

Information Security and Cryptography
Texts and Monographs

Series Editors
David Basin
Ueli Maurer

Advisory Board
Martín Abadi

Ross Anderson
Michael Backes
Ronald Cramer
Virgil D. Gligor

Oded Goldreich
Joshua D. Guttman

Arjen K. Lenstra
John C. Mitchell

Tatsuaki Okamoto
Kenny Paterson

Bart Preneel

For further volumes:
http://www.springer.com/series/4752

Carmit Hazay · Yehuda Lindell

Efficient Secure Two-Party
Protocols

Techniques and Constructions

123

Dr. Carmit Hazay
Department of Computer Science
and Applied Mathematics
Faculty of Mathematics and
Computer Science
Weizmann Institute
Rehovot
Israel
and
Interdisciplinary Center (IDC)
Herzliya 46150
Israel
carmit.hazay@gmail.com

Series Editors

Prof. Dr. David Basin
Prof. Dr. Ueli Maurer
ETH Zürich
Switzerland
basin@inf.ethz.ch
maurer@inf.ethz.ch

ISSN 1619-7100
ISBN 978-3-642-14302-1 e-ISBN 978-3-642-14303-8
DOI 10.1007/978-3-642-14303-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010938964

ACM Computing Classification (1998): E.3, C.2, H.2.8

c© Springer-Verlag Berlin Heidelberg 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Professor Yehuda Lindell
Bar Ilan University
Department of Computer Science
Ramat Gan 52900
Israel
lindell@cs.biu.ac.il

To our families, for all their support

Preface

In the setting of multiparty computation, sets of two or more parties with pri-
vate inputs wish to jointly compute some (predetermined) function of their
inputs. The computation should be such that the outputs received by the
parties are correctly distributed, and furthermore, that the privacy of each
party’s input is preserved as much as possible, even in the presence of ad-
versarial behavior. This encompasses any distributed computing task and
includes computations as simple as coin-tossing and broadcast, and as com-
plex as electronic voting, electronic auctions, electronic cash schemes and
anonymous transactions. The feasibility (and infeasibility) of multiparty com-
putation has been extensively studied, resulting in a rather comprehensive
understanding of what can and cannot be securely computed, and under what
assumptions.

The theory of cryptography in general, and secure multiparty computation
in particular, is rich and elegant. Indeed, the mere fact that it is possible to
actually achieve the aforementioned task is both surprising and intriguing.
However, the focus of this book is not on the theory of secure computation
(although a number of results with theoretical importance are studied here),
but rather on the question of efficiency. Recently, there has been increasing
interest in the possibility of actually using secure multiparty computation
to solve real-world problems. This poses an exciting challenge to the field
of cryptography: Can we construct secure protocols (with rigorous proofs of
security) that are truly efficient, and thus take the theory of secure computa-
tion to the next step towards practice. We stress that this book is not about
“practical cryptography”. We do not take systems considerations into ac-
count, nor how protocols should be implemented and deployed. Instead, our
aim is to provide an introduction to the field of efficient protocol construction
and design. We hope that this book will make the field of secure computation
in general, and efficient protocol construction in particular, more accessible
and will increase awareness regarding the importance of this vibrant field.

vii

Preface

Outline. This book is divided into three distinct parts:

• Introduction and definitions:We begin with a general introduction and
survey of secure computation, followed by definitions of security under a
number of different adversary models. This part also includes important
material regarding the properties of these definitions, and the relations
between them.

• General constructions: In this part, we present secure protocols for
general secure computation. That is, we present protocols that can be
applied to any circuit computing any efficient function. Although this does
not enable us to utilize specific properties of the function being computed,
the resulting protocols can be efficient enough if the circuit and input are
not too large.

• Specific constructions: Finally, we study secure protocols for specific
problems of interest. Two of the chapters in this part consider efficient
constructions of basic building blocks that are widely used in constructions
of secure protocols; namely, zero-knowledge (viaΣ protocols) and oblivious
transfer. The last two chapters study two specific examples of higher-level
protocols; specifically, the secure computation of the kth ranked element
(or median) of a distributed list, and secure search operations on databases.
The constructions in this part demonstrate how specific properties of a
function being computed can be utilized to achieve greater efficiency.

It goes without saying that the material presented in this book is far from an
exhaustive study of results in the field. There are many alternative construc-
tions achieving some of the results presented here, and many other problems
of interest for which efficient protocols have been constructed. In some places
throughout, we have added pointers to additional readings of relevance.

In order to not unnecessarily complicate the constructions and models,
we have focused on the two-party case and consider only static adversaries
and the stand-alone model. We do not claim that this is the best model
for constructing protocols; indeed it is arguably too weak in many cases.
However, we believe that it serves as a good setting for an initial study, as it
is significantly cleaner than other more complex settings.

Prerequisite knowledge. We assume that the reader is familiar with the
basics of theoretical cryptography. Thus, for example, we assume that readers
know what commitment schemes and zero-knowledge proofs are, and that
they are comfortable with notions like pseudorandomness and computational
indistinguishability. In contrast, all the relevant definitions of secure two-
party computation are presented here from scratch. Thus, this book can also
be used as a first introduction to secure computation.

Reading this book. Although there are advantages to reading this book
in sequential order, much of the book can be read “out of order”. It goes
without saying that the chapter on definitions is needed for all later chapters.
However, it is possible to read definitions as needed (e.g., read Section 2.2

viii

Preface

and then Chapter 3, then Section 2.3 followed by Chapter 4, and so on).
Regarding the general constructions in Part II of the book, the constructions
in Chapters 4 and 5 rely in a direct way on Chapter 3, and thus it is highly
recommended to read Chapter 3 first. In contrast, Chapters 4 and 5 can be
read independently of each other.

The specific constructions in Part III can be read independently of the
general constructions in Part II. It is preferable to read Chapters 6 and 7
first (and in order) because later protocols use the tools introduced in these
chapters. In addition, some of the oblivious transfer protocols of Chapter 7 use
zero-knowledge proofs that are constructed in Chapter 6. Nevertheless, if one
is satisfied with referring to an arbitrary zero-knowledge proof or oblivious
transfer protocol, then the chapters in Part III can be read in any order.

Book aims and its use for teaching a course. This book can be used
as a textbook for an introductory course on secure computation with a focus
on techniques for achieving efficiency, as an entry point for researchers in
cryptography and other fields like privacy-preserving data mining who are
interested in efficient protocols for secure computation, and as a reference for
researchers already in the field. Regarding its use as a textbook, due to the
flexibility regarding the order of reading this book (as described above), it is
possible to design courses with different focuses. For example, a more theo-
retical course would spend considerable time on definitions and the general
constructions of Part II of the book, whereas a more applied course would
focus more on the specific constructions in Part III. We remark also that
Chapters 6 and 7 can serve as a nice opening to a course; the material is not
as heavy as general secure computation and contains many interesting ideas
that can be attractive to students. When teaching a general introduction to
(computational) secure computation, it is certainly possible to base much of
the course on this book. However, in such a case we would also teach the
GMW construction. A full treatment of this appears in [35, Chapter 7].

Comments and errata. We will be more than happy to receive any
(positive or negative) feedback that you have on this book, as well as
any errors that you may find. Please email us your comments and errata
to lindell@cs.biu.ac.il. A list of known errata will be maintained at
http://www.cs.biu.ac.il/∼lindell/efficient-protocols.html.
Acknowledgements. First and foremost, we would like to thank Ivan
Damg̊ard for generously providing us with the text that formed the basis
of Chapter 6 on Σ protocols. In addition, we would like to thank Oded Gol-
dreich, Jonathan Katz and Eran Omri for providing us with constructive
advice and comments on this book.

Carmit Hazay: First, I would like to thank my co-author Yehuda Lindell
who was also my Ph.D. advisor. Yehuda introduced me to the area of secure
computation and has greatly contributed to my academic career. He is a
continuing source of inspiration and assistance, and I am grateful to him for
an amazing journey which led to this book.

ix

x Preface

During my Ph.D. I had the pleasure of working with many talented people
who enriched my knowledge and deepened my understanding regarding secure
computation. I would like to thank Ran Canetti, Rosario Gennaro, Jonathan
Katz, Hugo Krawczyk, Kobbi Nissim, Tal Rabin and Hila Zarosim for many
productive discussions and a memorable time.

Yehuda Lindell: First and foremost I would like to thank Oded Goldreich.
Beyond being my Ph.D. advisor, and as such of great influence on my aca-
demic career, Oded has continued to provide valuable support, advice and
encouragement. I owe much to Oded and am greatly indebted to him.

The ability to write this book is due to the knowledge that I have gained
over many years of research in the field of secure computation. In this time, I
have worked with many different co-authors and have benefited from count-
less fruitful discussions with many members of our research community. I
would like to thank Yonatan Aumann, Boaz Barak, Ran Canetti, Rosario
Gennaro, Shafi Goldwasser, Shai Halevi, Carmit Hazay, Yuval Ishai, Yael
Kalai, Jonathan Katz, Eyal Kushilevitz, Hugo Krawczyk, Tal Malkin, Moni
Naor, Benny Pinkas, Tal Rabin, Alon Rosen and Adam Smith for years of
joint work and cooperation in a friendly and enjoyable environment. Finally,
I would like to give a special thanks to Benny Pinkas for all I have learned
from him regarding topics of efficiency in secure protocols.

Carmit Hazay and Yehuda Lindell

My work on this project was supported by the Israel Science Foundation
(grant 781/07) and by a starting grant from the European Research Council.

October 2010

Contents

Part I Introduction and Definitions

1 Introduction . 3
1.1 Secure Multiparty Computation – Background 3
1.2 The GMW Protocol for Secure Computation 11
1.3 A Roadmap to the Book . 13

1.3.1 Part I – Introduction and Definitions 13
1.3.2 Part II – General Constructions . 15
1.3.3 Part III – Specific Constructions 17

2 Definitions . 19
2.1 Preliminaries . 19
2.2 Security in the Presence of Semi-honest Adversaries 20
2.3 Security in the Presence of Malicious Adversaries 23

2.3.1 The Definition . 24
2.3.2 Extension to Reactive Functionalities 25
2.3.3 Malicious Versus Semi-honest Adversaries 26

2.4 Security in the Presence of Covert Adversaries 30
2.4.1 Motivation . 30
2.4.2 The Actual Definition . 33
2.4.3 Cheating and Aborting . 35
2.4.4 Relations Between Security Models 36

2.5 Restricted Versus General Functionalities 38
2.5.1 Deterministic Functionalities . 39
2.5.2 Single-Output Functionalities . 39
2.5.3 Non-reactive Functionalities . 41

2.6 Non-simulation-Based Definitions . 42
2.6.1 Privacy Only . 42
2.6.2 One-Sided Simulatability . 45

2.7 Sequential Composition – Simulation-Based Definitions 46

xi

xii Contents

Part II General Constructions

3 Semi-honest Adversaries . 53
3.1 An Overview of the Protocol . 53
3.2 Tools . 57

3.2.1 “Special” Private-Key Encryption 57
3.2.2 Oblivious Transfer . 61

3.3 The Garbled-Circuit Construction . 63
3.4 Yao’s Two-Party Protocol . 66
3.5 Efficiency of the Protocol . 78

4 Malicious Adversaries . 81
4.1 An Overview of the Protocol . 81

4.1.1 High-Level Protocol Description . 82
4.1.2 Checks for Correctness and Consistency 84

4.2 The Protocol . 89
4.3 Proof of Security . 93

4.3.1 Security Against a Malicious P1 . 93
4.3.2 Security Against a Malicious P2 . 99

4.4 Efficient Implementation of the Different Primitives 105
4.5 Efficiency of the Protocol . 106
4.6 Suggestions for Further Reading . 107

5 Covert Adversaries . 109
5.1 Oblivious Transfer . 109

5.1.1 The Basic Protocol . 111
5.1.2 Extensions . 119

5.2 Secure Two-Party Computation . 121
5.2.1 Overview of the Protocol . 122
5.2.2 The Protocol for Two-Party Computation 124
5.2.3 Non-halting Detection Accuracy . 141

5.3 Efficiency of the Protocol . 143

Part III Specific Constructions

6 Sigma Protocols and Efficient Zero-Knowledge 147
6.1 An Example . 147
6.2 Definitions and Properties . 149
6.3 Proofs of Knowledge . 153
6.4 Proving Compound Statements . 158
6.5 Zero-Knowledge from Σ-Protocols . 160

6.5.1 The Basic Zero-Knowledge Construction 161
6.5.2 Zero-Knowledge Proofs of Knowledge 164
6.5.3 The ZKPOK Ideal Functionality 167

6.6 Efficient Commitment Schemes from Σ-Protocols 173
6.7 Summary . 175

Contents xiii

7 Oblivious Transfer and Applications . 177
7.1 Notational Conventions for Protocols . 178
7.2 Oblivious Transfer – Privacy Only . 178

7.2.1 A Protocol Based on the DDH Assumption 178
7.2.2 A Protocol from Homomorphic Encryption 182

7.3 Oblivious Transfer – One-Sided Simulation 185
7.4 Oblivious Transfer – Full Simulation . 188

7.4.1 1-out-of-2 Oblivious Transfer . 188
7.4.2 Batch Oblivious Transfer . 196

7.5 Another Oblivious Transfer – Full Simulation 201
7.6 Secure Pseudorandom Function Evaluation 202

7.6.1 Pseudorandom Function – Privacy Only 203
7.6.2 Pseudorandom Function – Full Simulation 209
7.6.3 Covert and One-Sided Simulation 211
7.6.4 Batch Pseudorandom Function Evaluation 212

8 The kth-Ranked Element . 213
8.1 Background . 213

8.1.1 A Protocol for Finding the Median 214
8.1.2 Reducing the kth-Ranked Element to the Median 216

8.2 Computing the Median – Semi-honest . 218
8.3 Computing the Median – Malicious . 221

8.3.1 The Reactive Greater-Than Functionality 221
8.3.2 The Protocol . 223

9 Search Problems . 227
9.1 Background . 228
9.2 Secure Database Search . 229

9.2.1 Securely Realizing Basic Database Search 231
9.2.2 Securely Realizing Full Database Search 236
9.2.3 Covert and One-Sided Simulation 237

9.3 Secure Document Search . 238
9.4 Implementing Functionality FCPRP with Smartcards 242

9.4.1 Standard Smartcard Functionality and Security 243
9.4.2 Implementing FCPRP with Smartcards 246

9.5 Secure Text Search (Pattern Matching) . 248
9.5.1 Indexed Implementation for Naor-Reingold 249
9.5.2 The Protocol for Secure Text Search 252

References . 255

Index . 261

Part I

Introduction and Definitions

In the first two chapters of this book we provide a general introduction
to the field of secure computation, as well as rigorous definitions for secure
two-party computation in multiple models. Specifically, we consider security
in the presence of semi-honest and malicious adversaries, as well as introduce
the notion of covert adversaries and security that is not based on the full
simulation ideal/real-model paradigm.

Chapter 1

Introduction

The focus of this book is on constructing efficient secure protocols for the two-
party setting. In this introduction, we begin with a general high-level survey of
secure multiparty computation. This places the topic of this book in its larger
context. Following this, we describe the basic results and techniques related
to efficiency in secure computation. Finally, we conclude with a roadmap to
the book.

1.1 Secure Multiparty Computation – Background

Distributed computing considers the scenario where a number of distinct, yet
connected, computing devices (or parties) wish to carry out a joint compu-
tation of some function. For example, these devices may be servers that hold
a distributed database system, and the function to be computed may be a
database update of some kind. The aim of secure multiparty computation is
to enable parties to carry out such distributed computing tasks in a secure
manner. Whereas distributed computing classically deals with questions of
computing under the threat of machine crashes and other inadvertent faults,
secure multiparty computation is concerned with the possibility of deliber-
ately malicious behavior by some adversarial entity. That is, it is assumed
that a protocol execution may come under “attack” by an external entity, or
even by a subset of the participating parties. The aim of this attack may be to
learn private information or cause the result of the computation to be incor-
rect. Thus, two important requirements on any secure computation protocol
are privacy and correctness. The privacy requirement states that nothing
should be learned beyond what is absolutely necessary; more exactly, par-
ties should learn their output and nothing else. The correctness requirement
states that each party should receive its correct output. Therefore, the ad-
versary must not be able to cause the result of the computation to deviate
from the function that the parties had set out to compute.

