Tel Aviv University, Fall 2004 Lecture 1 Lecturer: Oded Regev
Lattices in Computer Science Introduction Scribe: D. Sieradzki, V. Bronstein

In this course we will consider mathematical objects knowiatices What is a lattice? It is a set
of points inn-dimensional space with a periodic structure, such as the one illustrated in Eiglieee
dimensional lattices occur naturally in crystals, as well as in stacks of oranges. Historically, lattices were
investigated since the late 18th century by mathematicians such as Lagrange, Gauss, and later Minkowski.
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Figure 1:A lattice inR?

More recently, lattices have become a topic of active research in computer science. They are used as
an algorithmic tool to solve a wide variety of problems; they have many applications in cryptography and
cryptanalysis; and they have some unique properties from a computational complexity point of view. These
are the topics that we will see in this course.

1 Lattices

We start with a more formal definition of a lattice.

DerFINITION 1 (LATTICE) Givenn linearly independent vectots, bo, ..., b, € R™, the lattice generated
by them is defined as

L(b1,ba, ... by) = {be | z; € Z}.

We refer toby, .. ., b, as abasisof the lattice. Equivalently, if we definB as them x n matrix whose
columns aréq, bo, .. ., by, then the lattice generated Bis

L:(B) :ﬁ(bl,bg,...,bn> = {BI‘ ’ U Zn}

We say that theank of the lattice isn and itsdimensionis m. If n = m, the lattice is called &ull-rank
lattice. In this course we will usually consider full-rank lattices as the more general case is not substantially
different.

Let us see some examples. The lattice generated i’ and (0, 1)7 is Z2, the lattice of all integers
points (see Figur@(a). This basis is not unique: for exampld, 1)” and(2,1)” also generat&? (see
Figure2(b)). Yet another basis ¢&? is given by(2005, 1)7, (2006, 1)7. On the other hand1,1)%, (2,0)7
is not a basis oZ?: instead, it generates the lattice of all integer points whose coordinates sum to an even
number (see Figuig(c)). All the examples so far were of full-rank lattices. An example of a lattice that is
not full is £((2,1)7) (see Figur@(d)). It is of dimensior2 and of rankl. Finally, the latticeZ = £((1)) is
a one-dimensional full-rank lattice.

DEFINITION 2 (SPAN) Thespanof a lattice £(B) is the linear space spanned by its vectors,

span(L(B)) = span(B) = {By |y € R"}.
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Figure 2:Some lattice bases

DEeFINITION 3 (FUNDAMENTAL PARALLELEPIPED) For any lattice basis3 we define

P(B)={Bzx|xzeR"Vi:0<ux; <1}.

Examples of fundamental parallelepipeds are shown by the gray areas in Eighagice thatP(B)
depends on the basB. It follows easily from the definitions above, that if we place one copp B) at

each lattice point inC(B) we obtain a tiling of the entirepan(L(B)). See Figuré.

The first question we will try to answer is: how can we tell if a given set of vectors forms a basis of
a lattice? As we have seen above, not every set lofearly vectors inZ™ is a basis ofZ"™. One possible
answer is given in the following lemma. It says that the basic parallelepiped generated by the vectors should
not contain any lattice points, except the origin. As an example, notice that the basic parallelepiped shown
in Figure2(c) contains the lattice pointl,0) whereas those in Figuréa)and2(b) do not contain any
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Figure 3:Tiling span(L£(B)) with P(B)

nonzero lattice points.




LEMMA 1 LetA be a lattice of rank., and leth, bo, . .., b, € A ben linearly independent lattice vectors.
Thenby, bs, . .., b, form a basis oA if and only if P(by,ba, ..., b,) N A = {0}.

PrRooOF. Assume first thaby, ..., b, form a basis ofA. Then, by definitionA is the set of all their integer
combinations. Sinc® (b1, ..., b, ) is defined as the set of linear combination$of . ., b,, with coefficients
in [0, 1), the intersection of the two sets{i8}.

For the other direction, assume thatb,,bs,...,b,) N A = {0}. SinceA is a rankn lattice and
bi,...,b, are linearly independent, we can write any lattice veator A as)_ y;b; for somey; € R.
Since by definition a lattice is closed under addition, the veetes > (y; — |yi])b; is also inA. By our
assumptiong’ = 0. This implies that al};; are integers and henass an integer combination f, . . ., b,.
O

The second question we address is how to determine if two given Basds, are equivalent, i.e.,
generate the same lattice (in symbof¥,B;) = L(Bz)). For this, we need to introduce the following
definition.

