortunately, both
schemes (in their basic version) can be broken in a strong asymptotic sense. We remark that neither scheme
came with a security proof, which explains the serious security flaws which we will describe later.

The first construction of efficient signature schemes with a supporting proof of security (in the random
oracle model) was suggested by Micciancio and Vadhan [55], who gave statistical zero knowledge proof
systems for various lattice problems, and observed that such proof systems can be converted in a relatively
efficient way first into secure identification schemes, and then (via the Fiat-Shamir heuristic) into a signature
scheme in the random oracle model. More efficient schemes were recently proposed by Lyubashevsky and
Micciancio [44], and by Gentry, Peikert and Vaikuntanathan [17]. Interestingly, the latter scheme can be
seen as a theoretically justified variant of the GGH and NTRUSIGN signature schemes, with worst-case
security guarantees based on general lattices in the random oracle model. The scheme of Lyubashevsky
and Micciancio [44] has worst-case security guarantees based on ideal lattices similar to those considered in
the construction of hash functions (see Section 4), and it is the most (asymptotically) efficient construction
known to date, yielding signature generation and verification algorithms that run in almost linear time.
Moreover, the security of [44] does not rely on the random oracle model.

In the rest of this section we describe the GGH and NTRUSIGN signature schemes, and the security
flaw in their design, the theoretically justified variant of their scheme proposed by Gentry et al., and finally
the signature scheme of Lyubashevsky and Micciancio, which is currently the most efficient (lattice-based)
signature scheme with a supporting proof of security, at least in an asymptotic sense.

Lattice-based digital signature schemes have not yet reached the same level of maturity as the collision
resistant hash functions and public key encryption schemes presented in the previous sections. So, in this
section we present the schemes only informally, and refer the reader to the original papers (and any relevant
literature appearing after the time of this writing) for details.
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6.1 The GGH and NTRUSign signature schemes

We now briefly describe the GGH signature scheme; for a description of NTRUSIGN, see [26]. The private
and public keys are chosen as in the GGH encryption scheme. That is, the private key is a lattice basis B
consisting of short and fairly orthogonal vectors. The public key H is a “bad” basis for the same lattice
L(B), i.e., a basis consisting of fairly long and far from orthogonal vectors. As before, it is best to choose H
to be the Hermite normal form of B.

To sign a given message, we first map it to a point m € R"™ using some hash function. We assume that
the hash function behaves like a random oracle, so that m is distributed uniformly (in some large volume
of space). Next, we round m to a nearby lattice point s € £(B) by using the secret basis. This is typically
done using Babai’s round-off procedure [8], which gives

s=B|B 'm].
Notice that by definition, this implies that
s—me¢c Py ;(B)={Bx:xec[-1/2,1/2]"}.

In order to verify a given message-signature pair (m,s), one checks that s € L(H) = £(B) (which can
be done efficiently using the public key H) and that the distance ||s — m|| is small (which should be the case
since this difference is contained in Py /5(B)).

Attacks: Some early indications that the GGH and NTRUSIGN signature schemes might be insecure were
given by Gentry and Szydlo [18, 77] who observed that each signature leaks some information on the secret
key. This information leakage does not necessarily prove that such schemes are insecure, since it might be
computationally difficult to use this information. However, as was demonstrated by Nguyen and Regev a
few years later [59], this information leakage does lead to an attack on the scheme. More precisely, they have
shown that given enough message-signature pairs, it is possible to recover the private key. Moreover, their
attack is quite efficient, and was implemented and applied in [59] to most reasonable choices of parameters
in GGH and NTRUSIGN, thereby establishing that these signature schemes are not secure in practice (but
see below for the use of “perturbations” in NTRUSIGN).

The idea behind the information leakage and the attack is in fact quite simple. The basic observation is
that the difference m — s obtained from a message-signature pair (m,s) is distributed essentially uniformly
in P;/2(B). Hence, given enough such pairs, we end up with the following algorithmic problem, called
the hidden parallelepiped problem (see Fig. 4): given many random points uniformly distributed over an
unknown n-dimensional parallelepiped, recover the parallelepiped or an approximation thereof. An efficient
solution to this problem implies the attack mentioned above.

In the two-dimensional case shown in Fig. 4, one immediately sees the parallelepiped enveloping the
points, and it is not difficult to come up with an algorithm that implements this. But what about the high-
dimensional case? High dimensional problems are often very hard. Here, however, the problem turns out to
be easy. The algorithm used in [59] applies a gradient decent method to solve a multivariate optimization
problem based on the fourth-moment of the one-dimensional projections. See [59] for further details (as well
as for an interesting historical account of the hidden parallelepiped problem).

