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In this course we will consider mathematical objects known aslattices. What is a lattice? It is a set
of points inn-dimensional space with a periodic structure, such as the one illustrated in Figure1. Three
dimensional lattices occur naturally in crystals, as well as in stacks of oranges. Historically, lattices were
investigated since the late 18th century by mathematicians such as Lagrange, Gauss, and later Minkowski.

Figure 1:A lattice inR2

More recently, lattices have become a topic of active research in computer science. They are used as
an algorithmic tool to solve a wide variety of problems; they have many applications in cryptography and
cryptanalysis; and they have some unique properties from a computational complexity point of view. These
are the topics that we will see in this course.

1 Lattices

We start with a more formal definition of a lattice.

DEFINITION 1 (LATTICE) Givenn linearly independent vectorsb1, b2, . . . , bn ∈ Rm, the lattice generated
by them is defined as

L(b1, b2, . . . , bn) =
{∑

xibi | xi ∈ Z
}

.

We refer tob1, . . . , bn as abasisof the lattice. Equivalently, if we defineB as them× n matrix whose
columns areb1, b2, . . . , bn, then the lattice generated byB is

L(B) = L(b1, b2, . . . , bn) = {Bx | x ∈ Zn} .

We say that therank of the lattice isn and itsdimensionis m. If n = m, the lattice is called afull-rank
lattice. In this course we will usually consider full-rank lattices as the more general case is not substantially
different.

Let us see some examples. The lattice generated by(1, 0)T and(0, 1)T is Z2, the lattice of all integers
points (see Figure2(a)). This basis is not unique: for example,(1, 1)T and(2, 1)T also generateZ2 (see
Figure2(b)). Yet another basis ofZ2 is given by(2005, 1)T , (2006, 1)T . On the other hand,(1, 1)T , (2, 0)T

is not a basis ofZ2: instead, it generates the lattice of all integer points whose coordinates sum to an even
number (see Figure2(c)). All the examples so far were of full-rank lattices. An example of a lattice that is
not full isL((2, 1)T ) (see Figure2(d)). It is of dimension2 and of rank1. Finally, the latticeZ = L((1)) is
a one-dimensional full-rank lattice.

DEFINITION 2 (SPAN) Thespanof a latticeL(B) is the linear space spanned by its vectors,

span(L(B)) = span(B) = {By | y ∈ Rn} .
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(0, 0) (1, 0)

(0, 1)

(a) A basis ofZ2

(0, 0)

(1, 1) (2, 1)

(b) Another basis ofZ2

(0, 0)

(1, 1)

(2, 0)

(c) Not a basis ofZ2

(0, 0)

(2, 1)

(d) Not a full-rank lattice

Figure 2:Some lattice bases

DEFINITION 3 (FUNDAMENTAL PARALLELEPIPED) For any lattice basisB we define

P(B) = {Bx | x ∈ Rn, ∀i : 0 ≤ xi < 1} .

Examples of fundamental parallelepipeds are shown by the gray areas in Figure2. Notice thatP(B)
depends on the basisB. It follows easily from the definitions above, that if we place one copy ofP(B) at
each lattice point inL(B) we obtain a tiling of the entirespan(L(B)). See Figure3.

(0, 0)

(1, 1) (2, 1)

Figure 3:Tiling span(L(B)) with P(B)

The first question we will try to answer is: how can we tell if a given set of vectors forms a basis of
a lattice? As we have seen above, not every set ofn linearly vectors inZn is a basis ofZn. One possible
answer is given in the following lemma. It says that the basic parallelepiped generated by the vectors should
not contain any lattice points, except the origin. As an example, notice that the basic parallelepiped shown
in Figure2(c) contains the lattice point(1, 0) whereas those in Figures2(a) and2(b) do not contain any
nonzero lattice points.
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LEMMA 1 Let Λ be a lattice of rankn, and letb1, b2, . . . , bn ∈ Λ ben linearly independent lattice vectors.
Thenb1, b2, . . . , bn form a basis ofΛ if and only ifP(b1, b2, . . . , bn) ∩ Λ = {0}.

PROOF: Assume first thatb1, . . . , bn form a basis ofΛ. Then, by definition,Λ is the set of all their integer
combinations. SinceP(b1, . . . , bn) is defined as the set of linear combinations ofb1, . . . , bn with coefficients
in [0, 1), the intersection of the two sets is{0}.