DEFINITION 4 (UNIMODULAR MATRIX ) A matrixU € Z™*™ is calledunimodularif det U = +1.

(o )

is unimodular. The following lemma appears in the homework. It tells us that the inverse of a unimodular
matrix is also unimodular (so it follows that the set of unimodular matrices forms a group under matrix
multiplication).

For example, the matrix

LEMMA 2 If U unimodular, the/ " is also unimodular, and in particuler* ¢ 7>,

LEMMA 3 Two basesB:, B, € R™*™ are equivalent if and only iBs = B1U for some unimodular matrix
U.

PROOF. First assume thaf(B;) = L(Bz). Then for each of the columnsb; of By, b; € L(B;). This
implies that there exists an integer mattix € Z"*™ for which B, = B1U. Similarly, there exists a
V € Z™" such thatB; = B,V. HenceB, = B1U = B,VU, and we get

By" By = (VU)T By By(VU).

Taking determinants, we obtain thatt (By” By) = (det(VU))? det(By! By) and hencelet(V) det(U) =
+1. SinceV, U are both integer matrices, this means that{U) = +1, as required.

For the other direction, assume that = B, U for some unimodular matri&’. Therefore each column
of By is contained inC(B;) and we get(By) C L(B;). In addition, B; = ByU~!, and sincel/ !
is unimodular (Lemmé®) we similarly get thatC(B;) € L£(B2). We conclude that(B;) = L(B2) as
required.]

As an immediate corollary, we obtain th&tis a basis ofZ" if and only if it is unimodular (verify this
with the examples in Figui®).

Another way to determine if two bases are equivalent is given in the following lemma, which is also
taken from the homework.

LEMMA 4 Two bases are equivalent if and only if one can be obtained from the other by the following
operations on columns:



1. b; < b; + kb; for somek € Z,
2. b; < by,

The last basic notion that we need is the following.

DEFINITION 5 (DETERMINANT) Let A = L(B) be a lattice of rankn. We define theleterminanbf A,
denoteddet(A), as then-dimensional volume oP(B). In symbols, this can be written a®t(A) :=
\/det(BTB). In the special case that is a full rank lattice,B is a square matrix, and we havet(A) =
| det(B)].

The determinant of a lattice is well-defined, in the sense that it is independent of our choice @ basis
Indeed, ifB; and B» are two bases ah, then by Lemm&, B, = B,U for some unimodular matrik/.
Hence,

\/ det(ByT By) = \/det(UTBlTBlU) = \/det(BlTBl).

The determinant of a lattice is inverse proportional to its density: the smaller the determinant, the denser
the lattice is. In more precise terms, if one takes a largefdlh the span of\) then the number of lattice
points insideX approachesol(K)/ det(A) as the size of< goes to infinity.

2 Gram-Schmidt Orthogonalization

Gram-Schmidt orthogonalization is a basic procedure in linear algebra that takes any §aeafly inde-
pendent vectors, and creates a set ofthogonalvectors. It works by projecting each vector on the space
orthogonal to the span of the previous vectors. See Figjtoean illustration.
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Figure 4:Gram-Schmidt orthogonalization

DEFINITION 6 For a sequence of. linearly mdependent vectorsy, by, ..., by, We define theilGram-
Schmidt orthogonalizatioas the sequence of vectds bs, . . . , b, defined by

i
5

i—1

= = b;
bi = bi — Zﬂz‘,jij wherey; ; = 25
j=1

@‘I

O“I

In words,b; is the component @ orthogonal tob,, . .., b;_1.

We now mention some basic and easy-to-verify properties of Gram-Schmidt orthogonalization. First, as
the name suggests, for any j we have tha(bl, bi ;) = 0. Second, forall <i <n,span(by,bs,...,b;) =
Span(bl, b ). Third, the vectordy, ..., by need not be a basis d@(by,...,b,). In fact, they are in



general not even contained in that lattice (see Fidlr&inally, the order of the vectotrs, ..., b, matters:
that is why we consider them as a sequence rather than as a set.
One useful application of the Gram-Schmidt process is the following. bLet ., b, be a set oln

linearly independent vectors & and consider therthonormalbasis given by /||b1 |, .. ., bn/||bnl|. In
this basis, the vectols, ..., b, are given as the columns of the x n matrix
1oall poallball -+ gl
0 [b2ll - pn2]|n]
0 .. 0 bl |- 1)
0 .. 0 0
0 .. 0 0

In the casen = n this is an upper-triangular square matrix. From this representation, itis easy to see that the
volume of P(by, ..., by,), or equivalentlydet(L(b1,...,b,)), is given by[ [, [|b;]|. In fact, this equality
can be seen as thedimensional extension of the formula for computing the area of a parallelogram.