Countermeasures: The most efficient countermeasures known against the above attack are perturbation
techniques [26, 27]. These modify the signature generation process in such a way that the hidden paral-
lelepiped is replaced by a considerably more complicated body, and this seems to prevent attacks of the
type described above. The main drawback of perturbations is that they slow down signature generation and
increase the size of the secret key. Nevertheless, the NTRUSIGN signature scheme with perturbation is still
relatively efficient. Finally, notice that even with perturbations, NTRUSIGN does not have any security
proof.
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Figure 4: The hidden parallelepiped problem in two dimensions.

6.2 Schemes based on preimage sampleable trapdoor functions

In a recent paper, Gentry, Peikert, and Vaikuntanathan [17] defined an abstraction called “preimage sam-
pleable trapdoor functions”, and showed how to instantiate it based on the worst-case hardness of lattice
problems. They then showed that this abstraction is quite powerful: it can be used instead of trapdoor
permutations in several known constructions of signature schemes in the random oracle model. This leads
to relatively efficient signature schemes that are provably secure (in the random oracle model) based on the
worst-case hardness of lattice problems.

One particularly interesting feature of their construction is that it can be seen as a provably secure variant
of the (insecure) GGH scheme. Compared to the GGH scheme, their construction differs in two main aspects.
First, it is based on lattices chosen from a distribution that enjoys a worst-case connection (the lattices in
GGH and NTRU are believed to be hard, but not known to have a worst-case connection). A second
and crucial difference is that their signing algorithm is designed so that it does not reveal any information
about the secret basis. This is achieved by replacing Babai’s round-off procedure with a “Gaussian sampling
procedure”, originally due to Klein [35], whose distinctive feature is that its output distribution, for the range
of parameters considered in [17], is essentially independent of the secret basis used. The effect of this on the
attack outlined above is that instead of observing points chosen uniformly from the parallelepiped generated
by the secret basis, the attack observes points chosen from a spherically symmetric Gaussian distribution,
and therefore learns nothing about the secret basis. The Gaussian sampling procedure is quite useful, and
has already lead to the development of several other lattice-based constructions, as will be mentioned in
Section 7.

As most schemes based on general lattices, the signatures of [17] have quadratic complexity both in terms
of key size and signing and verification times. It should be remarked that although most of the techniques
from [17] apply to any lattice, it is not clear how to obtain substantially more efficient instantiations of their
signatures using structured lattices (e.g., NTRU lattices, or the cyclic/ideal lattices used in the construction
of hash functions). For example, even when instantiated with NTRU lattices, the running time of the signing
algorithm seems to remain quadratic in the security parameter because of the expensive sampling procedure.

6.3 Schemes based on collision resistant hash functions

Finally, in [44], Lyubashevsky and Micciancio gave a signature scheme which is seemingly optimal on all
fronts, at least asymptotically: it admits a proof of security based on worst-case complexity assumptions, the
proof of security holds in the standard computational model (no need for random oracles), and the scheme is
asymptotically efficient, with key size and signing/verification times all almost linear in the dimension of the
underlying lattice. The lattice assumption underlying this scheme is that no algorithm can approximate SVP
to within polynomial factors in all ideal lattices, i.e., lattices that are closed under some linear transformation
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F of the kind considered in Section 4.

The scheme makes use of a new hash-based one-time signature scheme, i.e., a signature scheme that allows
to securely sign a single message. Such schemes can be transformed into full-fledged signature schemes using
standard tree constructions (dating back to [24, 57]), with only a logarithmic loss in efficiency. The one-time
signature scheme, in turn, is based on a collision resistant hash function based on ideal lattices, of the kind
discussed in Section 4. The hash function h can be selected during the key generation process, or be a fixed
global parameter. The assumption is that finding collisions in h is computationally hard. The input to h
can be interpreted as a sequence of vectors y1,...,¥m/n € Z; with small coordinates. The secret key to the
hash function is a pair of randomly chosen inputs x1,...,X;/n € Zy and y1,...,Ym/n € Zy, each chosen
according to an appropriate distribution that generates short vectors with high probability.> The public key is
given by the images of these two inputs under the hash function X = h(x1,...,Xp/mn), Y = My1,. .-, Ym/n)-
Messages to be signed are represented by short vectors m € Zg. The signature of a message m is simply
computed as

0= (01, 0mm) = (F'mlx; +y1,..., [F'm|x,, /5, + ¥m/n) mod q.