3C. Hazay, Y. Lindell, Efficient Secure Two-Party Protocols,
Information Security and Cryptography, DOI 10.1007/978-3-642-14303-8_1,
© Springer-Verlag Berlin Heidelberg 2010

4 1 Introduction

The setting of secure multiparty computation encompasses tasks as simple
as coin-tossing and broadcast, and as complex as electronic voting, electronic
auctions, electronic cash schemes, contract signing, anonymous transactions,
and private information retrieval schemes. Consider for a moment the tasks of
voting and auctions. The privacy requirement for an election protocol ensures
that no coalition of parties learns anything about the individual votes of
other parties, and the correctness requirement ensures that no coalition of
parties can influence the outcome of the election beyond just voting for their
preferred candidate. Likewise, in an auction protocol, the privacy requirement
ensures that only the winning bid is revealed (this may be desired), and the
correctness requirement ensures that the highest bidder is indeed the party
to win (and so the auctioneer, or any other party, cannot bias the outcome).

Due to its generality, the setting of secure multiparty computation can
model almost every, if not every, cryptographic problem (including the classic
tasks of encryption and authentication). Therefore, questions of feasibility
and infeasibility for secure multiparty computation are fundamental to the
theory and practice of cryptography.

Security in multiparty computation. As we have mentioned above, the
model that we consider is one where an adversarial entity controls some sub-
set of the parties and wishes to attack the protocol execution. The parties
under the control of the adversary are called corrupted, and follow the adver-
sary’s instructions. Secure protocols should withstand any adversarial attack
(where the exact power of the adversary will be discussed later). In order
to formally claim and prove that a protocol is secure, a precise definition of
security for multiparty computation is required. A number of different def-
initions have been proposed and these definitions aim to ensure a number
of important security properties that are general enough to capture most (if
not all) multiparty computation tasks. We now describe the most central of
these properties:

• Privacy: No party should learn anything more than its prescribed output.
In particular, the only information that should be learned about other
parties’ inputs is what can be derived from the output itself. For example,
in an auction where the only bid revealed is that of the highest bidder,
it is clearly possible to conclude that all other bids were lower than the
winning bid. However, this should be the only information revealed about
the losing bids.

• Correctness: Each party is guaranteed that the output that it receives is
correct. To continue with the example of an auction, this implies that the
party with the highest bid is guaranteed to win, and no party including
the auctioneer can influence this.

• Independence of Inputs: Corrupted parties must choose their inputs inde-
pendently of the honest parties’ inputs. This property is crucial in a sealed
auction, where bids are kept secret and parties must fix their bids inde-
pendently of others. We note that independence of inputs is not implied

1.1 Secure Multiparty Computation – Background 5

by privacy. For example, it may be possible to generate a higher bid with-
out knowing the value of the original one. Such an attack can actually be
carried out on some encryption schemes (i.e., given an encryption of $100,
it is possible to generate a valid encryption of $101, without knowing the
original encrypted value).

• Guaranteed Output Delivery: Corrupted parties should not be able to pre-
vent honest parties from receiving their output. In other words, the ad-
versary should not be able to disrupt the computation by carrying out a
“denial of service” attack.

• Fairness: Corrupted parties should receive their outputs if and only if the
honest parties also receive their outputs. The scenario where a corrupted
party obtains output and an honest party does not should not be allowed
to occur. This property can be crucial, for example, in the case of contract
signing. Specifically, it would be very problematic if the corrupted party
received the signed contract and the honest party did not.

We stress that the above list does not constitute a definition of security, but
rather a set of requirements that should hold for any secure protocol. Indeed,
one possible approach to defining security is to just generate a list of separate
requirements (as above) and then say that a protocol is secure if all of these
requirements are fulfilled. However, this approach is not satisfactory for the
following reasons. First, it may be possible that an important requirement was
missed. This is especially true because different applications have different
requirements, and we would like a definition that is general enough to capture
all applications. Second, the definition should be simple enough so that it
is trivial to see that all possible adversarial attacks are prevented by the
proposed definition.

The standard definition today (cf. [11] following [37, 5, 59]) therefore for-
malizes security in the following general way. As a mental experiment, con-
sider an “ideal world” in which an external trusted (and incorruptible) party
is willing to help the parties carry out their computation. In such a world,
the parties can simply send their inputs over perfectly private channels to
the trusted party, which then computes the desired function and passes each
party its prescribed output. Since the only action carried out by a party is
that of sending its input to the trusted party, the only freedom given to the
adversary is in choosing the corrupted parties’ inputs. Notice that all of the
above-described security properties (and more) hold in this ideal computa-
tion. For example, privacy holds because the only message ever received by
a party is its output (and so it cannot learn any more than this). Likewise,
correctness holds since the trusted party cannot be corrupted and so will
always compute the function correctly.

Of course, in the “real world”, there is no external party that can be trusted
by all parties. Rather, the parties run some protocol amongst themselves
without any help. Despite this, a secure protocol should emulate the so-
called “ideal world”. That is, a real protocol that is run by the parties (in
a world where no trusted party exists) is said to be secure if no adversary

6 1 Introduction

can do more harm in a real execution than in an execution that takes place
in the ideal world. This can be formulated by saying that for any adversary
carrying out a successful attack in the real world, there exists an adversary
that successfully carries out the same attack in the ideal world. However,
successful adversarial attacks cannot be carried out in the ideal world. We
therefore conclude that all adversarial attacks on protocol executions in the
real world must also fail.

More formally, the security of a protocol is established by comparing the
outputs of the adversary and honest parties in a real protocol execution to
their outputs in an ideal computation. That is, for any adversary attacking
a real protocol execution, there exists an adversary attacking an ideal ex-
ecution (with a trusted party) such that the input/output distributions of
the adversary and the participating parties in the real and ideal executions
are essentially the same. Thus a real protocol execution “emulates” the ideal
world. This formulation of security is called the ideal/real simulation paradigm.
In order to motivate the usefulness of this definition, we describe why all the
properties described above are implied. Privacy follows from the fact that
the adversary’s output is the same in the real and ideal executions. Since the
adversary learns nothing beyond the corrupted party’s outputs in an ideal
execution, the same must be true for a real execution. Correctness follows
from the fact that the honest parties’ outputs are the same in the real and
ideal executions, and from the fact that in an ideal execution, the honest par-
ties all receive correct outputs as computed by the trusted party. Regarding
independence of inputs, notice that in an ideal execution, all inputs are sent
to the trusted party before any output is received. Therefore, the corrupted
parties know nothing of the honest parties’ inputs at the time that they send
their inputs. In other words, the corrupted parties’ inputs are chosen indepen-
dently of the honest parties’ inputs, as required. Finally, guaranteed output
delivery and fairness hold in the ideal world because the trusted party always
returns all outputs. The fact that it also holds in the real world again follows
from the fact that the honest parties’ outputs are the same in the real and
ideal executions.

We remark that the above informal definition is actually “overly ideal” and
needs to be relaxed in settings where the adversary controls half or more of the
participating parties (that is, in the case where there is no honest majority).
When this number of parties is corrupted, it is known that it is impossible to
obtain general protocols for secure multiparty computation that guarantee
output delivery and fairness. In particular, it is impossible for two parties to
toss an unbiased coin when one may be corrupt [17]. Therefore, the definition
is relaxed and the adversary is allowed to abort the computation (i.e., cause
it to halt before termination), meaning that “guaranteed output delivery” is
not fulfilled. Furthermore, the adversary can cause this abort to take place
after it has already obtained its output, but before all the honest parties
receive their outputs. Thus “fairness” is not achieved. Loosely speaking, the
relaxed definition is obtained by modifying the ideal execution and giving

1.1 Secure Multiparty Computation – Background 7

the adversary the additional capability of instructing the trusted party to
not send outputs to some of the honest parties. Otherwise, the definition
remains identical and thus all the other properties are still preserved.

Recently it has been shown that in the case of no honest majority, some
non-trivial functions can be securely computed with complete fairness [39].
Despite this, we will forgo any attempt at achieving fairness because (a)
general constructions cannot achieve fairness due to [17], and (b) we focus on
efficient protocols and all currently known techniques for achieving fairness
for non-trivial functions are inherently inefficient.

We note that there are works that aim to provide intermediate notions
of fairness [77, 29, 6, 37, 40]. However, we limit our reference to the cases
that either (complete) fairness and output delivery are guaranteed, or neither
fairness (of any type) nor output delivery are guaranteed.

Adversarial power. The above informal definition of security omits one
very important issue: the power of the adversary that attacks a protocol
execution. As we have mentioned, the adversary controls a subset of the
participating parties in the protocol. However, we have not described the
corruption strategy (i.e., when or how parties come under the “control” of
the adversary), the allowed adversarial behavior (i.e., does the adversary just
passively gather information or can it instruct the corrupted parties to act
maliciously), and what complexity the adversary is assumed to have (i.e., is it
polynomial time or computationally unbounded). We now describe the main
types of adversaries that have been considered:

1. Corruption strategy: The corruption strategy deals with the question
of when and how parties are corrupted. There are two main models:

a. Static corruption model: In this model, the adversary is given a fixed set
of parties whom it controls. Honest parties remain honest throughout
and corrupted parties remain corrupted.

b. Adaptive corruption model: Rather than having a fixed set of corrupted
parties, adaptive adversaries are given the capability of corrupting par-
ties during the computation. The choice of whom to corrupt, and when,
can be arbitrarily decided by the adversary and may depend on what is
has seen throughout the execution (for this reason it is called adaptive).
This strategy models the threat of an external “hacker” breaking into a
machine during an execution. We note that in this model, once a party
is corrupted, it remains corrupted from that point on.

An additional model, called the proactive model [67, 13], considers the
possibility that parties are corrupted for a certain period of time only.
Thus, honest parties may become corrupted throughout the computation
(as in the adaptive adversarial model), but corrupted parties may also
become honest.

2. Allowed adversarial behavior: Another parameter that must be de-
fined relates to the actions that corrupted parties are allowed to take.
Once again, there are two main types of adversaries:

8 1 Introduction

a. Semi-honest adversaries: In the semi-honest adversarial model, even cor-
rupted parties correctly follow the protocol specification. However, the
adversary obtains the internal state of all the corrupted parties (includ-
ing the transcript of all the messages received), and attempts to use
this to learn information that should remain private. This is a rather
weak adversarial model. However, it does model inadvertent leakage of
information by honest parties and thus is useful in some cases (e.g.,
where the parties essentially trust each other but want to ensure that
nothing beyond the output is leaked). This model may also be of use
in settings where the use of the “correct” software running the cor-
rect protocol can be enforced. Semi-honest adversaries are also called
“honest-but-curious” and “passive”.

b. Malicious adversaries: In this adversarial model, the corrupted parties
can arbitrarily deviate from the protocol specification, according to the
adversary’s instructions. In general, providing security in the presence
of malicious adversaries is preferred, as it ensures that no adversarial
attack can succeed. However, protocols that achieve this level of security
are typically much less efficient. Malicious adversaries are also called
“active”.

These are the classic adversarial models. However, in some cases, an inter-
mediate adversary model may be required. This is due to the fact that the
semi-honest adversary modeling is often too weak, whereas our protocols
that achieve security in the presence of malicious adversary may be far too
inefficient. An intermediate adversary model is that of covert adversaries.
Loosely speaking, such an adversary may behave maliciously. However, it
is guaranteed that if it does so, then it will be caught cheating by the
honest parties with some given probability.

3. Complexity: Finally, we consider the assumed computational complexity
of the adversary. As above, there are two categories here:

a. Polynomial time: The adversary is allowed to run in (probabilistic) poly-
nomial time (and sometimes, expected polynomial time). The specific
computational model used differs, depending on whether the adversary
is uniform (in which case, it is a probabilistic polynomial-time Turing
machine) or non-uniform (in which case, it is modeled by a polynomial-
size family of circuits).

b. Computationally unbounded: In this model, the adversary has no com-
putational limits whatsoever.

The above distinction regarding the complexity of the adversary yields two
very different models for secure computation: the information-theoretic
model [9, 15] and the computational model [77, 35]. In the information-
theoretic setting, the adversary is not bound to any complexity class (and
in particular, is not assumed to run in polynomial time). Therefore, results
in this model hold unconditionally and do not rely on any complexity or

1.1 Secure Multiparty Computation – Background 9

cryptographic assumptions. The only assumption used is that parties are
connected via ideally private channels (i.e., it is assumed that the adver-
sary cannot eavesdrop on or interfere with the communication between
honest parties).

In contrast, in the computational setting the adversary is assumed to be
polynomial time. Results in this model typically assume cryptographic as-
sumptions like the existence of trapdoor permutations. We note that it is
not necessary here to assume that the parties have access to ideally private
channels, because such channels can be implemented using public-key en-
cryption. However, it is assumed that the communication channels between
parties are authenticated; that is, if two honest parties communicate, then
the adversary can eavesdrop but cannot modify any message that is sent.
Such authentication can be achieved using digital signatures [38] and a
public-key infrastructure.

It is only possible to achieve information-theoretic security in the case of
an honest majority [9]. Thus, it is not relevant to the case of two-party
computation, which is the focus of this book. We will therefore consider
the computational setting only.

We remark that all possible combinations of the above types of adversaries
have been considered in the literature.

Stand-alone computation versus composition. All of the above re-
lates to the stand-alone model, where only a single protocol execution takes
place (or many take place but only one is “under attack”). A far more re-
alistic model is that of concurrent general composition where many secure
(and possibly insecure) protocols are executed together [12]. This is a strictly
harder problem to solve [14] and has been the focus of much work in the past
decade. See [54] for a study of this topic.

Feasibility of secure multiparty computation. The above-described
definition of security seems to be very restrictive in that no adversarial suc-
cess is tolerated, irrespective of its strategy. Thus, one may wonder whether
it is even possible to obtain secure protocols under this definition, and if
yes, for which distributed computing tasks. Perhaps surprisingly, powerful
feasibility results have been established, demonstrating that in fact, any dis-
tributed computing task can be securely computed. We now briefly state the
most central of these results for the case of malicious adversaries and static
corruptions in the stand-alone model. Let m denote the number of partici-
pating parties and let t denote a bound on the number of parties that may
be corrupted:

1. For t < m/3 (i.e., when less than a third of the parties can be cor-
rupted), secure multiparty protocols with guaranteed output delivery can
be achieved for any function in a point-to-point network, without any
setup assumptions. This can be achieved both in the computational set-

10 1 Introduction

ting [35] (assuming the existence of trapdoor permutations) and in the
information-theoretic (private channel) setting [9, 15].

2. For t < m/2 (i.e., in the case of a guaranteed honest majority), secure
multiparty protocols with fairness and guaranteed output delivery can
be achieved for any function assuming that the parties have access to a
broadcast channel. This can be achieved in the computational setting [35]
(under the same assumptions as above), and in the information-theoretic
setting [73, 4].

3. For t ≥ m/2 (i.e., when the number of corrupted parties is not limited), se-
cure multiparty protocols (without fairness or guaranteed output delivery)
can be achieved for any function assuming that the parties have access to
a broadcast channel and in addition assuming the existence of enhanced
trapdoor permutations [77, 35, 32]. These feasibility results hold only in
the computational setting; analogous results for the information-theoretic
setting cannot be obtained when t ≥ m/2 [9].

In summary, secure multiparty protocols exist for any distributed computing
task. In the computational model, this holds for all possible numbers of cor-
rupted parties, with the qualification that when no honest majority exists,
then fairness and guaranteed output delivery are not obtained. We note that
the above results all hold with respect to malicious, static adversaries in the
stand-alone model.