3 Successive minima

One basic parameter of a lattice is the length of the shortest nonzero vector in the lattice (we have to ask for
a nonzero vector since the zero vector is always contained in a lattice and its norm is zero). This parameter

is denoted by\;. By lengthwe mean the Euclidean norm, or thenorm, defined afiz||» = /> z7. We
usually denote this norm simply byz||. Occasionally in this course, we will consider other norms, such as
the?; norm,||z||y = > |z;| or thels, norm||z||cc = max |z;|.

An equivalent way to defing; is the following: it is the smallest such that the lattice points inside
a ball of radius" span a space of dimensidn This definition leads to the following generalization)qf,
known assuccessive minim&ee Figurd.

DEFINITION 7 LetA be a lattice of ranka. Fori € {1,...,n} we define théth successive minimum as
Ai(A) = inf {r | dim(span(A NB(0,7))) > i}

whereB(0,r) = {z € R™ | ||z|| < r} is the closed ball of radius around0.

Figure 5:\(A) =1, A\2(A) = 2.3

The following theorem gives a useful lower bound on the length of the shortest nonzero vector in a
lattice.



THEOREMS Let B be a ranks lattice basis, and I8 be its Gram-Schmidt orthogonalization. Then

M(L(B)) = min [bif] > 0.

PROOF. Letz € Z" be an arbitrary nonzero integer vector, and let us show|tBat| > min ||b;]. Let
j€{1,...,n} bethe largest such thaj # 0. Then

(B, bj)| = [(S21_, wibi, bj)| = |2j|(bj,b;) = |zj][1b;]]?

where we used that for all< j, (b;,b;) = 0 and that(b;, b;) = (b;, b;). On the other hand{Bz,b;)| <
|Bz|| - ||b;]|, and hence we conclude that

[1B]| = |2 [[b]] = [[bj]] = min [|b]].

O

An alternative proof of Theorefdiis the following. In the orthonormal bashs/||b1]], . . ., bn/||bx || the
lattice A is given by all integer combinations of the columns of the matrix in BJ.I{ is easy to see thatin
any such nonzero combination, the bottom-most coordinate is atlgéadb;|| in absolute value.

COROLLARY 6 Let A be a lattice. Then there exists some> 0 such that|z — y|| > e for any two
non-equal lattice points,y € A.

PrROOF For any non-equat,y € A, the vectorr — y is a nonzero vector i. Therefore, by Theorerb,
|z —yl| > Ai(A) > 0.0

CLAIM 7 The successive minima of a lattice are achieved, i.e., for evetyi < n there exists a vector
v; € A with HUZH = )\Z(A)

PrROOF By Corollary6, the ball of radius (say)\;(A) contains only finitely many lattice points. It follows

from the definition of); that one of these vectors must have lengtt\). OJ

3.1 Upper bounds on the successive minima

We now present Minkowski’s upper bounds on the successive minima. For simplicity, in this section we only
consider full-rank lattices; it is easy to extend the results to non-full-rank lattices. We start with a theorem
of Blichfeld.

THEOREM 8 (BLICHFELD) For any full-rank lattice\ C R™ and (measurable) st R™ with vol(S) >
det A there exist two nonequal points, zo € S such that,; — zo € A.
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Figure 6:Blichfeldt’s theorem




PROOF. Let B be a basis of\. As z ranges over all\, the setsc + P(B) := {z +y |y € P(B)} form a
partition of R™. We now define5, = SN (z +P(B)) (see Figuré). SinceS = | J ., S we conclude that

vol(S) = >, ca vol(Sz). We defineS, = S, — x. ThenS, C P(B) andvol(S;) = vol(S,), we get:

> vol(Se) = Y vol(S,) = vol(S) > vol(P(B)).

TzEA TzEA

Therefore, there must exist somey € A, x # y forwhich@ N :S*; # (). Letz be a point ing’; N 3*; Then
z+zisinS, C S, z+yisinS, C S,and(z +z) — (2 +y) =z —yisin A, as required

As a corollary of Blichfeld’s theorem we obtain the following theorem due to Minkowski. It states that
any large enough centrally-symmetric convex set contains a nonzero lattice point. SAisseentrally-
symmetridf for any « € S we also have-z € S; itis convexf for any z, y € S and any\ € [0, 1] we have
Ax+(1— Ny € S. Itis easy to see that the theorem is false if we drop either of the two requiremetits on

THEOREM9 (MINKOWSKI’S CONVEX BODY THEOREM Let A be a full-rank lattice of rank.. Then for
any centrally-symmetric convex sgt if vol(S) > 2" det A thenS contains a nonzero lattice point.