For the other direction, assume thatP(b1, b2, . . . , bn) ∩ Λ = {0}. SinceΛ is a rankn lattice and
b1, . . . , bn are linearly independent, we can write any lattice vectorx ∈ Λ as

∑
yibi for someyi ∈ R.

Since by definition a lattice is closed under addition, the vectorx′ =
∑

(yi − byic)bi is also inΛ. By our
assumption,x′ = 0. This implies that allyi are integers and hencex is an integer combination ofb1, . . . , bn.
¤

The second question we address is how to determine if two given basesB1, B2 are equivalent, i.e.,
generate the same lattice (in symbols,L(B1) = L(B2)). For this, we need to introduce the following
definition.

DEFINITION 4 (UNIMODULAR MATRIX ) A matrixU ∈ Zn×n is calledunimodularif detU = ±1.

For example, the matrix (
1 2
0 1

)

is unimodular. The following lemma appears in the homework. It tells us that the inverse of a unimodular
matrix is also unimodular (so it follows that the set of unimodular matrices forms a group under matrix
multiplication).

LEMMA 2 If U unimodular, thenU−1 is also unimodular, and in particularU−1 ∈ Zn×n.

LEMMA 3 Two basesB1, B2 ∈ Rm×n are equivalent if and only ifB2 = B1U for some unimodular matrix
U .

PROOF: First assume thatL(B1) = L(B2). Then for each of then columnsbi of B2, bi ∈ L(B1). This
implies that there exists an integer matrixU ∈ Zn×n for which B2 = B1U . Similarly, there exists a
V ∈ Zn×n such thatB1 = B2V . HenceB2 = B1U = B2V U , and we get

B2
T B2 = (V U)T B2

T B2(V U).

Taking determinants, we obtain thatdet(B2
T B2) = (det(V U))2 det(B2

T B2) and hencedet(V ) det(U) =
±1. SinceV, U are both integer matrices, this means thatdet(U) = ±1, as required.

For the other direction, assume thatB2 = B1U for some unimodular matrixU . Therefore each column
of B2 is contained inL(B1) and we getL(B2) ⊆ L(B1). In addition,B1 = B2U

−1, and sinceU−1

is unimodular (Lemma2) we similarly get thatL(B1) ⊆ L(B2). We conclude thatL(B1) = L(B2) as
required.¤

As an immediate corollary, we obtain thatB is a basis ofZn if and only if it is unimodular (verify this
with the examples in Figure2).

Another way to determine if two bases are equivalent is given in the following lemma, which is also
taken from the homework.

LEMMA 4 Two bases are equivalent if and only if one can be obtained from the other by the following
operations on columns:
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1. bi ← bi + kbj for somek ∈ Z,

2. bi ↔ bj ,

3. bi ← −bi.

The last basic notion that we need is the following.

DEFINITION 5 (DETERMINANT) Let Λ = L(B) be a lattice of rankn. We define thedeterminantof Λ,
denoteddet(Λ), as then-dimensional volume ofP(B). In symbols, this can be written asdet(Λ) :=√

det(BT B). In the special case thatΛ is a full rank lattice,B is a square matrix, and we havedet(Λ) =
| det(B)|.

The determinant of a lattice is well-defined, in the sense that it is independent of our choice of basisB.
Indeed, ifB1 andB2 are two bases ofΛ, then by Lemma3, B2 = B1U for some unimodular matrixU .
Hence, √

det(B2
T B2) =

√
det(UT B1

T B1U) =
√

det(B1
T B1).

The determinant of a lattice is inverse proportional to its density: the smaller the determinant, the denser
the lattice is. In more precise terms, if one takes a large ballK (in the span ofΛ) then the number of lattice
points insideK approachesvol(K)/det(Λ) as the size ofK goes to infinity.

2 Gram-Schmidt Orthogonalization

Gram-Schmidt orthogonalization is a basic procedure in linear algebra that takes any set ofn linearly inde-
pendent vectors, and creates a set ofn orthogonalvectors. It works by projecting each vector on the space
orthogonal to the span of the previous vectors. See Figure4 for an illustration.

b̃2
b2

b̃1 = b1

Figure 4:Gram-Schmidt orthogonalization

DEFINITION 6 For a sequence ofn linearly independent vectorsb1, b2, . . . , bn, we define theirGram-
Schmidt orthogonalizationas the sequence of vectorsb̃1, b̃2, . . . , b̃n defined by

b̃i = bi −
i−1∑

j=1

µi,j b̃j , whereµi,j =
〈bi, b̃j〉
〈b̃j , b̃j〉

.