This book – two-parties, static adversaries and the stand-alone
model. As we have mentioned, adaptive corruption captures a real-world
threat and as such protocols that are secure in the presence of such adver-
saries provide a strong security guarantee. In addition, the stand-alone model
of computation is not the realistic model in which protocols are executed
today. Nevertheless, the problem of constructing highly efficient two-party
protocols that are secure in the presence of static adversaries in the stand-
alone model serves as an important stepping stone for constructing protocols
in more complex settings. As we will see, it is already difficult to construct
efficient protocols for static adversaries in the stand-alone model, and we
strongly believe that a broad understanding of the problems that arise in
more restricted settings is needed before progressing to more complex set-
tings. Our experience also shows us that the techniques developed for solving
the problems of secure computation in the stand-alone model with static
adversaries are often useful also in the more complex setting of concurrent
composition (with static or adaptive adversaries). For these reasons, we have
chosen to focus solely on the stand-alone model and static adversaries in this
book.

1.2 The GMW Protocol for Secure Computation 11

1.2 The GMW Protocol for Secure Computation

As we have mentioned above, it has been shown that any probabilistic
polynomial-time two-party functionality can be securely computed in the
presence of malicious adversaries (without fairness or guaranteed output de-
livery), assuming the existence of enhanced trapdoor permutations [35, 32].
This powerful feasibility result – known as the GMW construction – is ob-
tained in two stages. First, it is shown how to securely compute any function-
ality in the presence of semi-honest adversaries. Then, a protocol compiler
is presented that takes any protocol that is secure in the presence of semi-
honest adversaries and outputs a protocol that is secure in the presence of
malicious adversaries.

Security for semi-honest adversaries. A secure protocol is constructed
based on a Boolean circuit that computes the functionality in question. The
basic idea behind the construction is for the parties to iteratively compute
the gates in the circuit in an “oblivious manner”. This is achieved by having
the parties first share their input bits; that is, for every input wire to the
circuit, the parties hold random bits α and β so that α⊕ β equals the actual
input bit associated with that wire. Then, for every (AND/OR/NOT) gate,
the parties run a mini-protocol to compute random shares of the output of
the gate, based on their given random shares of the inputs to the gate. At
the end of the protocol, the parties hold random shares of the output wires
which they can send to each other in order to reconstruct the actual output.
The security of the protocol is derived from the fact that each party sees only
random values (shares) throughout the protocol. Therefore, it learns nothing
beyond the output, as required.

Compilation to security for malicious adversaries. The basic idea that
stands behind the GMW construction is to have the parties run a suitable
protocol that is secure in the presence of semi-honest adversaries, while forc-
ing the potentially malicious participants to behave in a semi-honest manner.
The GMW compiler therefore takes for input a protocol that is secure against
semi-honest adversaries; from here on we refer to this as the “basic proto-
col”. Recall that this protocol is secure in the case where each party follows
the protocol specification exactly, using its input and uniformly chosen ran-
dom tape. We must therefore force a malicious adversary to behave in this
way. First and foremost, this involves forcing the parties to follow the pre-
scribed protocol. However, this only makes sense relative to a given input
and random tape. Furthermore, a malicious party must be forced into using
a uniformly chosen random tape. This is because the security of the basic
protocol may depend on the fact that the party has no freedom in setting its
own randomness.1

1 A good example of this is the semi-honest 1-out-of-2 oblivious transfer protocol of [25].

The oblivious transfer functionality is defined by ((x0, x1), σ) 7→ (λ, xσ). In the protocol

12 1 Introduction

In light of the above discussion, the GMW protocol compiler begins by
having each party commit to its input. Next, the parties run a coin-tossing
protocol in order to fix their random tapes (clearly, this protocol must be se-
cure against malicious adversaries). A regular coin-tossing protocol in which
both parties receive the same uniformly distributed string is not sufficient
here. This is because the parties’ random tapes must remain secret. This is
solved by augmenting the coin-tossing protocol so that one party receives a
uniformly distributed string (to be used as its random tape) and the other
party receives a commitment to that string. Now, following these two steps,
each party holds its own uniformly distributed random tape and a commit-
ment to the other party’s input and random tape. Therefore, each party can
be “forced” into working consistently with the committed input and random
tape.

We now describe how this behavior is enforced. A protocol specification is
a deterministic function of a party’s view consisting of its input, random tape
and messages received so far. As we have seen, each party holds a commitment
to the input and random tape of the other party. Furthermore, the messages
sent so far are public. Therefore, the assertion that a new message is computed
according to the protocol is of the NP type (and the party sending the
message knows an adequateNP-witness to it). Thus, the parties can use zero-
knowledge proofs to show that their steps are indeed according to the protocol
specification. As the proofs used are zero-knowledge, they reveal nothing.
Furthermore, due to the soundness of the proofs, even a malicious adversary
cannot deviate from the protocol specification without being detected. We
thus obtain a reduction of the security in the malicious case to the given
security of the basic protocol against semi-honest adversaries.

Efficiency and the GMW construction. The complexity of the GMW
protocol for semi-honest adversaries is related to the size of the circuit needed
to compute the functionality. Specifically, the parties need to run an oblivious
transfer (involving asymmetric computations) for every circuit of the gate.
Although this results in a significant computational overhead, it is reasonable
for functionalities with circuits that are not too large. We remark that Yao’s
protocol for secure two-party computation is typically more efficient than the
GMW construction. This is due to the fact that only symmetric operations
are needed for computing every gate of the circuit, and oblivious transfers
are only used for the input bits. This means that Yao’s protocol scales better

of [25], the receiver gives the sender two images of an enhanced trapdoor permutation,
where the receiver knows only one of the preimages. The protocol works so that the receiver

obtains xi if it knows the ith preimage (and otherwise it learns nothing of the value of
xi). Thus, were the receiver to know both preimages, it would learn both x0 and x1, in
contradiction to the security of the protocol. Now, if the receiver can “alter” its random
tape, then it can influence the choice of the images of the permutation so that it knows

both preimages. Thus, the fact that the receiver uses a truly random tape is crucial to the
security.

1.3 A Roadmap to the Book 13

to large circuits than GMW. In Chapter 3 we present Yao’s protocol for
semi-honest adversaries in detail.

As we have mentioned, the cost of achieving security in the presence of
semi-honest adversaries is not insignificant. However, it is orders of magni-
tude less than the cost of achieving security in the presence of malicious
adversaries. This is due to the fact that general zero-knowledge protocols for
NP require a Karp reduction from a complex computational statement to a
language like 3-colorability or Hamiltonicity. Thus, even when the underlying
protocol for semi-honest adversaries is highly efficient, the compiled protocol
for malicious adversaries is typically not. We conclude that the GMW con-
struction, and in particular the compilation of GMW from security in the
presence of semi-honest adversaries to security in the presence of malicious
adversaries, is to be viewed as a fundamental feasibility result, and not as a
methodology for obtaining protocols in practice.2

Despite what we have stated above, the GMW compilation paradigm has
had considerable influence over the construction of efficient protocols. Indeed,
one way to efficiently achieve security in the presence of malicious adversaries
is to design a protocol that is secure in the presence of semi-honest adver-
saries (or a different notion that is weaker than security in the presence of
malicious adversaries) in a particular way so that one can efficiently prove
“correct behavior” in zero-knowledge. One example of a protocol that uses
this paradigm can be found in Section 7.4.

In conclusion, the GMW construction proves that any efficient function-
ality can be securely computed, even in the presence of a powerful malicious
adversary. The next step, given this feasibility result, is to construct more
efficient protocols for this task with the final aim of obtaining protocols that
can be used in practice. This research goal is the focus of this book.

1.3 A Roadmap to the Book

This book is divided into three distinct parts. We now describe in detail the
contents of each part and the chapters therein.

1.3.1 Part I – Introduction and Definitions

In this chapter, we have provided a brief overview of the basic notions, con-
cepts and results of secure computation. The aim of this overview is to place

2 We stress that this should in no way be interpreted as a criticism of GMW; the GMW
construction is a beautiful proof of the feasibility of achieving secure computation and is
one of most fundamental results of theoretical cryptography.

14 1 Introduction

the material covered in this book in its general context. In Chapter 2 we
present a number of different definitions of secure two-party computation.
We begin by presenting the classic definitions of security in the presence of
semi-honest and malicious adversaries. As we have discussed above, on the
one hand, the security guarantee provided when considering semi-honest ad-
versaries is often insufficient. On the other hand, although protocols that are
secure in the presence of malicious adversaries provide a very strong security
guarantee, they are often highly inefficient. This motivates the search for al-
ternative definitions that provide satisfactory security guarantees, and that
are more amenable to constructing highly efficient protocols. We consider
three such relaxations:

1. Covert adversaries (Section 2.4): Physical security in the real world is
achieved via deterrence. It is well known that an expert thief can break
into almost anybody’s house and can steal most cars. If this is the case,
then why aren’t there more expert thieves and why are most of our houses
and cars safe? The answer to this is simply deterrence: most people do not
want to go to jail and so choose professions that are within the law. (Of
course, there are also many people who do not steal because it is immoral,
but this is not relevant to our discussion here.) The notion of security in
the presence of covert adversaries utilizes the concept of deterrence in se-
cure computation. Specifically, a protocol that achieves security under this
notion does not provide a foolproof guarantee that an adversary cannot
cheat. Rather, it guarantees that if an adversary does attempt to cheat,
then the honest parties will detect this with some given probability (say
0.5 or 0.9). Now, if such a protocol is run in a context where cheating can
be penalized, then this level of security can suffice. For example, if a secure
protocol is used by a consortium of cellphone companies who wish to carry
out a statistical analysis of the usage behaviors of cellphone users, then a
cheating company (who tries to steal customer data from its competitors)
will be penalized by removing them from the consortium.

We remark that security in the presence of malicious adversaries is the
analogue of an armed security guard outside your house 24 hours a day. It
is much safer to protect your house in this way. However, the costs involved
are often not worth the gain.

2. Non-simulation based definitions (Section 2.6): The definitions of security
for semi-honest, malicious and covert adversaries all follow the ideal/real-
model simulation-based paradigm. We consider two relaxations that do
not follow this paradigm.

a. Privacy only (Section 2.6.1): As we have discussed, the simulation-
based method of defining security (via the ideal/real-model paradigm)
guarantees privacy, correctness, independence of inputs and more. How-
ever, in some cases, it may suffice to guarantee privacy without the other
properties. For example, if a user wishes to search a database so that
her search queries are kept private, then privacy alone may suffice.

1.3 A Roadmap to the Book 15

b. One-sided simulation (Section 2.6.2): In many cases, it is very difficult
to formalize a definition of security that guarantees privacy only. This
is due to the fact that when a party receives output it learns something
and we must try to state that it should learn nothing more. However,
the output depends on the parties’ inputs and if these are not explicit
then it is unclear what the output should be. In contrast, it is very easy
to define privacy when nothing should be learned; in such a case, privacy
can be formalized via indistinguishability in the same way as encryption.
The notion of one-sided simulation helps to define security for protocol
problems in which only one party is supposed to receive output. In such
a case, we require simulation (via the ideal/real-model paradigm) for
the party that receives input, and privacy only (via indistinguishability)
for the party that does not receive output. Observe that correctness
and independence of inputs are not guaranteed when the party who
does not receive output is corrupted. However, as in the example for
privacy only above, this is sometimes sufficient. The advantage of “one-
sided simulation” over “privacy only” is that a general definition can
be given for any functionality in which only one party receives output.

We stress that the “right definition” depends very much on the application
being considered. In some cases, it is crucial that security in the presence of
malicious adversaries be achieved; take for example computation over highly
confidential data that can cause significant damage if revealed. However, in
many other cases, weaker notions of security can suffice, especially if the
alternative is to not use a secure protocol at all (e.g., as may be the case
if the best protocols known for a task that provide security for malicious
adversaries are not efficient enough for use).

In addition to presenting the above definitions of security, Chapter 2 con-
tains the following additional material. In Section 2.3.3 we discuss the sur-
prising fact that due to a quirk in the definitions, security in the presence of
malicious adversaries does not always imply security in the presence of semi-
honest adversaries. In Section 2.5 we show that in many cases it suffices to
consider restricted types of functionalities, enabling a simpler presentation.
Finally, in Section 2.7 we state modular sequential composition theorems that
are very useful when proving the security of protocols.

1.3.2 Part II – General Constructions

A general construction is a protocol that can be used for securely computing
any functionality. These constructions are typically based on a circuit for
computing the functionality, and as such do not utilize any special properties
of the functionality being computed. Thus, they cannot be used for complex
computations applied to very large inputs. Despite this, it is important to

16 1 Introduction

study these constructions for the following reasons. First, many useful tech-
niques and methodologies can be learned from them. Second, in many cases,
a larger protocol uses a smaller subprotocol that is obtained via a general
construction (an example of this is given in Chapter 8). Finally, as the effi-
ciency of general constructions improves, we are able to use them for more
and more real problems [22, 71].

Semi-honest adversaries. In Chapter 3 we present Yao’s protocol for
achieving secure two-party computation in the presence of semi-honest ad-
versaries [77]. This protocol works by having one party prepare an encrypted
or garbled version of the circuit that can be decrypted to yield only one value,
the output of the computation. When the circuit being computed is not too
large, this protocol is very efficient. Specifically, the parties need O(1) asym-
metric computations per input bit, and O(1) symmetric computations per
gate of the circuit. In practice, symmetric computations are far more efficient
than asymmetric computations. Thus, a circuit with hundreds of thousands
of gates can be easily computed.

Malicious adversaries. In Chapter 4 we present a protocol that achieves
security in the presence of malicious adversaries [55]. This protocol is based
on Yao’s protocol for the semi-honest case, and includes significant machinery
for preventing the parties from cheating. The basic technique for achieving
this is called cut-and-choose. Specifically, one of the main problems that
arises when running Yao’s protocol with malicious adversaries is that the
party who constructs the garbled circuit can construct it incorrectly (since
it is encrypted, this cannot be detected). In order to prevent such behavior,
we have the party construct many copies of the circuit and then ask it to
open half of them. In this way, we can be sure that most of the remaining
unopened circuits are correct. It turns out that this intuitive idea is very
hard to implement correctly, and many new problems arise when computing
with many circuits. As a result, the construction is much less efficient than
in the semi-honest case. However, it can still be run on circuits with tens of
thousands of gates, as will be discussed below.

Covert adversaries. In Chapter 5 we present a protocol that is based
on the same idea as that in Chapter 4 but provides security only in the
presence of covert adversaries. The main idea is that in the context of covert
adversaries it suffices to use cut-and-choose on many fewer circuits, and it
suffices to compute only one circuit at the end. This results in a protocol
that is much more efficient than that required to achieve security in the
presence of malicious adversaries. Roughly speaking, when the adversary is
guaranteed to be caught with probability ϵ if it attempts to cheat, the cost
of the protocol is about O(1/ϵ) times the cost of Yao’s semi-honest protocol.
Thus, for ϵ = 1/2 it is possible to compute circuits that contain hundreds of
thousands of gates, as in the semi-honest case.

1.3 A Roadmap to the Book 17

Implementations of general protocols. Recent interest in the field of
efficient protocols has led to implementations that are useful for understand-
ing the real efficiency behavior of the above protocols. One work which is
of relevance here is an implementation of a protocol for securely computing
the AES function [71]. That is, one party holds a secret 128-bit symmetric
key k for the AES function and the other party holds a 128-bit input x.
The computation is such that the first party learns nothing about x, while
the second party learns AESk(x) and nothing else. Such a functionality has
many applications, as we will see in Chapter 9. In [71], the exact protocols of
Chapters 3, 4 and 5 were implemented for a circuit computing AES which has
approximately 33,000 gates. The protocols were implemented using a number
of different optimizations. The best optimizations yielded running times of
seven seconds for the semi-honest protocol, 95 seconds for the covert protocol
and 1,148 seconds for the malicious protocol. Although these running times
are not fast enough for real-time applications, they demonstrate that it is
feasible to carry out such computations on circuits that are large (tens of
thousands of gates). We expect that further efficiency improvements will not
be long coming, and believe that these times will be significantly reduced in
the not too distant future (especially for the malicious case).

1.3.3 Part III – Specific Constructions

As we have mentioned, the drawback of considering general constructions is
that it is not possible to utilize special properties of the functionality being
computed. In the final part of the book, we present protocols for specific
problems of interest. This part is also divided into two subparts. First, in
Chapters 6 and 7 we present some basic tools that are very useful for designing
efficient protocols. Then, in Chapters 8 and 9 we study two specific problems
as a demonstration of how higher-level protocols can be constructed.