PROOF. DefineS = 1S = {z | 2z € S}. Thenvol(S) = 27"vol(S) > det A. By Theoren®, there exist
two pointszy, 29 € S such that:; — 22 € A is a nonzero lattice point. By definitiodz1,22z; € S and
because is centrally-symmetric, alse2z; € S. Finally, sinceS is convex,% = 2z1—291SinS. See
Figure7. O

Figure 7:Minkowski's convex body theorem

CLAIM 1 The volume of an-dimensional ball of radius is vol(B(0,7)) > (%)”.

ProoFE This follows since this ball contains a cube of side Iené%h

r

{xER”|W, || < NG

} C B(0,r).

O

We now obtain the following bound on the length of the shortest nonzero vector.

COROLLARY 2 (MINKOWSKI'S FIRST THEOREN) For any full-rank latticeA of rankn,

AM(A) < /n(det A



PROOF By definition, the (open) balB(0, A;(A)) contains no nonzero lattice points. By Theor@rand

Claim1,
<2>\1(A)

NG

)” < vol(B(0, A (A))) < 2" det A,

and we obtain the bound on (A) by rearrangingld

The term(det A)'/™ might seem strange at first, but is in fact very natural: it makes sure that the
expression scales properly. Indeed, consider the latficebtained by scaling\ by a factor ofc. Then
clearly A\ (cA) = cA1(A). On the other hand, we havet(cA) = ¢™det(A), so the right hand side also
scales by a factor of, as we expect. So we could equivalently state Minkowski’s first theorem as saying
that any ranka lattice with determinant contains a nonzero vector of length at mgSst.

How tight is this bound? It is easy to see that there are cases in which it is very far from being tight.
Consider for example the lattice generated fy0)” and(0,1/¢)” for some smalk > 0. Its determinant
is 1 yet its shortest nonzero vector is of lengthOn the other hand, consider the latti€®. Its determinant
is 1 whereas\; (Z™) = 1, so the bound is closer to being tight, but still not tight. In fact, it is known that for
anyn there exists a rank lattice of determinant whose shortest nonzero vector is of length at legst
for some constant. So up to a constant, Minkowski's bound is tight. In fact, by a slightly more careful
analysis, one can improve thén bound toc,/n for some constant < 1.

Finally, we mention that in the discussion above we consideredsthwrm. It is easy to extend
Minkowski's theorem to other norms. All that is required is to compute the volume of a ball under the
given norm.

Minkowski's first theorem considers the shortest nonzero vector, i.e., the first successive mikimum
A strengthening of the bound is given by what is known as Minkowski’'s second theorem. Instead of consid-
ering just\;, this bound considers the geometric mean ofAal(which is clearly at least, ).

THEOREM 3 (MINKOWSKI'S SECOND THEOREN For any full-rank latticeA of rankn,
n 1/n
(HAi(A)) < /n(det A)/".
i=1

PROOE Letzy,...,z, € A be linearly independent vectors achieving the successive minima, =
Ai(A). Letzy,..., %, be their Gram-Schmidt orthogonalization. Consider the open ellipsoid with axes
Z1,...,T, andlengths\q, ..., A\,

_ n . <yva~jl> 2
TeueR ZQ(H@-H-AZ- <1}
See Figur.
° L2 °
I
[} [ ]

Figure 8:The ellipsoidT’. The vectorr; is on the boundary df’, andz- is strictly outside.



We claim thafl’ does not contain any non-zero lattice points. Indeed, take any nopzeroand letl <
k < n be the maximal such thdty|| > Ax(A). It must be thay € span(zy,...,Zx) = span(zy,...,xx),

since otherwise, ..., zy,y arek + 1 linearly independent vectors of length less than; (A). Now,
n ~ k ~ k ~
(y, &i) 2 (y, @) \2_ 1 {y,2i)\2 _ |lyll?
;ﬂmwﬁ ;me)—ﬁ;<mﬂ Y

and thereforey ¢ T.
By Minkowski’s convex body theoremvpl(7") < 2™ det A. But on the other hand,

vol(T") = (ﬁ)\i)vol(B(O,l)) > ( /\i> (;ﬁ)”

n

=1

Combining the two bounds, we obtain that
n 1/n
HDO/Sﬁ@mWW
i=1

d

4 Computational problems

Minkowski’s first theorem implies that any lattice of rankn contains a nonzero vector of length at most
V/n(det A)l/”. Its proof, however, is non-constructive: it does not give us an algorithm to find such a lattice
vector. In fact, there is no known efficient algorithm that finds such short vectors.