In words,b̃i is the component ofbi orthogonal tõb1, . . . , b̃i−1.

We now mention some basic and easy-to-verify properties of Gram-Schmidt orthogonalization. First, as
the name suggests, for anyi 6= j we have that〈b̃i, b̃j〉 = 0. Second, for all1 ≤ i ≤ n, span(b1, b2, . . . , bi) =
span(b̃1, . . . , b̃i). Third, the vectors̃b1, . . . , b̃n need not be a basis ofL(b1, . . . , bn). In fact, they are in
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general not even contained in that lattice (see Figure4). Finally, the order of the vectorsb1, . . . , bn matters:
that is why we consider them as a sequence rather than as a set.

One useful application of the Gram-Schmidt process is the following. Letb1, . . . , bn be a set ofn
linearly independent vectors inRm and consider theorthonormalbasis given bỹb1/‖b̃1‖, . . . , b̃n/‖b̃n‖. In
this basis, the vectorsb1, . . . , bn are given as the columns of them× n matrix




‖b̃1‖ µ2,1‖b̃1‖ · · · µn,1‖b̃1‖
0 ‖b̃2‖ . . . µn,2‖b̃n‖
...

...
...

0 . . . 0 ‖b̃n‖
0 . . . 0 0
...

...
...

0 . . . 0 0




. (1)

In the casem = n this is an upper-triangular square matrix. From this representation, it is easy to see that the
volume ofP(b1, . . . , bn), or equivalently,det(L(b1, . . . , bn)), is given by

∏n
i=1 ‖b̃i‖. In fact, this equality

can be seen as then-dimensional extension of the formula for computing the area of a parallelogram.

3 Successive minima

One basic parameter of a lattice is the length of the shortest nonzero vector in the lattice (we have to ask for
a nonzero vector since the zero vector is always contained in a lattice and its norm is zero). This parameter

is denoted byλ1. By lengthwe mean the Euclidean norm, or the`2 norm, defined as‖x‖2 =
√∑

x2
i . We

usually denote this norm simply by‖x‖. Occasionally in this course, we will consider other norms, such as
the`1 norm,‖x‖1 =

∑ |xi| or the`∞ norm‖x‖∞ = max |xi|.
An equivalent way to defineλ1 is the following: it is the smallestr such that the lattice points inside

a ball of radiusr span a space of dimension1. This definition leads to the following generalization ofλ1,
known assuccessive minima. See Figure5.

DEFINITION 7 LetΛ be a lattice of rankn. For i ∈ {1, . . . , n} we define theith successive minimum as

λi(Λ) = inf
{
r | dim(span(Λ ∩B(0, r))) ≥ i

}

whereB(0, r) = {x ∈ Rm | ‖x‖ ≤ r} is the closed ball of radiusr around0.

Figure 5:λ1(Λ) = 1, λ2(Λ) = 2.3

The following theorem gives a useful lower bound on the length of the shortest nonzero vector in a
lattice.
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THEOREM 5 Let B be a rank-n lattice basis, and let̃B be its Gram-Schmidt orthogonalization. Then

λ1(L(B)) ≥ min
i=1,...,n

‖b̃i‖ > 0.

PROOF: Let x ∈ Zn be an arbitrary nonzero integer vector, and let us show that‖Bx‖ ≥ min ‖b̃i‖. Let
j ∈ {1, . . . , n} be the largest such thatxj 6= 0. Then

|〈Bx, b̃j〉| = |〈∑j
i=1 xibi, b̃j〉| = |xj |〈b̃j , b̃j〉 = |xj |‖b̃j‖2

where we used that for alli < j, 〈bi, b̃j〉 = 0 and that〈bj , b̃j〉 = 〈b̃j , b̃j〉. On the other hand,|〈Bx, b̃j〉| ≤
‖Bx‖ · ‖b̃j‖, and hence we conclude that

‖Bx‖ ≥ |xj |‖b̃j‖ ≥ ‖b̃j‖ ≥ min ‖b̃i‖.

¤
An alternative proof of Theorem1 is the following. In the orthonormal basisb̃1/‖b̃1‖, . . . , b̃n/‖b̃n‖ the

latticeΛ is given by all integer combinations of the columns of the matrix in Eq. (5). It is easy to see that in
any such nonzero combination, the bottom-most coordinate is at leastmin ‖b̃i‖ in absolute value.