Sigma protocols and efficient zero-knowledge. In Chapter 6 we show
how highly efficient zero-knowledge protocols can be constructed. As we
have discussed, security in the presence of malicious adversaries is typically
achieved by forcing the parties to behave honestly. The immediate way to do
this is to force the parties to prove in zero-knowledge that they are following
the protocol specification. Needless to say, a straightforward implementation
of this idea is very inefficient. For this reason, many try to stay clear of explicit
zero-knowledge proofs for enforcing honest behavior. However, in many cases
it is possible to construct a protocol for which the zero-knowledge proof that
is needed is highly efficient. Many of these efficient zero-knowledge protocols
are constructed from a simpler primitive called a Σ-protocol. In Chapter 6
we study Σ-protocols in depth and, among other things, present highly effi-
cient generic transformations from Σ-protocols to zero-knowledge proofs of
membership and zero-knowledge proofs of knowledge. These transformations

18 1 Introduction

are very useful because it is far easier to construct a protocol and prove
that it is a Σ-protocol than to construct a protocol and prove that it is a
zero-knowledge proof of knowledge.

Oblivious transfer and applications. In Chapter 7 we construct obliv-
ious transfer protocols that are secure under the definitions of privacy only,
one-sided simulation, and full simulation-based security in the presence of
malicious adversaries. The protocols that are presented progress in a natural
way from privacy only through one-sided simulation to full security. The fi-
nal protocols obtained have only a constant number of exponentiations and
as such are very efficient. In addition, we present optimizations for the case
where many oblivious transfers need to be run, which is the case in many
secure protocols using oblivious transfer. We then conclude with protocols for
pseudorandom function evaluation, which is a primitive that also has many
applications.

The kth-ranked element and search problems. In Chapters 8 and 9
we show how to securely compute the kth-ranked element of two lists (with a
special case being the median) and how to search databases and documents
in a secure manner. Admittedly, the choice of these two problems is arbitrary
and is based on our personal preferences. Nevertheless, we believe that they
are interesting examples of how specific properties of the functionality in
question can be used to solve the problem with high efficiency.

Chapter 2

Definitions

In this chapter we present a number of definitions of security for secure com-
putation. Specifically, in Sections 2.2 to 2.4 we present definitions of security
for semi-honest, malicious and covert adversaries; all these definitions are
based on the ideal/real-model paradigm for formulating security. We begin
with the classic definitions of security in the presence of semi-honest and
malicious adversaries, and then proceed to the more recent notion of secu-
rity in the presence of covert adversaries. In Section 2.5, we show that it
often suffices to consider restricted types of functionalities, which enables us
to simplify the presentation of the general protocols in Chapters 3 to 5. In
Section 2.6 we consider two relaxations of these definitions, for the case of
malicious adversaries. Finally, in Section 2.7 we conclude with the issue of
sequential composition of secure protocols. We stress that since the focus of
this book is secure two-party computation, all of the definitions are presented
for the case of two parties only.

2.1 Preliminaries

We begin by introducing notation and briefly reviewing some basic notions;
see [30] for more details. A function µ(·) is negligible in n, or just negligi-
ble, if for every positive polynomial p(·) and all sufficiently large ns it holds
that µ(n) < 1/p(n). A probability ensemble X = {X(a, n)}a∈{0,1}∗;n∈N is
an infinite sequence of random variables indexed by a and n ∈ N. (The
value a will represent the parties’ inputs and n will represent the secu-
rity parameter.) Two distribution ensembles X = {X(a, n)}a∈{0,1}∗;n∈N and
Y = {Y (a, n)}a∈{0,1}∗;n∈N are said to be computationally indistinguishable,

denoted by X
c≡ Y , if for every non-uniform polynomial-time algorithm D

there exists a negligible function µ(·) such that for every a ∈ {0, 1}∗ and
every n ∈ N,

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| ≤ µ(n).

19C. Hazay, Y. Lindell, Efficient Secure Two-Party Protocols,
Information Security and Cryptography, DOI 10.1007/978-3-642-14303-8_2,
© Springer-Verlag Berlin Heidelberg 2010

20 2 Definitions

All parties are assumed to run in time that is polynomial in the security
parameter. (Formally, each party has a security parameter tape upon which
that value 1n is written. Then the party is polynomial in the input on this
tape. We note that this means that a party may not even be able to read
its entire input, as would occur in the case where its input is longer than its
overall running time.) We sometimes use ppt as shorthand for probabilistic
polynomial time.

For a set X, we denote by x←R X the process of choosing an element x
of X under the uniform distribution.

2.2 Security in the Presence of Semi-honest Adversaries

The model that we consider here is that of two-party computation in the
presence of static semi-honest adversaries. Such an adversary controls one of
the parties (statically, and so at the onset of the computation) and follows the
protocol specification exactly. However, it may try to learn more information
than allowed by looking at the transcript of messages that it received and
its internal state. Since we only consider static semi-honest adversaries here,
we will sometimes omit the qualification that security is with respect to such
adversaries only. The definitions presented here are according to Goldreich
in [32].

Two-party computation. A two-party protocol problem is cast by spec-
ifying a random process that maps pairs of inputs to pairs of outputs (one
for each party). We refer to such a process as a functionality and denote
it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is,
for every pair of inputs x, y ∈ {0, 1}n, the output-pair is a random variable
(f1(x, y), f2(x, y)) ranging over pairs of strings. The first party (with input x)
wishes to obtain f1(x, y) and the second party (with input y) wishes to obtain
f2(x, y). We often denote such a functionality by (x, y) 7→ (f1(x, y), f2(x, y)).
Thus, for example, the oblivious transfer functionality [72] is specified by
((z0, z1), σ) 7→ (λ, zσ), where λ denotes the empty string. When the function-
ality f is probabilistic, we sometimes use the notation f(x, y, r), where r is
a uniformly chosen random tape used for computing f .

Privacy by simulation. Intuitively, a protocol is secure if whatever can be
computed by a party participating in the protocol can be computed based
on its input and output only. This is formalized according to the simulation
paradigm. Loosely speaking, we require that a party’s view in a protocol
execution be simulatable given only its input and output. This then implies
that the parties learn nothing from the protocol execution itself, as desired.

Definition of security. We begin with the following notation:

• Let f = (f1, f2) be a probabilistic polynomial-time functionality and let π
be a two-party protocol for computing f .

2.2 Security in the Presence of Semi-honest Adversaries 21

• The view of the ith party (i ∈ {1, 2}) during an execution of π on
(x, y) and security parameter n is denoted by viewπ

i (x, y, n) and equals
(w, ri,mi

1, ...,m
i
t), where w ∈ {x, y} (its value depending on the value

of i), ri equals the contents of the ith party’s internal random tape, and
mi

j represents the jth message that it received.
• The output of the ith party during an execution of π on (x, y) and security

parameter n is denoted by outputπi (x, y, n) and can be computed from its
own view of the execution. We denote the joint output of both parties by
outputπ(x, y, n) = (outputπ1 (x, y, n), output

π
2 (x, y, n)).

Definition 2.2.1 (security w.r.t. semi-honest behavior): Let f = (f1, f2) be
a functionality. We say that π securely computes f in the presence of static
semi-honest adversaries if there exist probabilistic polynomial-time algorithms
S1 and S2 such that

{(S1(1
n, x, f1(x, y)), f(x, y))}x,y,n

c≡ {(viewπ
1 (x, y, n), output

π(x, y, n))}x,y,n ,

{(S2(1
n, y, f2(x, y)), f(x, y))}x,y,n

c≡ {(viewπ
2 (x, y, n), output

π(x, y, n))}x,y,n ,

x, y ∈ {0, 1}∗ such that |x| = |y|, and n ∈ N.

The above states that the view of a party can be simulated by a probabilistic
polynomial-time algorithm given access to the party’s input and output only.
We emphasize that the adversary here is semi-honest and therefore its view
in the execution of π is exactly as in the case where both parties follow
the protocol specification. We note that it is not enough for the simulator
Si to generate a string indistinguishable from viewπ

i (x, y). Rather, the joint
distribution of the simulator’s output and the functionality output f(x, y)
must be indistinguishable from (viewπ

i (x, y), output
π(x, y)). This is necessary

for probabilistic functionalities; see [11, 32] for a full discussion.

A simpler formulation for deterministic functionalities. In the case
where the functionality f is deterministic, a simpler definition can be used.
Specifically, we do not need to consider the joint distribution of the simula-
tor’s output with the protocol output. Rather we separately require correct-
ness, meaning that

{outputπ(x, y, n))}x,y∈{0,1}∗;n∈N
c≡ {f(x, y)}x,y∈{0,1}∗

and, in addition, that there exist ppt S1 and S2 such that

{S1(1
n, x, f1(x, y))}x,y∈{0,1}∗;n∈N

c≡ {viewπ
1 (x, y, n)}x,y∈{0,1}∗;n∈N , (2.1)

{S2(1
n, y, f2(x, y))}x,y∈{0,1}∗;n∈N

c≡ {viewπ
2 (x, y, n)}x,y∈{0,1}∗;n∈N (2.2)

The reason this suffices is that when f is deterministic, outputπ(x, y, n) must
equal f(x, y). Furthermore, the distinguisher for the ensembles can compute

22 2 Definitions

f(x, y) by itself (because it is given x and y, the indices of the ensemble).
See [32, Section 7.2.2] for more discussion.

For simplicity of notation, we will often let n be the length of x and y. In
this case, the simulators S1 and S2 do not need to receive 1n for input, and
we omit n from the view and output notations.

An equivalent definition. A different definition of security for two-party
computation in the presence of semi-honest adversaries compares the output
of a real protocol execution to the output of an ideal computation involv-
ing an incorruptible trusted third party (as described in the Introduction).
The trusted party receives the parties’ inputs, computes the functionality
on these inputs and returns to each its respective output. Loosely speak-
ing, a protocol is secure if any real-model adversary can be converted into an
ideal-model adversary such that the output distributions are computationally
indistinguishable. We remark that in the case of semi-honest adversaries, this
definition is equivalent to the (simpler) simulation-based definition presented
here; see [32]. This formulation of security will be used for defining security
in the presence of malicious adversaries below.

Augmented semi-honest adversaries. Observe that by the definition
above, a semi-honest party always inputs its prescribed input value, even if
it is corrupted. We argue that it often makes sense to allow a corrupted semi-
honest party to modify its input, as long as it does so before the execution
begins. This is due to the following reasons. First, on a subjective intuitive
level it seems to us that this is in the spirit of semi-honest behavior because
choosing a different input is not “improper behavior”. Second, when protocols
achieving security in the presence of semi-honest adversaries are used as a
stepping stone for obtaining security in the presence of malicious adversaries,
it is necessary to allow the semi-honest adversary to modify its input. Indeed,
Goldreich introduces the notion of an augmented semi-honest adversary that
may modify its input before the execution begins when showing how to obtain
security against malicious adversaries from protocols that are secure only
in the presence of semi-honest adversaries [32, Sec. 7.4.4.1]. Finally, as we
discuss in Section 2.3.3, it is natural that any protocol that is secure in
the presence of malicious adversaries also be secure in the presence of semi-
honest adversaries. Although very counterintuitive, it turns out that this
only holds when the semi-honest adversary is allowed to change its input;
see Section 2.3.3 for a full discussion. We present the definition of semi-
honest adversaries above, where a corrupted party cannot change its input, for
historical reasons only. However, we strongly prefer the notion of augmented
semi-honest adversaries. We remark that a formal definition of this notion is
easily obtained via the ideal/real-model paradigm; see Section 2.3 below.

2.3 Security in the Presence of Malicious Adversaries 23

2.3 Security in the Presence of Malicious Adversaries

In this section, we present the definition of security for the case of malicious
adversaries who may use any efficient attack strategy and thus may arbitrarily
deviate from the protocol specification. In this case, it does not suffice to
construct simulators that can generate the view of the corrupted party. First
and foremost, the generation of such a view depends on the actual input
used by the adversary; indeed this input affects the actual output received.
However, in contrast to the case of semi-honest adversaries, the adversary
may not use the input that it is provided. Thus, a simulator for the case
where P1 is corrupted cannot just take x and f(x, y) and generate a view
(in order to prove that nothing more than the output is learned), because
the adversary may not use x at all. Furthermore, beyond the possibility that
a corrupted party may learn more than it should, we require correctness
(meaning that a corrupted party cannot cause the output to be incorrectly
distributed) and independence of inputs (meaning that a corrupted party
cannot make its input depend on the other party’s input). As discussed in
the overview in Section 1.1, in order to capture these threats, and others,
the security of a protocol is analyzed by comparing what an adversary can
do in the protocol to what it can do in an ideal scenario that is secure by
definition. This is formalized by considering an ideal computation involving
an incorruptible trusted third party to whom the parties send their inputs.
The trusted party computes the functionality on the inputs and returns to
each party its respective output. Loosely speaking, a protocol is secure if
any adversary interacting in the real protocol (where no trusted third party
exists) can do no more harm than if it were involved in the above-described
ideal computation. See [11, 32] for more discussion on the advantages of this
specific formulation.

We remark that since we consider the two-party case, there is no honest
majority. It is therefore impossible to achieve fairness in general. Therefore,
in the ideal setting we allow the adversary to obtain the corrupted party’s
output, without the honest party necessarily obtaining its output. We also
remark that in defining security for two parties it is possible to consider only
the setting where one of the parties is corrupted, or to also consider the
setting where none of the parties are corrupted, in which case the adversary
seeing the transcript between the parties should learn nothing. Since this
latter case can easily be achieved by using encryption between the parties we
present the simpler formulation security that assumes that exactly one party
is always corrupted.

24 2 Definitions

2.3.1 The Definition

Execution in the ideal model. As we have mentioned, in the case of
no honest majority, it is in general impossible to achieve guaranteed output
delivery and fairness. This “weakness” is therefore incorporated into the ideal
model by allowing the adversary in an ideal execution to abort the execution
or obtain output without the honest party obtaining its output. Denote the
participating parties by P1 and P2 and let i ∈ {1, 2} denote the index of
the corrupted party, controlled by an adversary A. An ideal execution for a
function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ proceeds as follows:

Inputs: Let x denote the input of party P1, and let y denote the input of
party P2. The adversary A also has an auxiliary input denoted by z.

Send inputs to trusted party: The honest party Pj sends its received
input to the trusted party. The corrupted party Pi controlled by A may
either abort (by replacing the input with a special aborti message), send its
received input, or send some other input of the same length to the trusted
party. This decision is made by A and may depend on the input value of
Pi and the auxiliary input z. Denote the pair of inputs sent to the trusted
party by (x′, y′) (note that if i = 2 then x′ = x but y′ does not necessarily
equal y, and vice versa if i = 1).

Early abort option: If the trusted party receives an input of the form
aborti for some i ∈ {1, 2}, it sends aborti to all parties and the ideal
execution terminates. Otherwise, the execution proceeds to the next step.

Trusted party sends output to adversary: At this point the trusted
party computes f1(x

′, y′) and f2(x
′, y′) and sends fi(x

′, y′) to party Pi

(i.e., it sends the corrupted party its output).
Adversary instructs trusted party to continue or halt: A sends ei-

ther continue or aborti to the trusted party. If it sends continue, the trusted
party sends fj(x

′, y′) to party Pj (where Pj is the honest party). Other-
wise, if A sends aborti, the trusted party sends aborti to party Pj .

Outputs: The honest party always outputs the output value it obtained
from the trusted party. The corrupted party outputs nothing. The adver-
sary A outputs any arbitrary (probabilistic polynomial-time computable)
function of the initial input of the corrupted party, the auxiliary input z,
and the value fi(x

′, y′) obtained from the trusted party.

Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a two-party functionality,
where f = (f1, f2), let A be a non-uniform probabilistic polynomial-time
machine, and let i ∈ {1, 2} be the index of the corrupted party. Then, the
ideal execution of f on inputs (x, y), auxiliary input z to A and security
parameter n, denoted by idealf,A(z),i(x, y, n), is defined as the output pair
of the honest party and the adversary A from the above ideal execution.