To discuss such computational issues, let us define the most basic computational problem involving
lattices: the shortest vector problem, P for short. Here, we are given a lattice and we are supposed
to find the shortest nonzero lattice point. Maore precisely, there are three variantsSdéfRhdepending on
whether we have to actually find the shortest vector, find its length, or just decide if it is shorter than some
given number:

e SearchSVP: Given a lattice basi® € Z™*" find v € L(B) such that|v|| = A1 (L(B)).
e Optimization SVP: Given a lattice basi® € Z™*" find A1 (L(B)).

e DecisionalSVP: Given a lattice basi® € Z*" and arationat € Q, determine whethex; (L(B) <
7 Or not.

Notice that we restrict the lattice basis to consist of integer vectors, as opposed to arbitrary real vectors.
The purpose of this is to make the input representable in finitely many bits so we can c&\4tdas a
standard computational problem. We could also allow the lattice basis to consist of rational vectors. This
would lead to an essentially equivalent definition, since by scaling, one can make all rational coordinates
integer.

Two easy relations among the three variants above is that the decision variant is not harder than the
optimization variant, and that the optimization variant is not harder than the search variant. In fact, it can be
shown that the converse is also true: the optimization variant is not harder than the decision variant, and the
search variant is not harder than the optimization variant. To summarize, the three variants are essentially
equivalent.

In this course, we will be more interested in gqgproximatiorvariants ofSVP. Here, instead of finding
the shortest vector, we are interested in finding an approximation of it. The factor of approximation is given
by some parameter > 1:



e SearchSVP,: Given a lattice basi€? € Z"*" find v € L(B) such thatv # 0 and |[v|| < v -
M(L(B)).

e Optimization SVP,: Given a lattice basi® € Z™*" find d such thail < A\;(L(B)) < v -d.

e Promise SVP,: An instance of the problem is given by a pai8, ) whereB € Z™*" is a lattice
basis and- € Q. In YEs instances; (£(B)) < r. InNo instancesj,(L(B)) > v - .

The latter variant is usually denotéhpSVP,,. It is a promise problem By this we mean a problem
defined by two disjoint sets of inputs: thes instances, and theo instances. The goal is to determine
which set the input is taken from. Unlike decision problems, the union of these sets does not have to contain
all possible inputs. In other words, there are illegal inputs on which the algorithm’s behavior is undefined.

As before, we have that for any > 1, the promise variant is not harder than the optimization variant,
and that the optimization variant is not harder than the search variant. It is also known that the optimization
variant is not harder than the promise variant. Interestingly, it is an open question whether the search variant
is not harder than the optimization variant.

Another fundamental lattice problem is the closest vector proble@yérfor short. Here, the goal is to
find the lattice point that is closest to a given point in space. As before, for any approximatiomfaetor
we can define three variants:

e SearchCVP,: Given a lattice basi3 € Z™*" and a vectot € Z™, find v € L(B) such that
o —t]] < - dist(t, L(B)).

e Optimization CVP,: Given a lattice basi®? € Z™*" and a vectot € Z™, find d such thatd <
dist(t, £L(B)) <~ -d.

e PromiseCVP,: An instance of the problem is given by a triglB, ¢, r) whereB € Z™*" is a lattice
basist € Z, andr € Q. In YESinstancesdist(¢, £(B)) < r. InNo instancesdist (¢, £L(B)) > ~-r.

Both theCVP and theSVP are difficult computational problems, which we will discuss in more detail
later in this course. There are also some easy computational problems involving lattices, such as:

e Membership: Given a lattice basi® € Z™*™ and a vectov € Z™, decide ifv € L(B).
The equatiorBx = v can be seen as a systemmoefinear equations im variables. We can therefore
solve it efficiently by Gaussian elimination. If a solution exists and it happens toZe (as opposed
to Q™), outputYES; otherwise outpuio.

e Equivalence GivenBj, By € Z™*", decide ifL(B1) = L(B2).
To solve this, we check two things: that each columnBgfis contained inl(B2) and that each
column of B, is contained inC(By). If £(B1) = L(Bs2), these two checks are satisfied. Conversely,
if these checks are satisfied, thé(B,) C £(B2) andL(B2) C L(B;) and hence(B;) = L(B>).

Several other easy computational problems are given in the homework. Vaguely speaking, what they all
have in common is that they do not involve the geometry of the lattice.
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