COROLLARY 6 Let Λ be a lattice. Then there exists someε > 0 such that‖x − y‖ > ε for any two
non-equal lattice pointsx, y ∈ Λ.

PROOF: For any non-equalx, y ∈ Λ, the vectorx − y is a nonzero vector inΛ. Therefore, by Theorem5,
‖x− y‖ ≥ λ1(Λ) > 0. ¤

CLAIM 7 The successive minima of a lattice are achieved, i.e., for every1 ≤ i ≤ n there exists a vector
vi ∈ Λ with ‖vi‖ = λi(Λ).

PROOF: By Corollary6, the ball of radius (say)2λi(Λ) contains only finitely many lattice points. It follows
from the definition ofλi that one of these vectors must have lengthλi(Λ). ¤

3.1 Upper bounds on the successive minima

We now present Minkowski’s upper bounds on the successive minima. For simplicity, in this section we only
consider full-rank lattices; it is easy to extend the results to non-full-rank lattices. We start with a theorem
of Blichfeld.

THEOREM 8 (BLICHFELD) For any full-rank latticeΛ ⊆ Rn and (measurable) setS ⊆ Rn with vol(S) >
detΛ there exist two nonequal pointsz1, z2 ∈ S such thatz1 − z2 ∈ Λ.

zz2

z1

Figure 6:Blichfeldt’s theorem
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PROOF: Let B be a basis ofΛ. As x ranges over allΛ, the setsx + P(B) := {x + y | y ∈ P(B)} form a
partition ofRn. We now defineSx = S ∩ (x+P(B)) (see Figure6). SinceS =

⋃
x∈Λ Sx we conclude that

vol(S) =
∑

x∈Λ vol(Sx). We definêSx = Sx − x. ThenŜx ⊆ P(B) andvol(Ŝx) = vol(Sx), we get:

∑

x∈Λ

vol(Ŝx) =
∑

x∈Λ

vol(Sx) = vol(S) > vol(P(B)).

Therefore, there must exist somex, y ∈ Λ, x 6= y for which Ŝx ∩ Ŝy 6= ∅. Let z be a point in̂Sx ∩ Ŝy. Then
z + x is in Sx ⊆ S, z + y is in Sy ⊆ S, and(z + x)− (z + y) = x− y is in Λ, as required.¤

As a corollary of Blichfeld’s theorem we obtain the following theorem due to Minkowski. It states that
any large enough centrally-symmetric convex set contains a nonzero lattice point. A setS is centrally-
symmetricif for any x ∈ S we also have−x ∈ S; it is convexif for any x, y ∈ S and anyλ ∈ [0, 1] we have
λx+(1−λ)y ∈ S. It is easy to see that the theorem is false if we drop either of the two requirements onS.

THEOREM 9 (MINKOWSKI ’ S CONVEX BODY THEOREM) Let Λ be a full-rank lattice of rankn. Then for
any centrally-symmetric convex setS, if vol(S) > 2n detΛ thenS contains a nonzero lattice point.

PROOF: DefineŜ = 1
2S = {x | 2x ∈ S}. Thenvol(Ŝ) = 2−nvol(S) > detΛ. By Theorem8, there exist

two pointsz1, z2 ∈ Ŝ such thatz1 − z2 ∈ Λ is a nonzero lattice point. By definition,2z1, 2z2 ∈ S and
becauseS is centrally-symmetric, also−2z2 ∈ S. Finally, sinceS is convex,2z1−2z2

2 = z1− z2 is in S. See
Figure7. ¤

0

z2
z1

2z1

−2z2

z1 − z2

S

Ŝ

Figure 7:Minkowski’s convex body theorem

CLAIM 1 The volume of ann-dimensional ball of radiusr is vol(B(0, r)) ≥ ( 2r√
n
)n.

PROOF: This follows since this ball contains a cube of side length2r√
n

,

{
x ∈ Rn | ∀i, |xi| < r√

n

}
⊆ B(0, r).

¤
We now obtain the following bound on the length of the shortest nonzero vector.