The signature is verified by checking that o is a sequence of short vectors that hashes to [F*m]X +Y mod g.

The security of the scheme relies on the fact that even after seeing a signature, the exact value of the
secret key is still information theoretically concealed from the adversary. Therefore, if the adversary manages
to come up with a forged signature, it is likely to be different from the one that the legitimate signer can
compute using the secret key. Since the forged signature and legitimate signature hash to the same value,
they provide a collision in the hash function.

7 Other Cryptographic Primitives

In this section we briefly survey lattice-based constructions of other cryptographic primitives. Previous
constructions of these primitives were based on (sometimes non-standard) number theoretic assumptions.
Since all these constructions are very recent, we will not provide too many details.

CCA-secure cryptosystems: All the cryptosystems mentioned in Section 5 are secure only under chosen
plaintext attacks (CPA), and not under chosen ciphertext attacks (CCA). Indeed, it is not difficult to see
that given access to the decryption oracle, one can recover the private key. For certain applications, security
against CCA attacks is necessary.

CCA-secure cryptosystems are typically constructed based on specific number theoretic assumptions (or
in the random oracle model) and no general constructions in the standard model were known till very recently.
In a recent breakthrough, Peikert and Waters [66] showed for the first time how to construct CCA-secure
cryptosystems based on a general primitive which they call lossy trapdoor functions. They also showed how
to construct this primitive based either on traditional number theoretic assumptions or on the LWE problem.
The latter result is particularly important as it gives for the first time a CCA-secure cryptosystem based on
the worst-case (quantum) hardness of lattice problems.

IBE: Gentry et al. [17] have recently constructed identity based encryption (IBE) schemes based on LWE.
Generally speaking, IBE schemes are difficult to construct and only a few other proposals are known; the
fact that IBE schemes can be based on the LWE problem (and hence on the worst-case quantum hardness
of lattice problems) is therefore quite remarkable.

OT protocols: In another recent work, Peikert, Vaikuntanathan, and Waters [65] provide a construction
of an oblivious transfer (OT) protocol that is both universally composable and relatively efficient. Their
construction can be based on a variety of cryptographic assumptions, and in particular on the LWE problem

3For technical reasons, the input vectors cannot be chosen simply uniformly at random from a set of short vectors without
invalidating the proof.
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(and hence on the worst-case quantum hardness of lattice problems). Such protocols are often used in secure
multiparty computation.

Zero-Knowledge proofs and ID schemes: Various zero-knowledge proof systems and identification
schemes were recently discovered. Interactive statistical zero-knowledge proof systems for various lattice
problems (including approximate SVP) were already given by Micciancio and Vadhan in [55]. In [64], Peikert
and Vaikuntanathan gave non-interactive statistical zero-knowledge proof systems for approximate SIVP
and other lattice problems. Zero-knowledge proof systems are potentially useful building blocks both in the
context of key registration in a public-key infrastructure (PKI), and in the construction of identification (ID)
protocols. Finally, more efficient identification protocols (than those obtainable from zero-knowledge) were
recently discovered by Lyubashevsky [42]. Remarkably, the proof systems of [42] are not zero-knowledge,
and still they achieve secure identification under active attacks using an interesting aborting technique.

8 Open Questions

e Cryptanalysis: The experiments of [16] are very useful to gain some insight into the concrete hardness
of lattice problems for specific values of the lattice dimension, as needed by lattice-based cryptography.
But more work is still needed to increase our confidence and understanding, and in order to support
widespread use of lattice-based cryptography. An interesting recent effort in this direction is the
“Lattice Challenge” web page created by Lindner and Riickert [40, 10], containing a collection of
randomly chosen lattices in increasing dimension for which finding short vectors is apparently hard.

e Improved cryptosystems: The LWE-based cryptosystem described in Section 5.4 is reasonably
efficient and has a security proof based on a worst-case connection. Still, one might hope to considerably
improve the efficiency, and in particular the public key size, by using structured lattices such as
cyclic lattices. Another desirable improvement is to obtain a classical (i.e., non-quantum) worst-case
connection. Finally, obtaining practical CCA-secure cryptosystems in the standard model is another
important open question.

e Comparison with number theoretic cryptography: Can one factor integers or compute discrete
logarithms using an oracle that solves, say, /n-approximate SVP? Such a result would prove that
the security of lattice-based cryptosystems is superior to that of traditional number-theoretic-based
cryptosystems (see [75, 1] for related work).
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