Execution in the real model. We next consider the real model in which a
real two-party protocol π is executed (and there exists no trusted third party).

2.3 Security in the Presence of Malicious Adversaries 25

In this case, the adversary A sends all messages in place of the corrupted
party, and may follow an arbitrary polynomial-time strategy. In contrast, the
honest party follows the instructions of π.

Let f be as above and let π be a two-party protocol for computing f .
Furthermore, let A be a non-uniform probabilistic polynomial-time machine
and let i ∈ {1, 2} be the index of the corrupted party. Then, the real execution
of π on inputs (x, y), auxiliary input z toA and security parameter n, denoted
by realπ,A(z),i(x, y, n), is defined as the output pair of the honest party and
the adversary A from the real execution of π.

Security as emulation of a real execution in the ideal model. Having
defined the ideal and real models, we can now define security of protocols.
Loosely speaking, the definition asserts that a secure party protocol (in the
real model) emulates the ideal model (in which a trusted party exists). This is
formulated by saying that adversaries in the ideal model are able to simulate
executions of the real-model protocol.

Definition 2.3.1 (secure two-party computation): Let f and π be as above.
Protocol π is said to securely compute f with abort in the presence of malicious
adversaries if for every non-uniform probabilistic polynomial-time adversary
A for the real model, there exists a non-uniform probabilistic polynomial-time
adversary S for the ideal model, such that for every i ∈ {1, 2},{

idealf,S(z),i(x, y, n)
}
x,y,z,n

c≡
{
realπ,A(z),i(x, y, n)

}
x,y,z,n

where x, y ∈ {0, 1}∗ under the constraint that |x| = |y|, z ∈ {0, 1}∗ and n ∈ N.

The above definition assumes that the parties (and adversary) know the
input lengths (this can be seen from the requirement that |x| = |y| is balanced
and so all the inputs in the vector of inputs are of the same length). We remark
that some restriction on the input lengths is unavoidable because, as in the
case of encryption, to some extent such information is always leaked.

2.3.2 Extension to Reactive Functionalities

Until now we have considered the secure computation of simple functionalities
that compute a single pair of outputs from a single pair of inputs. However,
not all computations are of this type. Rather, many computations have mul-
tiple rounds of inputs and outputs. Furthermore, the input of a party in a
given round may depend on its output from previous rounds, and the outputs
of that round may depend on the inputs provided by the parties in some or
all of the previous rounds. A classic example of this is electronic poker. In
this game, in the first phase cards are dealt to the players. Based on these
cards, bets are made and cards possibly thrown and dealt. The important

26 2 Definitions

thing to notice is that in each round human decisions must be made based
on the current status. Thus, new inputs are provided in each round (e.g.,
how much to bet and what cards to throw), and these inputs are based on
the current output (in this case, the output is the player’s current hand and
the cards previously played). A more cryptographic example of a multi-phase
functionality is that of a commitment scheme. Such a scheme has a distinct
commitment and decommitment phase. Thus, it cannot be cast as a standard
functionality mapping inputs to outputs.

In the context of secure computation, multi-phase computations are typ-
ically called reactive functionalities. Such functionalities can be modeled as
a series of functions (f1, f2, . . .) where each function receives some state in-
formation and two new inputs. That is, the input to function f j consists of
the inputs (xj , yj) of the parties in this phase, along with a state input σj−1
output by f j−1. Then, the output of f j is defined to be a pair of outputs
f j
1 (xj , yj , σj−1) for P1 and f j

2 (xj , yj , σj−1) for P2, and a state string σj to
be input into f j+1. We stress that the parties receive only their private out-
puts, and in particular do not receive any of the state information; in the
ideal model this is stored by the trusted party. Although the above definition
is intuitively clear, a simpler formulation is to define a reactive functionality
via a multi-phase probabilistic polynomial-time Turing machine that receives
inputs and generates outputs (this is simpler because it is not necessary to
explicitly define the state at every stage). The trusted party then runs this
machine upon each new pair of inputs it receives and sends the generated
outputs. In this formulation, the state information is kept internally by the
Turing machine, and not explicitly by the trusted party. We remark that the
formal ideal model remains the same, except that the trusted party runs a
reactive functionality (i.e., reactive Turing machine) instead of a single func-
tion. In addition, once the corrupted party sends aborti, the ideal execution
stops, and no additional phases are run.

2.3.3 Malicious Versus Semi-honest Adversaries

At first sight, it seems that any protocol that is secure in the presence of
malicious adversaries is also secure in the presence of semi-honest adversaries.
This is because a semi-honest adversary is just a “special case” of a malicious
adversary who faithfully follows the protocol specification. Although this is
what we would expect, it turns out to be false [45]. This anomaly is due to
the fact that although a real semi-honest adversary is indeed a special case
of a real malicious adversary, this is not true of the respective adversaries in
the ideal model. Specifically, the adversary in the ideal model for malicious
adversaries is allowed to change its input, whereas the adversary in the ideal
model for semi-honest adversary is not. Thus, the adversary/simulator for the
case of malicious adversaries has more power than the adversary/simulator

2.3 Security in the Presence of Malicious Adversaries 27

for the case of semi-honest adversaries. As such, it may be possible to simulate
a protocol in the malicious model, but not in the semi-honest model. We now
present two examples of protocols where this occurs.

Example 1 – secure AND. Consider the case of two parties computing the
binary AND function f(x, y) = x ∧ y, where only party P2 receives output.
Note first that if party P2 uses input 1, then by the output received it can
fully determine party P1’s input (if the output is 0 then P1 had input 0, and
otherwise it had input 1). In contrast, if party P2 uses input 0 then it learns
nothing about P1’s input, because the output equals 0 irrespective of the
value of P1’s input. The result of this observation is that in the ideal model,
an adversary corrupting P2 can always learn P1’s exact input by sending
the trusted party the input value 1. Thus, P1’s input is always revealed.
In contrast, in the ideal model with a semi-honest adversary, P1’s input is
only revealed if the corrupted party has input 1; otherwise, the adversary
learns nothing whatsoever about P1’s input. We use the above observations
to construct a protocol that securely computes the binary AND function in
the presence of malicious adversaries, but is not secure in the presence of
semi-honest adversaries; see Protocol 2.3.2.

PROTOCOL 2.3.2 (A Protocol for Binary AND)

• Input: P1 has an input bit x and P2 has an input bit y.

• Output: The binary value x ∧ y for P2 only.
• The protocol:

1. P1 sends P2 its input bit x.
2. P2 outputs the bit x ∧ y.

We have the following claims:

Claim 2.3.3 Protocol 2.3.2 securely computes the binary AND function in
the presence of malicious adversaries.

Proof. We separately consider the case where P1 is corrupted and the case
where P2 is corrupted. If P1 is corrupted, then the simulator S receives from
A the bit that it sends to P2 in the protocol. This bit fully determines the
input of P1 to the function and so S just sends it to the trusted party, thereby
completing the simulation. In the case where P2 is corrupted, S sends input 1
to the trusted party and receives back an output bit b. By the observation
above, b is the input of the honest P1 in the ideal model. Thus, the simulator
S just hands A the bit x = b as the value that A expects to receive from
the honest P1 in a real execution. It is immediate that the simulation here is
perfect.

We stress that the above works because P2 is the only party to receive
output. If P1 also were to receive output, then S’s simulation in the case of a

28 2 Definitions

corrupted P2 would not work. In order to see this, consider an adversary who
corrupts P2, uses input y = 0 and outputs its view in the protocol, including
the bit x that it receives from P1. In this case, S cannot send y = 1 to the
trusted party because P1’s output would not be correctly distributed. Thus,
it must send y = 0, in which case the view that it generates for A cannot
always be correct because it does not know the input bit x of P1.

Claim 2.3.4 Protocol 2.3.2 does not securely compute the binary AND func-
tion in the presence of semi-honest adversaries.

Proof. Consider the simulator S2 that is guaranteed to exist for the case
where P2 is corrupted; see (2.2) in Section 2.2. Then, S2 is given y and x∧ y
and must generate the view of P2 in the computation. However, this view
contains the value x that P1 sends to P2 in the protocol. Now, if y = 0 and
x is random, then there is no way that S2 can guess the value of x with
probability greater than 1/2. We conclude that the protocol is not secure in
the presence of semi-honest adversaries.

Example 2 – set union. Another example where this arises is the prob-
lem of set union over a large domain where only one party receives output.
Specifically, consider the function f(X,Y) = (λ,X∪Y) where X,Y ⊆ {0, 1}n
are sets of the same size, and λ denotes the “empty” output. We claim that
the protocol where P1 sends its set X to P2 is secure in the presence of ma-
licious adversaries. This follows for the exact same reasons as above because
a corrupted P2 in the malicious model can replace its input set Y with a set
Y ′ of the same size, but containing random values. Since the sets contain
values of length n, it follows that the probability that X ∩ Y ̸= ϕ is negligi-
ble. Thus, the output that P2 receives completely reveals the input of P1. In
contrast, if a corrupted party cannot change its input, then when X ∩Y ̸= ϕ
the elements that are common to both sets are hidden. Specifically, if five
elements are common to both sets, then P2 knows that there are five com-
mon elements, but does not have any idea as to which are common. Thus,
for the same reasons as above, the protocol is not secure in the presence of
semi-honest adversaries. Once again, we stress that this works when only one
party receives output; in the case where both parties receive output, securely
computing this functionality is highly non-trivial.

Discussion. It is our opinion that the above phenomenon should not be
viewed as an “annoying technicality”. Rather it points to a problem in the
definitions that needs to be considered. Our position is that it would be better
to define semi-honest adversaries as adversaries that are allowed to change
their input before the computation starts (e.g., by rewriting the value on their
input tape), and once the computation begins must behave in a semi-honest
fashion as before. Conceptually, this makes sense because parties are allowed
to choose their own input and this is not adversarial behavior. In addition,
this model better facilitates the “compilation” of protocols that are secure in
the semi-honest model into protocols that are secure in the malicious model.

2.3 Security in the Presence of Malicious Adversaries 29

Indeed, in order to prove the security of the protocol of [35], and specifically
the compilation of a protocol for the semi-honest model into one that is secure
in the presence of malicious adversaries, Goldreich introduces the notion of
augmented semi-honest behavior, which is exactly as described above; see Def-
inition 7.4.24 in Section 7.4.4.1 of [30]. We stress that all protocols presented
in this book that are secure in the presence of semi-honest adversaries are
also secure in the presence of augmented semi-honest adversaries. Further-
more, as stated in the following proposition, security in the malicious model
implies security in the augmented semi-honest model, as one would expect.

Proposition 2.3.5 Let π be a protocol that securely computes a functionality
f in the presence of malicious adversaries. Then π securely computes f in
the presence of augmented semi-honest adversaries.

Proof. Let π be a protocol that securely computes f in the presence of
malicious adversaries. Let A be an augmented semi-honest real adversary
and let S be the simulator for A that is guaranteed to exist by the security
of π (for every malicious A there exists such an S, and in particular for an
augmented semi-honest A). We construct a simulator S ′ for the augmented
semi-honest setting, by simply having S ′ run S. However, in order for this to
work, we have to show that S ′ can do everything that S can do. In the ma-
licious ideal model, S can choose whatever input it wishes for the corrupted
party; since S ′ is augmented semi-honest, it too can modify the input. In
addition, S can cause the honest party to output abort. However, S ′ cannot
do this. Nevertheless, this is not a problem because when S is the simulator
for an augmented semi-honest A it can cause the honest party to output
abort with at most negligible probability. In order to see this, note that when
two honest parties run the protocol, neither outputs abort with non-negligible
probability. Thus, when an honest party runs together with an augmented
semi-honest adversary, it too outputs abort with at most negligible probabil-
ity. This is due to the fact that the distribution over the messages it receives
in both cases is identical (because a semi-honest real adversary follows the
protocol instructions just like an honest party). This implies that the simu-
lator for the malicious case, when applied to an augmented semi-honest real
adversary, causes an abort with at most negligible probability. Thus, the aug-
mented semi-honest simulator can run the simulator for the malicious case,
as required.

Given the above, it is our position that the definition of augmented semi-
honest adversaries is the “right way” of modeling semi-honest behavior. As
such, it would have been more appropriate to use this definition from scratch.
However, we chose to remain with the standard definition of semi-honest
adversaries for historical reasons.

30 2 Definitions

2.4 Security in the Presence of Covert Adversaries

2.4.1 Motivation

In this chapter, we present a relatively new adversary model that lies between
the semi-honest and malicious models. The motivation behind the definition
is that in many real-world settings, parties are willing to actively cheat (and
as such are not semi-honest), but only if they are not caught (and as such
they are not arbitrarily malicious). This, we believe, is the case in many
business, financial, political and diplomatic settings, where honest behavior
cannot be assumed, but where the companies, institutions and individuals
involved cannot afford the embarrassment, loss of reputation, and negative
press associated with being caught cheating. It is also the case, unfortunately,
in many social settings, e.g., elections for a president of the country club.
Finally, in remote game playing, players may also be willing to actively cheat,
but would try to avoid being caught, or else they may be thrown out of
the game. In all, we believe that this type of covert adversarial behavior
accurately models many real-world situations. Clearly, with such adversaries,
it may be the case that the risk of being caught is weighed against the benefits
of cheating, and it cannot be assumed that players would avoid being caught
at any price and under all circumstances. Accordingly, the definition explicitly
models the probability of catching adversarial behavior, a probability that
can be tuned to the specific circumstances of the problem. In particular, we
do not assume that adversaries are only willing to risk being caught with
negligible probability, but rather allow for much higher probabilities.

The definition. The definition of security here is based on the ideal/real
simulation paradigm (as in the definition in Section 2.3), and provides the
guarantee that if the adversary cheats, then it will be caught by the honest
parties (with some probability). In order to understand what we mean by
this, we have to explain what we mean by “cheating”. Loosely speaking,
we say that an adversary successfully cheats if it manages to do something
that is impossible in the ideal model. Stated differently, successful cheating
is behavior that cannot be simulated in the ideal model. Thus, for example,
an adversary who learns more about the honest parties’ inputs than what
is revealed by the output has cheated. In contrast, an adversary who uses
pseudorandom coins instead of random coins (where random coins are what
are specified in the protocol) has not cheated.

We are now ready to informally describe the guarantee provided by this
notion. Let 0 < ϵ ≤ 1 be a value (called the deterrence factor). Then, any
attempt to cheat by a real adversary A is detected by the honest parties
with probability at least ϵ. Thus, provided that ϵ is sufficiently large, an
adversary that wishes not to be caught cheating will refrain from attempting
to cheat, lest it be caught doing so. Clearly, the higher the value of ϵ, the
greater the probability adversarial behavior is caught and thus the greater

2.4 Security in the Presence of Covert Adversaries 31

the deterrent to cheat. This notion is therefore called security in the presence
of covert adversaries with ϵ-deterrent. Note that the security guarantee does
not preclude successful cheating. Indeed, if the adversary decides to cheat it
may gain access to the other parties’ private information or bias the result
of the computation. The only guarantee is that if it attempts to cheat, then
there is a fair chance that it will be caught doing so. This is in contrast to
standard definitions, where absolute privacy and security are guaranteed for
the given type of adversary. We remark that by setting ϵ = 1, the definition
can be used to capture a requirement that cheating parties are always caught.

Formalizing the notion. The standard definition of security (see Defini-
tion 2.3.1) is such that all possible (polynomial-time) adversarial behavior is
simulatable. Here, in contrast, we wish to model the situation that parties
may successfully cheat. However, if they do so, they are likely to be caught.
There are a number of ways of defining this notion. In order to motivate this
one, we begin with a somewhat naive implementation of the notion, and show
its shortcomings:

1. First attempt: Define an adversary to be covert if the distribution over
the messages that it sends during an execution is computationally indis-
tinguishable from the distribution over the messages that an honest party
would send. Then, quantify over all covert adversaries A for the real world
(rather than all adversaries). A number of problems arise with this defini-
tion.