COROLLARY 2 (MINKOWSKI ’ S FIRST THEOREM) For any full-rank latticeΛ of rankn,

λ1(Λ) ≤ √
n(detΛ)1/n.
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PROOF: By definition, the (open) ballB(0, λ1(Λ)) contains no nonzero lattice points. By Theorem9 and
Claim1, (2λ1(Λ)√

n

)n
≤ vol(B(0, λ1(Λ))) ≤ 2n detΛ,

and we obtain the bound onλ1(Λ) by rearranging.¤
The term(detΛ)1/n might seem strange at first, but is in fact very natural: it makes sure that the

expression scales properly. Indeed, consider the latticecΛ obtained by scalingΛ by a factor ofc. Then
clearlyλ1(cΛ) = cλ1(Λ). On the other hand, we havedet(cΛ) = cn det(Λ), so the right hand side also
scales by a factor ofc, as we expect. So we could equivalently state Minkowski’s first theorem as saying
that any rank-n lattice with determinant1 contains a nonzero vector of length at most

√
n.

How tight is this bound? It is easy to see that there are cases in which it is very far from being tight.
Consider for example the lattice generated by(ε, 0)T and(0, 1/ε)T for some smallε > 0. Its determinant
is 1 yet its shortest nonzero vector is of lengthε. On the other hand, consider the latticeZn. Its determinant
is 1 whereasλ1(Zn) = 1, so the bound is closer to being tight, but still not tight. In fact, it is known that for
anyn there exists a rankn lattice of determinant1 whose shortest nonzero vector is of length at leastc

√
n

for some constantc. So up to a constant, Minkowski’s bound is tight. In fact, by a slightly more careful
analysis, one can improve the

√
n bound toc

√
n for some constantc < 1.

Finally, we mention that in the discussion above we considered the`2 norm. It is easy to extend
Minkowski’s theorem to other norms. All that is required is to compute the volume of a ball under the
given norm.

Minkowski’s first theorem considers the shortest nonzero vector, i.e., the first successive minimumλ1.
A strengthening of the bound is given by what is known as Minkowski’s second theorem. Instead of consid-
ering justλ1, this bound considers the geometric mean of allλi (which is clearly at leastλ1).

THEOREM 3 (MINKOWSKI ’ S SECOND THEOREM) For any full-rank latticeΛ of rankn,

( n∏

i=1

λi(Λ)
)1/n

≤ √
n(detΛ)1/n.

PROOF: Let x1, . . . , xn ∈ Λ be linearly independent vectors achieving the successive minima,‖xi‖ =
λi(Λ). Let x̃1, . . . , x̃n be their Gram-Schmidt orthogonalization. Consider the open ellipsoid with axes
x̃1, . . . , x̃n and lengthsλ1, . . . , λn,

T =
{

y ∈ Rn
∣∣∣

n∑

i=1

( 〈y, x̃i〉
‖x̃i‖ · λi

)2

< 1
}

.

See Figure8.

0 x1

x2

x̃2

Figure 8:The ellipsoidT . The vectorx1 is on the boundary ofT , andx2 is strictly outside.
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We claim thatT does not contain any non-zero lattice points. Indeed, take any nonzeroy ∈ Λ and let1 ≤
k ≤ n be the maximal such that‖y‖ ≥ λk(Λ). It must be thaty ∈ span(x̃1, . . . , x̃k) = span(x1, . . . , xk),
since otherwisex1, . . . , xk, y arek + 1 linearly independent vectors of length less thanλk+1(Λ). Now,

n∑

i=1

( 〈y, x̃i〉
‖x̃i‖ · λi

)2
=

k∑

i=1

( 〈y, x̃i〉
‖x̃i‖ · λi

)2
≥ 1

λ2
k

k∑

i=1

(〈y, x̃i〉
‖x̃i‖

)2
=
‖y‖2

λ2
k

≥ 1

and therefore,y /∈ T .
By Minkowski’s convex body theorem,vol(T ) ≤ 2n detΛ. But on the other hand,

vol(T ) =
( n∏

i=1

λi

)
vol(B(0, 1)) ≥

( n∏

i=1

λi

)( 2√
n

)n
.

Combining the two bounds, we obtain that

( n∏

i=1

λi

)1/n
≤ √

n(detΛ)1/n.

¤

4 Computational problems

Minkowski’s first theorem implies that any latticeΛ of rankn contains a nonzero vector of length at most√
n(detΛ)1/n. Its proof, however, is non-constructive: it does not give us an algorithm to find such a lattice

vector. In fact, there is no known efficient algorithm that finds such short vectors.
To discuss such computational issues, let us define the most basic computational problem involving

lattices: the shortest vector problem, orSVP for short. Here, we are given a lattice and we are supposed
to find the shortest nonzero lattice point. More precisely, there are three variants of theSVP, depending on
whether we have to actually find the shortest vector, find its length, or just decide if it is shorter than some
given number:

• SearchSVP: Given a lattice basisB ∈ Zm×n find v ∈ L(B) such that‖v‖ = λ1(L(B)).