• The fact that the distribution generated by the adversary can be dis-
tinguished from the distribution generated by honest parties does not
mean that the honest parties can detect this in any specific execution.
Consider for example a coin-tossing protocol where the honest distri-
bution gives even probabilities to 0 and 1, while the adversary manages
to double the probability of the 1 outcome. Clearly, the distributions
differ. However, in any given execution, even an outcome of 1 does not
provide the honest players with sufficient evidence of any wrongdoing.
Thus, it is not sufficient that the distributions differ. Rather, one needs
to be able to detect cheating in any given execution.

• The fact that the distributions differ does not necessarily imply that
the honest parties have an efficient distinguisher. Furthermore, in order
to guarantee that the honest parties detect the cheating, they would
have to analyze all traffic during an execution. However, this analysis
cannot be part of the protocol because then the distinguishers used by
the honest parties would be known (and potentially bypassed).

• Another problem is that adversaries may be willing to risk being caught
with more than negligible probability, say 10−6. With such an adver-
sary, the proposed definition would provide no security guarantee. In
particular, the adversary may be able to always learn all parties’ inputs,
and risk being caught in one run in a million.

32 2 Definitions

2. Second attempt. To solve the aforementioned problems, we first require
that the protocol itself be responsible for detecting cheating. Specifically, in
the case where a party Pi attempts to cheat, the protocol may instruct the
honest parties to output a message saying that “party Pi has cheated” (we
require that this only happen if Pi indeed cheated). This solves the first two
problems. To solve the third problem, we explicitly quantify the probability
that an adversary is caught cheating. Roughly, given a parameter ϵ, a
protocol is said to be secure against covert adversaries with ϵ-deterrent if
any adversary that is not “covert” (as defined in the first attempt) will
necessarily be caught with probability at least ϵ.

This definition captures the spirit of what we want, but is still problematic.
To illustrate the problem, consider an adversary that plays honestly with
probability 0.99, and cheats otherwise. Such an adversary can only ever
be caught with probability 0.01 (because otherwise it is honest). However,
when ϵ = 1/2 for example, such an adversary must be caught with prob-
ability 0.5, which is impossible. We therefore conclude that an absolute
parameter cannot be used, and the probability of catching the adversary
must be related to the probability that it cheats.

3. Final attempt. We thus arrive at the following approach. First, as men-
tioned, we require that the protocol itself be responsible for detecting
cheating. That is, if a party Pi successfully cheats, then with good proba-
bility (ϵ), the honest parties in the protocol will all receive a message that
“Pi cheated”. Second, we do not quantify only over adversaries that are
covert (i.e., those that are not detected cheating by the protocol). Rather,
we allow all possible adversaries, even completely malicious ones. Then, we
require either that this malicious behavior can be successfully simulated
(as in Definition 2.3.1), or that the honest parties receive a message that
cheating has been detected, and this happens with probability at least ϵ
times the probability that successful cheating takes place. We stress that
when the adversary chooses to cheat, it may actually learn secret infor-
mation or cause some other damage. However, since it is guaranteed that
such a strategy will likely be caught, there is strong motivation to refrain
from doing so. As such, we use the terminology covert adversaries to refer
to malicious adversaries that do not wish to be caught cheating.

The above intuitive notion can be interpreted in a number of ways. We
present the main formulation here. The definition works by modifying the
ideal model so that the ideal-model adversary (i.e., simulator) is explicitly
given the ability to cheat. Specifically, the ideal model is modified so that a
special cheat instruction can be sent by the adversary to the trusted party.
Upon receiving such an instruction, the trusted party tosses coins and with
probability ϵ announces to the honest parties that cheating has taken place
(by sending the message corruptedi where party Pi is the corrupted party that
sent the cheat instruction). In contrast, with probability 1 − ϵ, the trusted
party sends the honest party’s input to the adversary, and in addition lets

2.4 Security in the Presence of Covert Adversaries 33

the adversary fix the output of the honest party. We stress that in this case
the trusted party does not announce that cheating has taken place, and so
the adversary gets off scot-free. Observe that if the trusted party announces
that cheating has taken place, then the adversary learns absolutely nothing.
This is a strong guarantee because when the adversary attempts to cheat, it
must take the risk of being caught and gaining nothing.

2.4.2 The Actual Definition

We begin by presenting the modified ideal model. In this model, we add new
instructions that the adversary can send to the trusted party. Recall that in
the standard ideal model, the adversary can send a special aborti message to
the trusted party, in which case the honest party receives aborti as output. In
the ideal model for covert adversaries, the adversary can send the following
additional special instructions:

• Special input corruptedi: If the ideal-model adversary sends corruptedi in-
stead of an input, the trusted party sends corruptedi to the honest party
and halts. This enables the simulation of behavior by a real adversary that
always results in detected cheating. (It is not essential to have this special
input, but it sometimes makes proving security easier.)

• Special input cheati: If the ideal-model adversary sends cheati instead of an
input, the trusted party tosses coins and with probability ϵ determines that
this “cheat strategy” by Pi was detected, and with probability 1− ϵ deter-
mines that it was not detected. If it was detected, the trusted party sends
corruptedi to the honest party. If it was not detected, the trusted party
hands the adversary the honest party’s input and gives the ideal-model
adversary the ability to set the output of the honest party to whatever
value it wishes. Thus, a cheati input is used to model a protocol execution
in which the real-model adversary decides to cheat. However, as required,
this cheating is guaranteed to be detected with probability at least ϵ. Note
that if the cheat attempt is not detected then the adversary is given “full
cheat capability”, including the ability to determine the honest party’s
output.

The idea behind the new ideal model is that given the above instructions,
the adversary in the ideal model can choose to cheat, with the caveat that its
cheating is guaranteed to be detected with probability at least ϵ. We stress
that since the capability to cheat is given through an “input” that is provided
to the trusted party, the adversary’s decision to cheat must be made before
the adversary learns anything (and thus independently of the honest party’s
input and the output).

34 2 Definitions

We are now ready to present the modified ideal model. Let ϵ : N → [0, 1]
be a function. Then, the ideal execution for a function f : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ × {0, 1}∗ with parameter ϵ proceeds as follows:

Inputs: Let x denote the input of party P1, and let y denote the input of
party P2. The adversary A also has an auxiliary input z.

Send inputs to trusted party: The honest party Pj sends its received
input to the trusted party. The corrupted party Pi, controlled by A, may
abort (by replacing the input with a special aborti or corruptedi message),
send its received input, or send some other input of the same length to the
trusted party. This decision is made by A and may depend on the input
value of Pi and the auxiliary input z. Denote the pair of inputs sent to the
trusted party by (x′, y′).

Abort options: If a corrupted party sends aborti to the trusted party as
its input, then the trusted party sends aborti to the honest party and halts.
If a corrupted party sends corruptedi to the trusted party as its input, then
the trusted party sends corruptedi to the honest party and halts.

Attempted cheat option: If a corrupted party sends cheati to the trusted
party as its input, then the trusted party works as follows:

1. With probability ϵ, the trusted party sends corruptedi to the adversary
and the honest party.

2. With probability 1− ϵ, the trusted party sends undetected to the adver-
sary along with the honest party’s input. Following this, the adversary
sends the trusted party an output value τ of its choice for the honest
party. The trusted party then sends τ to Pj as its output (where Pj is
the honest party).

If the adversary sent cheati, then the ideal execution ends at this point.
Otherwise, the ideal execution continues below.

Trusted party sends output to adversary: At this point the trusted
party computes f1(x

′, y′) and f2(x
′, y′) and sends fi(x

′, y′) to Pi (i.e., it
sends the corrupted party its output).

Adversary instructs trusted party to continue or halt: After receiv-
ing its output, the adversary sends either continue or aborti to the trusted
party. If the trusted party receives continue then it sends fj(x

′, y′) to the
honest party Pj . Otherwise, if it receives aborti, it sends aborti to the
honest party Pj .

Outputs: The honest party always outputs the output value it obtained
from the trusted party. The corrupted party outputs nothing. The adver-
sary A outputs any arbitrary (probabilistic polynomial-time computable)
function of the initial inputs of the corrupted party, the auxiliary input z,
and the value fi(x

′, y′) obtained from the trusted party.

The output of the honest party and the adversary in an execution of the
above ideal model is denoted by idealscϵ

f,S(z),i(x, y, n).

2.4 Security in the Presence of Covert Adversaries 35

Notice that there are two types of “cheating” here. The first is the clas-
sic abort and is used to model “early aborting” due to the impossibility of
achieving fairness in general when there is no honest majority. The other
type of cheating in this ideal model is more serious for two reasons: first, the
ramifications of the cheating are greater (the adversary may learn the hon-
est party’s input and may be able to determine its output), and second, the
cheating is only guaranteed to be detected with probability ϵ. Nevertheless,
if ϵ is high enough, this may serve as a deterrent. We stress that in the ideal
model the adversary must decide whether to cheat obliviously of the honest
party’s input and before it receives any output (and so it cannot use the
output to help it decide whether or not it is “worthwhile” cheating). We have
the following definition.

Definition 2.4.1 (security – strong explicit cheat formulation [3]): Let f
and π be as in Definition 2.2.1, and let ϵ : N→ [0, 1] be a function. Protocol
π is said to securely compute f in the presence of covert adversaries with ϵ-
deterrent if for every non-uniform probabilistic polynomial-time adversary A
for the real model, there exists a non-uniform probabilistic polynomial-time
adversary S for the ideal model such that for every i ∈ {1, 2}:{

idealscϵ
f,S(z),i(x, y, n)

}
x,y,z,n

c≡
{
realπ,A(z),i(x, y, n)

}
x,y,z,n

where x, y, z ∈ {0, 1}∗ under the constraint that |x| = |y|, and n ∈ N.

2.4.3 Cheating and Aborting

It is important to note that in the above definition, a party that halts mid-
way through the computation may be considered a “cheat” (this is used in
an inherent way when constructing protocols later). Arguably, this may be
undesirable due to the fact that an honest party’s computer may crash (such
unfortunate events may not even be that rare). Nevertheless, we argue that
as a basic definition it suffices. This is due to the fact that it is possible for
all parties to work by storing their input and random tape on disk before
they begin the execution. Then, before sending any message, the incoming
messages that preceded it are also written to disk. The result of this is that
if a party’s machine crashes, it can easily reboot and return to its previous
state. (In the worst case the party will need to request a retransmit of the last
message if the crash occurred before it was written.) We therefore believe that
parties cannot truly hide behind the excuse that their machine crashed (it
would be highly suspicious that someone’s machine crashed in an irreversible
way that also destroyed their disk at the critical point of a secure protocol
execution).

36 2 Definitions

Despite the above, it is possible to modify the definition so that honest
halting is never considered cheating. In order to do this, we introduce the
notion of “non-halting detection accuracy” so that if a party halts early,
but otherwise does not deviate from the protocol specification, then it is not
considered cheating. We formalize this by considering fail-stop adversaries who
act semi-honestly except that they may halt early. Formally:

Definition 2.4.2 Let π be a two-party protocol, let A be an adversary, and
let i be the index of the corrupted party. The honest party Pj is said to de-
tect cheating in π if its output in π is corruptedi; this event is denoted by
outputj(realπ,A(z),i(x, y, n)) = corruptedi. The protocol π is called non-
halting detection accurate if for every fail-stop adversary A, the probability
that Pj detects cheating in π is negligible.

Definition 2.4.1 can then be modified by requiring that π be non-halting
detection accurate. We remark that although this strengthening is clearly
desirable, it may also be prohibitive. Nevertheless, as we will see in Chapter 5,
it is possible to efficiently obtain this stronger guarantee for the case of general
protocols.

2.4.4 Relations Between Security Models

In order to better understand the definition of security in the presence of
covert adversaries, we present two propositions that show the relation be-
tween security in the presence of covert adversaries and security in the pres-
ence of malicious and semi-honest adversaries.

Proposition 2.4.3 Let π be a protocol that securely computes some func-
tionality f with abort in the presence of malicious adversaries, as in Defini-
tion 2.3.1. Then, π securely computes f in the presence of covert adversaries
with ϵ-deterrent, for every 0 ≤ ϵ ≤ 1.

This proposition follows from the simple observation that according to
Definition 2.3.1, there exists a simulator that always succeeds in its simula-
tion. Thus, the same simulator works here (there is simply no need to ever
send a cheat input).

Next, we consider the relation between covert and semi-honest adversaries.
As we have discussed in Section 2.3.3, security for malicious adversaries only
implies security for semi-honest adversaries if the semi-honest adversary is
allowed to modify its input before the execution begins. This same argument
holds for covert adversaries and we therefore consider augmented semi-honest
adversaries. We have the following:

2.4 Security in the Presence of Covert Adversaries 37

Proposition 2.4.4 Let π be a protocol that securely computes some func-
tionality f in the presence of covert adversaries with ϵ-deterrent, for ϵ(n) ≥
1/poly(n). Then, π securely computes f in the presence of augmented semi-
honest adversaries.

Proof. Let π securely compute f in the presence of covert adversaries with
ϵ-deterrent, where ϵ(n) ≥ 1/poly(n). The first observation is that since honest
parties cannot send abort, corrupted or cheat instructions in the ideal model,
it holds that when both parties are honest in a real execution of π, the values
abort and corrupted appear in the output with only negligible probability.

Consider now the case of an augmented semi-honest adversary A that
controls one of the parties, and let S be the simulator for A. We claim that
S sends abort, corrupted or cheat in the ideal model with at most negligible
probability. This is due to the fact that the output of the honest party in an
execution with A is indistinguishable from its output when both parties are
honest (because the distribution over the messages received by the honest
party in both executions is identical). In particular, the honest party in an
execution with A outputs abort or corrupted with at most negligible proba-
bility. Now, in the ideal setting, an honest party outputs abort or corrupted
whenever S sends abort or corrupted (and so it can send these with only
negligible probability). Furthermore, an honest party outputs corrupted with
probability ϵ whenever S sends cheat. Since ϵ ≥ 1/poly(n), it follows that S
can send cheat also with only negligible probability. We therefore have that
the ideal model with such an S is the standard ideal model (with no cheating
possibility), and the augmented semi-honest simulator can just run S. We
stress that this only holds for the augmented semi-honest case, because S
may change the corrupted party’s inputs (we have no control over S) and so
the semi-honest simulator can only run S if it too can change the corrupted
party’s inputs.

We stress that if ϵ = 0 (or is negligible) then the definition of covert
adversaries requires nothing, and so the proposition does not hold for this
case.

We conclude that, as one may expect, security in the presence of covert
adversaries with ϵ-deterrent lies in between security in the presence of mali-
cious adversaries and security in the presence of semi-honest adversaries. If
1/poly(n) ≤ ϵ(n) ≤ 1− 1/poly(n) then it can be shown that Definition 2.4.1
is strictly different to both the semi-honest and malicious models (this is not
difficult to see and so details are omitted). However, as we show below, when
ϵ(n) = 1 − µ(n), Definition 2.4.1 is equivalent to security in the presence of
malicious adversaries (Definition 2.3.1).

Stated differently, the following proposition shows that the definition of
security for covert adversaries “converges” to the malicious model as ϵ ap-
proaches 1. In order to make this claim technically, we need to deal with the
fact that in the malicious model an honest party never outputs corruptedi,
whereas this can occur in the setting of covert adversaries even with ϵ = 1.

38 2 Definitions

We therefore define a transformation of any protocol π to π′ where the only
difference is that if an honest party should output corruptedi in π, then it
outputs aborti instead in π′. We have the following:

Proposition 2.4.5 Let π be a protocol and µ a negligible function. Then π
securely computes some functionality f in the presence of covert adversaries
with ϵ(n) = 1−µ(n) under Definition 2.4.1 if and only if π′ securely computes
f with abort in the presence of malicious adversaries.

Proof. The fact that security in the presence of malicious adversaries implies
security in the presence of covert adversaries has already been proven in
Proposition 2.4.3 (observe that Proposition 2.4.3 holds for all ϵ, including ϵ
that is negligibly close to 1). We now prove that security in the presence of
covert adversaries under Definition 2.4.1 with ϵ that is negligibly close to 1
implies security in the presence of malicious adversaries. This holds because
if the ideal adversary does not send cheati then the ideal execution is the
same as in the regular ideal model. Furthermore, if it does send cheati, it
is caught cheating with probability that is negligibly close to 1 and so the
protocol is aborted. Recall that by Definition 2.4.1, when the adversary is
caught cheating it learns nothing and so the effect is the same as an abort in
the regular ideal model (technically, the honest party has to change its output
from corruptedi to aborti as discussed above, but this makes no difference).
We conclude that when ϵ is negligibly close to 1, sending cheati is the same as
sending aborti and so the security is the same as in the presence of malicious
adversaries.

2.5 Restricted Versus General Functionalities

In this section, we show that it often suffices to construct a secure protocol
for a restricted type of functionality, and the result to general functionalities
can be automatically derived. This is most relevant for general constructions
that are based on a circuit that computes the functionality in question. As
we will see, in these cases the cost of considering the restricted types of
functionalities considered here is inconsequential. For the sake of clarity, our
general constructions will therefore all be for restricted functionalities of the
types defined below.

The claims in this section are all quite straightforward. We therefore
present the material somewhat informally, and leave formal claims and proofs
as an exercise to the reader.

2.5 Restricted Versus General Functionalities 39

2.5.1 Deterministic Functionalities

The general definition considers probabilistic functionalities where the output
f(x, y) is a random variable. A classic example of a probabilistic function-
ality is that of coin-tossing. For example, one could define f(1n, 1n) to be a
uniformly distributed string of length n.

We show that it suffices to consider deterministic functionalities when
constructing general protocols for secure computation. Specifically, we show
that given a protocol for securely computing any deterministic functional-
ity, it is possible to construct a secure protocol for computing any proba-
bilistic functionality. Let f = (f1, f2) be a two-party probabilistic function-
ality. We denote by f(x, y;w) the output of f upon inputs x and y, and
random tape w (the fact that f is probabilistic means that it has a uni-
formly distributed random tape). Next, define a deterministic functionality
g((x, r), (y, s)) = f(x, y; r ⊕ s), where (x, r) is P1’s input and (y, s) is P2’s
input, and assume that we have a secure protocol π′ for computing f ′. We
now present a secure protocol π for computing f that uses π′ for computing
f ′. Upon respective inputs x, y ∈ {0, 1}n, parties P1 and P2 choose uniformly
distributed strings r ←R {0, 1}q(n) and s ←R {0, 1}q(n), respectively, where
q(n) is an upper bound on the number of random bits used to compute f .
They then invoke the protocol π′ for securely computing f ′ in order to both
obtain f ′((x, r), (y, s)) = f(x, y; r⊕ s). The fact that this yields a secure pro-
tocol for computing f follows from the fact that as long as either r or s is
uniformly distributed, the resulting w = r ⊕ s is also uniformly distributed.
This reduction holds for the case of semi-honest, malicious and covert adver-
saries.

Observe that in the case of general protocols that can be used for securely
computing any functionality, the complexity of the protocol for computing
f ′ is typically the same as for computing f . This is due to the fact that the
complexity of these protocols is related to the size of the circuit computing
the functionality, and the size of the circuit computing f ′ is of the same order
as the size of the circuit computing f . The only difference is that the circuit
for f ′ has q(n) additional exclusive-or gates, where q(n) is the length of f ’s
random tape.

2.5.2 Single-Output Functionalities

In the general definition of secure two-party computation, both parties receive
output and these outputs may be different. However, it is often far simpler
to assume that only party P2 receives output; we call such a functionality
single-output. We will show now that this suffices for the general case. That
is, we claim that any protocol that can be used to securely compute any
efficient functionality f(x, y) where only P2 receives output can be used to

40 2 Definitions

securely compute any efficient functionality f = (f1, f2) where party P1

receives f1(x, y) and party P2 receives f2(x, y). For simplicity, we will assume
that the length of the output of f1(x, y) is at most n, where n is the security
parameter. This can be achieved by simply taking n to be larger in case it is
necessary. We show this reduction separately for semi-honest and malicious
adversaries, as the semi-honest reduction is more efficient than the malicious
one.

Semi-honest adversaries. Let f = (f1, f2) be an arbitrary probabilistic
polynomial-time computable functionality and define the single-output func-
tionality f ′ as follows: f ′((x, r), (y, s)) = (f1(x, y) ⊕ r ∥ f2(x, y) ⊕ s) where
a∥b denotes the concatenation of a with b. Now, given a secure protocol π′

for computing the single-output functionality f ′ where P2 only receives the
output, it is possible to securely compute the functionality f = (f1, f2) as
follows. Upon respective inputs x, y ∈ {0, 1}n, parties P1 and P2 choose uni-
formly distributed strings r ←R {0, 1}q(n) and s ←R {0, 1}q(n), respectively,
where q(n) is an upper bound on the output length of f on inputs of length
n. They then invoke the protocol π′ for securely computing f ′ in order for
P2 to obtain f ′((x, r), (y, s)); denote the first half of this output by v and
the second half by w. Upon receiving (v, w), party P2 sends v to P1, which
then computes v ⊕ r and obtains f1(x, y). In addition, party P2 computes
w ⊕ s and obtains f2(x, y). It is easy to see that the resulting protocol se-
curely computes f . This is due to the fact that r completely obscures f1(x, y)
from P2. Thus, neither party learns more than its own input. (In fact, the
strings f1(x, y)⊕r and f2(x, y)⊕s are uniformly distributed and so are easily
simulated.)

As in the case of probabilistic versus deterministic functionalities, the size
of the circuit computing f ′ is of the same order as the size of the circuit
computing f . The only difference is that f ′ has one additional exclusive-or
gate for every circuit-output wire.

Malicious adversaries. Let f = (f1, f2) be as above; we construct a proto-
col in which P1 receives f1(x, y) and P2 receives f2(x, y) that is secure in the
presence of malicious adversaries. As a building block we use a protocol for
computing any efficient functionality, with security for malicious adversaries,
with the limitation that only P2 receives output. As in the semi-honest case,
P2 will also receive P1’s output in encrypted format, and will then hand it
to P1 after the protocol concludes. However, a problem arises in that P2 can
modify the output that P1 receives (recall that the adversary may be mali-
cious here). In order to prevent this, we add message authentication to the
encrypted output.

Let r, a, b ←R {0, 1}n be randomly chosen strings. Then, in addition to
x, party P1’s input includes the elements r, a and b. Furthermore, define a
functionality g (that has only a single output) as follows:

g((r, a, b, x), y) = (α, β, f2(x, y))

2.5 Restricted Versus General Functionalities 41

where α = r + f1(x, y), β = a · α + b, and the arithmetic operations are
defined over GF [2n]. Note that α is a one-time pad encryption of P1’s output
f1(x, y), and β is an information-theoretic message authentication tag of α
(specifically, aα + b is a pairwise-independent hash of α). Now, the parties
compute the functionality g, using a secure protocol in which only P2 receives
output. Following this, P2 sends the pair (α, β) to P1. Party P1 checks whether
β = a · α+ b; if yes, it outputs α− r, and otherwise it outputs abort2.

It is easy to see that P2 learns nothing about P1’s output f1(x, y), and that
it cannot alter the output that P1 will receive (beyond causing it to abort),
except with probability 2−n. We remark that it is also straightforward to
construct a simulator for the above protocol. Formally, proving the security of
this transformation requires a modular composition theorem; this is discussed
in Section 2.7 below.

As is the case for the previous reductions above, the circuit for computing g
is only mildly larger than that for computing f . Thus, the modification above
has only a mild effect on the complexity of the secure protocol (assuming
that the complexity of the original protocol, where only P2 receives output,
is proportional to the size of the circuit computing f as is the case for the
protocol below).

2.5.3 Non-reactive Functionalities

As described in Section 2.3.2, a reactive functionality is one where the com-
putation is carried out over multiple phases, and the parties may choose their
inputs in later phases based on the outputs that they have already received.
Recall that such a reactive functionality can be viewed as a series of func-
tionalities (f1, f2, . . .) such that the input to f j is the tuple (xj , yj , σj−1)
and the output includes the parties’ outputs and state information σj ; see

Section 2.3.2 for more details. We denote by f j
1 and f j

2 the corresponding
outputs of parties P1 and P2 from f j , and by σj the state output from f j .

In this section, we show that it is possible to securely compute any reactive
functionality given a general protocol for computing non-reactive function-
alities. The basic idea behind the reduction is the same as for same-output
functionalities (for the semi-honest case) and single-output functionalities
(for the malicious case). Specifically, the parties receive the same output as
usual, but also receive random shares of the state at each stage; i.e., one party
receives a random pad and the other receives the state encrypted by this pad.
This ensures that neither party learns the internal state of the reactive func-
tionality. Observe that although this suffices for the semi-honest case, it does
not suffice for the case of malicious adversaries, which may modify the values
that they are supposed to input. Thus, for the malicious case, we also add
a message authentication tag to prevent any party from modifying the share
of the state received in the previous stage.

42 2 Definitions

Semi-honest adversaries. Let (f1, f2, . . .) be the series of functionalities
defining the reactive functionality. First, we define a series of functionalities
(g1, g2, . . .) such that

gj
(
(xj , σ

1
j−1), (yj , σ

2
j−1)

)
=

((
f j
1 (xj , yj , σ

1
j−1 ⊕ σ2

j−1), σ
1
j

)
,
(
f j
2 (xj , yj , σ

1
j−1 ⊕ σ2

j−1), σ
2
j

))
where σ1

j and σ2
j are uniformly distributed strings under the constraint that

σ1
j ⊕ σ2

j = σj (the state after the jth stage). That is, gj receives input

(xj , σ
1
j−1) from P1 and input (yj , σ

2
j−1) from P2 and then computes f j on

inputs (xj , yj , σj−1) where σj−1 = σ1
j−1 ⊕ σ2

j−1. In words, gj receives the
parties’ inputs to the phase, together with a sharing of the state from the
previous round. Functionality gj then outputs the phase outputs to each
party, and a sharing of the state from this round of computation.

Malicious adversaries. As we have mentioned, the solution for semi-honest
adversaries does not suffice when considering malicious adversaries because
nothing prevents the adversary from modifying its share of the state. This
is solved by also having party P1 receive a MAC (message authentication
code) key k1 and a MAC tag t1j = MACk2(σ

1
j), where the keys k1, k2 are

chosen randomly in the phase computation and σ1
j is the share of the current

state that P1 holds. Likewise, P2 receives k2 and t2j = MACk1(σ
2
j). Then,

the functionality in the (j + 1)th phase receives the parties’ phase-inputs,
shares σ1

j and σ2
j of σj , keys k1, k2. and MAC-tags t1j , t

2
j . The functionality

checks the keys and MACs and if the verification succeeds, it carries out the
phase computation with the inputs and given state. By the security of the
MAC, a malicious adversary is unable to change the current state, except
with negligible probability.

2.6 Non-simulation-Based Definitions

2.6.1 Privacy Only

The definition of security that follows the ideal/real simulation paradigm
provides strong security guarantees. In particular, it guarantees privacy, cor-
rectness, independence of inputs and more. However, in some settings, it may
be sufficient to guarantee privacy only. We warn that this is not so simple
and in many cases it is difficult to separate privacy from correctness and in-
dependence of inputs. For example, consider a function f with the property
that for every y there exists a xy such that f(xy, y) = y. Now, if party P1

can somehow make its input x depend on P2’s input (something which is not
possible when independence of inputs is guaranteed), then it may be able to

2.6 Non-simulation-Based Definitions 43

always set x = xy and learn P2’s input in entirety. (We stress that although
this sounds far fetched, such attacks are actually sometimes possible.)

Another difficulty that arises when defining privacy is that it typically
depends very much on the function being computed. Intuitively, we would
like to require that if two different inputs result in the same output, then
no adversarial party can tell which of the two inputs the other party used.
In other words, we would like to require that for every adversarial P1 and
input x, party P1 cannot distinguish whether P2 used y or y′ when the output
is f(x, y) and it holds that f(x, y) = f(x, y′). However, such a formulation
suffers from a number of problems. First, if f is 1–1 no privacy guarantees are
provided at all, even if it is hard to invert. Second, the formulation suffers from
the exact problem described above. Namely, if it is possible for P1 to implicitly
choose x = xy based on y (say by modifying a commitment to y that it
receives from P2) so that f(xy, y) reveals more information about y than “the
average x”, then privacy is also breached. Finally, we remark that (sequential)
composition theorems, like those of Section 2.7, are not known for protocols
that achieve privacy only. Thus, it is non-trivial to use protocols that achieve
privacy only as subprotocols when solving large protocol problems.

Despite the above problems, it is still sometimes possible to provide a
workable definition of privacy that provides non-trivial security guarantees
and is of interest. Due to the difficulty in providing a general definition, we
will present a definition for one specific function in order to demonstrate how
such definitions look. For this purpose, we consider the oblivious transfer
function. Recall that in this function, there is a sender S with a pair of input
strings (x0, x1) and a receiver R with an input bit σ. The output of the
function is nothing to the sender and the string xσ for the receiver. Thus,
a secure oblivious transfer protocol has the property that the sender learns
nothing about σ while the receiver learns at most one of the strings x0, x1.
Unfortunately, defining privacy here without resorting to the ideal model is
very non-trivial. Specifically, it is easy to define privacy in the presence of a
malicious sender S∗; we just say that S∗ cannot distinguish the case where R
has input 0 from the case where it has input 1. However, it is more difficult
to define privacy in the presence of a malicious receiver R∗ because it does
learn something. A naive approach to defining this says that for some bit b it
holds that R∗ knows nothing about xb. However, this value of b may depend
on the messages sent during the oblivious transfer and so cannot be fixed
ahead of time (see the discussion above regarding independence of inputs).

Fortunately, for the case of two-message oblivious transfer (where the re-
ceiver sends one message and the sender replies with a single message) it is
possible to formally define this. The following definition of security for obliv-
ious transfer is based on [42] and states that replacing one of x0 and x1 with
some other x should go unnoticed by the receiver. The question of which of
x0, x1 to replace causes a problem which is solved in the case of a two-message
protocol by fixing the first message; see below. (In the definition below we
use the following notation: for a two-party protocol with parties S and R,

44 2 Definitions

we denote by viewS(S(1
n, a), R(1n, b)) the view of S in an execution where

it has input a, R has input b, and the security parameter is n. Likewise, we
denote the view of R by viewR(S(1

n, a), R(1n, b)).

Definition 2.6.1 A two-message two-party probabilistic polynomial-time
protocol (S,R) is said to be a private oblivious transfer if the following holds:

• Non-triviality: If S and R follow the protocol then after an execution
in which S has for input any pair of strings x0, x1 ∈ {0, 1}∗, and R has
for input any bit σ ∈ {0, 1}, the output of R is xσ.

• Privacy in the case of a malicious S∗: For every non-uniform prob-
abilistic polynomial-time S∗ and every auxiliary input z ∈ {0, 1}∗, it holds
that

{viewS∗(S∗(1n, z), R(1n, 0))}n∈N
c≡ {viewS∗(S∗(1n, z), R(1n, 1))}n∈N .

• Privacy in the case of a malicious R∗: For every non-uniform de-
terministic polynomial-time receiver R∗, every auxiliary input z ∈ {0, 1}∗,
and every triple of inputs x0, x1, x ∈ {0, 1}∗ such that |x0| = |x1| = |x| it
holds that either:

{viewR∗ (S(1n, (x0, x1));R
∗(1n, z))}n∈N

c
≡ {viewR∗ (S(1n, (x0, x));R

∗(1n, z))}n∈N

or

{viewR∗ (S(1n, (x0, x1));R
∗(1n, z))}n∈N

c
≡ {viewR∗ (S(1n, (x, x1));R

∗(1n, z))}n∈N .

The way to view the above definition of privacy in the case of a malicious
R∗ is that R∗’s first message, denoted by R∗(1n, z), fully determines whether
it should receive x0 or x1. If it determines for example that it should receive
x0, then its view (i.e., the distribution over S’s reply) when S’s input is
(x0, x1) is indistinguishable from its view when S’s input is (x0, x). Clearly
this implies that R∗ cannot learn anything about x1 when it receives x0 and
vice versa. In addition, note that since R∗ sends its message before receiving
anything from S, and since this message fully determines R∗’s input, we have
that the problem of independence of inputs discussed above does not arise.