• Optimization SVP: Given a lattice basisB ∈ Zm×n find λ1(L(B)).

• DecisionalSVP: Given a lattice basisB ∈ Zm×n and a rationalr ∈ Q, determine whetherλ1(L(B) ≤
r or not.

Notice that we restrict the lattice basis to consist of integer vectors, as opposed to arbitrary real vectors.
The purpose of this is to make the input representable in finitely many bits so we can considerSVP as a
standard computational problem. We could also allow the lattice basis to consist of rational vectors. This
would lead to an essentially equivalent definition, since by scaling, one can make all rational coordinates
integer.

Two easy relations among the three variants above is that the decision variant is not harder than the
optimization variant, and that the optimization variant is not harder than the search variant. In fact, it can be
shown that the converse is also true: the optimization variant is not harder than the decision variant, and the
search variant is not harder than the optimization variant. To summarize, the three variants are essentially
equivalent.

In this course, we will be more interested in theapproximationvariants ofSVP. Here, instead of finding
the shortest vector, we are interested in finding an approximation of it. The factor of approximation is given
by some parameterγ ≥ 1:
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• SearchSVPγ : Given a lattice basisB ∈ Zm×n find v ∈ L(B) such thatv 6= 0 and‖v‖ ≤ γ ·
λ1(L(B)).

• Optimization SVPγ : Given a lattice basisB ∈ Zm×n find d such thatd ≤ λ1(L(B)) ≤ γ · d.

• PromiseSVPγ : An instance of the problem is given by a pair(B, r) whereB ∈ Zm×n is a lattice
basis andr ∈ Q. In YES instances,λ1(L(B)) ≤ r. In NO instances,λ1(L(B)) > γ · r.

The latter variant is usually denotedGapSVPγ . It is a promise problem. By this we mean a problem
defined by two disjoint sets of inputs: theYES instances, and theNO instances. The goal is to determine
which set the input is taken from. Unlike decision problems, the union of these sets does not have to contain
all possible inputs. In other words, there are illegal inputs on which the algorithm’s behavior is undefined.

As before, we have that for anyγ ≥ 1, the promise variant is not harder than the optimization variant,
and that the optimization variant is not harder than the search variant. It is also known that the optimization
variant is not harder than the promise variant. Interestingly, it is an open question whether the search variant
is not harder than the optimization variant.

Another fundamental lattice problem is the closest vector problem, orCVP for short. Here, the goal is to
find the lattice point that is closest to a given point in space. As before, for any approximation factorγ ≥ 1
we can define three variants:

• SearchCVPγ : Given a lattice basisB ∈ Zm×n and a vectort ∈ Zm, find v ∈ L(B) such that
‖v − t‖ ≤ γ · dist(t,L(B)).

• Optimization CVPγ : Given a lattice basisB ∈ Zm×n and a vectort ∈ Zm, find d such thatd ≤
dist(t,L(B)) ≤ γ · d.

• PromiseCVPγ : An instance of the problem is given by a triple(B, t, r) whereB ∈ Zm×n is a lattice
basis,t ∈ Zm, andr ∈ Q. In YES instances,dist(t,L(B)) ≤ r. In NO instances,dist(t,L(B)) > γ·r.

Both theCVP and theSVP are difficult computational problems, which we will discuss in more detail
later in this course. There are also some easy computational problems involving lattices, such as:

• Membership: Given a lattice basisB ∈ Zm×n and a vectorv ∈ Zm, decide ifv ∈ L(B).
The equationBx = v can be seen as a system ofm linear equations inn variables. We can therefore
solve it efficiently by Gaussian elimination. If a solution exists and it happens to be inZn (as opposed
toQn), outputYES; otherwise outputNO.

• Equivalence: GivenB1, B2 ∈ Zm×n, decide ifL(B1) = L(B2).
To solve this, we check two things: that each column ofB1 is contained inL(B2) and that each
column ofB2 is contained inL(B1). If L(B1) = L(B2), these two checks are satisfied. Conversely,
if these checks are satisfied, thenL(B1) ⊆ L(B2) andL(B2) ⊆ L(B1) and henceL(B1) = L(B2).

Several other easy computational problems are given in the homework. Vaguely speaking, what they all
have in common is that they do not involve the geometry of the lattice.
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