Note that when defining the privacy in the case of a malicious R∗ we chose
to focus on a deterministic polynomial-time receiver R∗. This is necessary in
order to fully define the message R∗(z) for any given z, which in turn fully
defines the string xb that R∗(z) does not learn. By making R∗ non-uniform,
we have that this does not weaken the adversary (since R∗’s advice tape can
hold its “best coins”). We remark that generalizing this definition to protocols
that have more than two messages is non-trivial. Specifically, the problem of
independence of inputs described above becomes difficult again when more
than two messages are sent.

The above example demonstrates that it is possible to define “privacy
only” for secure computation. However, it also demonstrates that this task

2.6 Non-simulation-Based Definitions 45

can be very difficult. In particular, we do not know of a satisfactory definition
of privacy for oblivious transfer with more than two rounds. In general, one
can say that when a party does not receive output, it is easy to formalize
privacy because it learns nothing. However, when a party does receive output,
defining privacy without resorting to the ideal model is problematic (and
often it is not at all clear how it can be achieved).

We conclude with one important remark regarding “privacy-only” defini-
tions. As we have mentioned, an important property of security definitions
is a composition theorem that guarantees certain behavior when the secure
protocol is used as a subprotocol in another larger protocol. No such general
composition theorems are known for definitions that follow the privacy-only
approach. As such, this approach has a significant disadvantage.

2.6.2 One-Sided Simulatability

Another approach to providing weaker, yet meaningful, security guarantees
is that of one-sided simulation. This notion is helpful when only one party
receives output while the other learns nothing. As discussed above in Sec-
tion 2.6.1, when a party should learn nothing (i.e., when it has no output),
it is easy to define privacy via indistinguishability as for encryption. Specif-
ically, it suffices to require that the party learning nothing is not able to
distinguish between any two inputs of the other party.1 In contrast, the diffi-
culty of defining privacy appropriately for the party that does receive output
is overcome by requiring full simulation in this case. That is, consider a pro-
tocol/functionality where P2 receives output while P1 learns nothing. Then,
in the case where P1 is corrupted we require that it not be able to learn any-
thing about P2’s input and formalize this via indistinguishability. However,
in the case where P2 is corrupted, we require the existence of a simulator that
can fully simulate its view, as in the definition of Section 2.3. This is helpful
because it enables us to provide a general definition of security for problems
of this type where only one party receives output. Furthermore, it turns out
that in many cases, it is possible to achieve high efficiency when “one-sided
simulation” is sufficient and “full simulation” is not required.

It is important to note that this is a relaxed level of security and does
not achieve everything we want. For example, a corrupted P1 may be able
to make its input depend on the other party’s input, and may also be able
to cause the output to be distributed incorrectly. Thus, this notion is not
suitable for all protocol problems. Such compromises seem inevitable given
the current state of the art, where highly-efficient protocols that provide full
simulation-based security in the presence of malicious adversaries seem very

1 Note that this only makes sense when the party receives no output. Otherwise, if it does

receive output, then the other party’s input has influence over that output and so it is
unreasonable to say that it is impossible to distinguish between any two inputs.

46 2 Definitions

hard to construct. We stress that P2 cannot carry out any attacks, because
full simulation is guaranteed in the case where it is corrupted.

The definition. Let f be a function f : {0, 1}∗×{0, 1}∗ → {0, 1}∗ with only
a single output which is designated for P2. Let realπ,A(z),i(x, y, n) denote the
outputs of the honest party and the adversary A (controlling party Pi) after
a real execution of protocol π, where P1 has input x, P2 has input y, A has
auxiliary input z, and the security parameter is n. Let idealf,S(z),i(x, y, n)
be the analogous distribution in an ideal execution with a trusted party that
computes f for the parties and hands the output to P2 only. Finally, let
viewAπ,A(z),i(x, y, n) denote the view of the adversary after a real execution
of π as above. Then, we have the following definition:

Definition 2.6.2 Let f be a functionality where only P2 receives output.
We say that a protocol π securely computes f with one-sided simulation if the
following holds:

1. For every non-uniform ppt adversary A controlling P2 in the real model,
there exists a non-uniform ppt adversary S for the ideal model, such that{

realπ,A(z),2(x, y, n)
}
x,y,z,n

c≡
{
idealf,S(z),2(x, y, n)

}
x,y,z,n

where n ∈ N, x, y, z ∈ {0, 1}∗ and |x| = |y|.
2. For every non-uniform ppt adversary A controlling P1;{

viewAπ,A(z),1(x, y, n)
}
x,y,y′,z,n

c≡
{
viewAπ,A(z),1(x, y

′, n)
}
x,y,y′,z,n

(2.3)

where n ∈ N, x, y, y′, z ∈ {0, 1}∗ and |x| = |y| = |y′|.

Note that the ensembles in (2.3) are indexed by two different inputs y and
y′ for P2. The requirement is that A cannot distinguish between the cases
where P2 used the first input y and the second input y′.

2.7 Sequential Composition – Simulation-Based
Definitions

A protocol that is secure under sequential composition maintains its secu-
rity when run multiple times, as long as the executions are run sequentially
(meaning that each execution concludes before the next execution begins).
Sequential composition theorems are theorems that state “if a protocol is
secure in the stand-alone model under definition X, then it remains secure
under sequential composition”. Thus, we are interested in proving protocols
secure under Definitions 2.2.1, 2.3.1 and 2.4.1 (for semi-honest, malicious and
covert adversaries), and immediately deriving their security under sequential

2.7 Sequential Composition – Simulation-Based Definitions 47

composition. This is important for two reasons. First, sequential composi-
tion constitutes a security goal within itself as security is guaranteed even
when parties run many executions, albeit sequentially. Second, sequential
composition theorems are useful tools that help in writing proofs of security.
Specifically, when constructing a protocol that is made up of a number of
secure subprotocols, it is possible to analyze the security of the overall pro-
tocol in a modular way, because the composition theorems tell us that the
subprotocols remain secure in this setting.

We do not present proofs of the sequential composition theorems for the
semi-honest and malicious cases as these already appear in [32]; see Sections
7.3.1 and 7.4.2 respectively. However, we do present a formal statement of
the theorems as we will use them in our proofs of security of the protocols. In
addition, we provide a proof of sequential composition for the case of covert
adversaries.

Modular sequential composition. The basic idea behind the formulation
of the modular sequential composition theorems is to show that it is possible
to design a protocol that uses an ideal functionality as a subroutine, and
then analyze the security of the protocol when a trusted party computes this
functionality. For example, assume that a protocol is constructed using obliv-
ious transfer as a subroutine. Then, first we construct a protocol for oblivious
transfer and prove its security. Next, we prove the security of the protocol
that uses oblivious transfer as a subroutine, in a model where the parties have
access to a trusted party computing the oblivious transfer functionality. The
composition theorem then states that when the “ideal calls” to the trusted
party for the oblivious transfer functionality are replaced with real executions
of a secure protocol computing this functionality, the protocol remains secure.
We begin by presenting the “hybrid model” where parties communicate by
sending regular messages to each other (as in the real model) but also have
access to a trusted party (as in the ideal model).

The hybrid model. We consider a hybrid model where parties both inter-
act with each other (as in the real model) and use trusted help (as in the
ideal model). Specifically, the parties run a protocol π that contains “ideal
calls” to a trusted party computing some functionalities f1, . . . , fp(n). These
ideal calls are just instructions to send an input to the trusted party. Upon
receiving the output back from the trusted party, the protocol π continues.
The protocol π is such that fi is called before fi+1 for every i (this just de-
termines the “naming” of the calls as f1, . . . , fp(n) in that order). In addition,
if a functionality fi is reactive (meaning that it contains multiple stages like
a commitment functionality which has a commit and reveal stage), then no
messages are sent by the parties directly to each other from the time that
the first message is sent to fi to the time that all stages of fi have concluded.
We stress that the honest party sends its input to the trusted party in the
same round and does not send other messages until it receives its output (this
is because we consider sequential composition here). Of course, the trusted

48 2 Definitions

party may be used a number of times throughout the execution if π. However,
each use is independent (i.e., the trusted party does not maintain any state
between these calls). We call the regular messages of π that are sent amongst
the parties standard messages and the messages that are sent between parties
and the trusted party ideal messages. We stress that in the hybrid model, the
trusted party behaves as in the ideal model of the definition being considered.
Thus, the trusted party computing f1, . . . , fp(n) behaves as in Section 2.3
when malicious adversaries are being considered, and as in Section 2.4 for
covert adversaries.

Sequential composition – malicious adversaries. Let f1, . . . , fp(n) be
probabilistic polynomial-time functionalities and let π be a two-party proto-
col that uses ideal calls to a trusted party computing f1, . . . , fp(n). Further-
more, let A be a non-uniform probabilistic polynomial-time machine and let
i be the index of the corrupted party. Then, the f1, . . . , fp(n)-hybrid execution
of π on inputs (x, y), auxiliary input z to A and security parameter n, de-

noted hybrid
f1,...,fp(n)

π,A(z),i (x, y, n), is defined as the output vector of the honest

parties and the adversary A from the hybrid execution of π with a trusted
party computing f1, . . . , fp(n).

Let ρ1, . . . , ρp(n) be a series of protocols (as we will see ρi takes the place
of fi in π). We assume that each ρi has a fixed number rounds that is the
same for all parties. Consider the real protocol πρ1,...,ρp(n) that is defined as
follows. All standard messages of π are unchanged. When a party is instructed
to send an ideal message α to the trusted party to compute fj , it begins a real
execution of ρj with input α instead. When this execution of ρj concludes
with output y, the party continues with π as if y were the output received
by the trusted party for fj (i.e., as if it were running in the hybrid model).

The composition theorem states that if ρ1, . . . , ρp(n) securely compute
f1, . . . , fp(n) respectively, and π securely computes some functionality g in
the f1, . . . , fp(n)-hybrid model, then πρ1,...,ρp(n) securely computes g (in the
real model). As discussed above, the hybrid model that we consider here is
where the protocols are run sequentially. Thus, the fact that sequential com-
position only is considered is implicit in the theorem, via the reference to the
hybrid model.

Theorem 2.7.1 (modular sequential composition – malicious): Let p(n) be
a polynomial, let f1, . . . , fp(n) be two-party probabilistic polynomial-time func-
tionalities and let ρ1, . . . , ρp(n) be protocols such that each ρi securely com-
putes fi in the presence of malicious adversaries. Let g be a two-party func-
tionality and let π be a protocol that securely computes g in the f1, . . . , fp(n)-
hybrid model in the presence of malicious adversaries. Then, πρ1,...,ρp(n) se-
curely computes g in the presence of malicious adversaries.

Sequential composition – covert adversaries. Let f1, . . . , fp(n), π and
ρ1, . . . , ρp(n) be as above. Furthermore, define πρ1,...,ρp(n) exactly as in the
malicious model. Note, however, that in the covert model, a party may receive

2.7 Sequential Composition – Simulation-Based Definitions 49

corruptedk as output from ρj . In this case, as with any other output, it behaves
as instructed in π (corruptedk may be received as output both when the
real ρj is run and when the trusted party is used to compute fj because
we consider the covert ideal model here). The covert ideal model idealsc
depends on the deterrent factor because this determines the probability with
which the trusted party sends corrupted or undetected. Therefore, we refer
to the (f, ϵ)-hybrid model as one where the trusted party computes f and
uses the given ϵ. When considering protocols ρ1, . . . , ρp(n) we will refer to the
(f1, ϵ1), . . . , (fp(n), ϵp(n))-hybrid model, meaning that the trusted party uses
ϵi when computing fi (and the ϵ values may all be different). We have the
following:

Theorem 2.7.2 Let p(n) be a polynomial, let f1, . . . , fp(n) be two-party prob-
abilistic polynomial-time functionalities and let ρ1, . . . , ρp(n) be protocols such
that each ρi securely computes fi in the presence of covert adversaries with
deterrent ϵi. Let g be a two-party functionality and let π be a protocol that
securely computes g in the (f1, ϵ1), . . . , (fp(n), ϵp(n))-hybrid model in the pres-
ence of covert adversaries with ϵ-deterrent. Then, πρ1,...,ρp(n) securely com-
putes g in the presence of covert adversaries with ϵ-deterrent.

Proof (sketch). Theorem 2.7.2 can be derived as an almost immediate
corollary from the composition theorem of [11, 32] in the following way.
First, define a special functionality interface that follows the instructions of
the trusted party in Definition 2.4.1. That is, define a reactive functionality
(see Section 2.3.2) that receives inputs and writes outputs (this functional-
ity is modeled by an interactive Turing machine). The appropriate reactive
functionality here acts exactly like the trusted party (e.g., if it receives a
cheati message when computing fℓ, then it tosses coins and with probability
ϵℓ outputs corruptedi to the honest party and with probability 1 − ϵℓ gives
the adversary the honest party’s input and lets it chooses its output). Next,
consider the standard ideal model of Definition 2.3.1 with functionalities of
the above form. It is easy to see that a protocol securely computes some
functionality f under Definition 2.4.1 if and only if it is securely computes
the appropriately defined reactive functionality under Definition 2.3.1. This
suffices because the composition theorem of [11, 32] can be applied to Defi-
nition 2.3.1, yielding the result.

Observe that in Theorem 2.7.2 the protocols ρ1, . . . , ρp(n) and π may all
have different deterrent values. Thus the proof of π in the hybrid model must
take into account the actual deterrent values ϵ1, . . . , ϵp(n) of the protocols
ρ1, . . . , ρp(n), respectively.

Part II

General Constructions

In the next three chapters, we present efficient constructions for general
two-party computation, meaning that the protocols can be used to solve any
functionality given a circuit that computes that functionality. The efficiency
of these constructions depends on the size of the circuit, and thus these
constructions are useful for problems that have reasonably small circuits (de-
pending on the level of security required, this can range from some thousands
of gates to a million). In addition, the techniques and paradigms used in these
general constructions are important also for constructing efficient protocols
for specific problems of interest.

Chapter 3

Semi-honest Adversaries

In this chapter, we present Yao’s protocol for secure two-party computation
in the presence of semi-honest adversaries. The protocol has a constant num-
ber of rounds, and works by having the parties evaluate an “encrypted” or
“garbled” circuit such that they learn nothing from the evaluation but the
output itself. In particular, all intermediate values in the circuit evaluation
(which can reveal more information than is allowed) remain hidden from both
parties. We present the protocol for the case of a deterministic, non-reactive,
single-output functionality. As we have shown in Section 2.5, this suffices
for obtaining the secure computation of any probabilistic, reactive two-party
functionality at approximately the same cost.

3.1 An Overview of the Protocol

Let f be a polynomial-time functionality (assume for now that it is deter-
ministic), and let x and y be the parties’ respective inputs. The first step
is to view the function f as a boolean circuit C. In order to describe Yao’s
protocol, it is helpful to first recall how such a circuit is computed. Let x and
y be the parties’ inputs. Then, the circuit C(x, y) is computed gate by gate,
from the input wires to the output wires. Once the incoming wires to a gate
g have obtained values α, β ∈ {0, 1}, it is possible to give the outgoing wires
of the gate the value g(α, β). The output of the circuit is given by the val-
ues obtained in the output wires of the circuit. Thus, essentially, computing
a circuit involves allocating appropriate zero-one values to the wires of the
circuit. In the description below, we refer to four different types of wires in
a circuit: circuit-input wires (that receive the input values x and y), circuit-
output wires (that carry the value C(x, y)), gate-input wires (that enter some
gate g), and gate-output wires (that leave some gate g).

We now present a high-level description of Yao’s protocol. The construc-
tion is actually a “compiler” that takes any polynomial-time functionality

53C. Hazay, Y. Lindell, Efficient Secure Two-Party Protocols,
Information Security and Cryptography, DOI 10.1007/978-3-642-14303-8_3,
© Springer-Verlag Berlin Heidelberg 2010

54 3 Semi-honest Adversaries

f , or actually a circuit C that computes f , and constructs a protocol for
securely computing f in the presence of semi-honest adversaries. In a secure
protocol, the only value learned by a party should be its output. Therefore,
the values that are allocated to all wires that are not circuit-output should
not be learned by either party (these values may reveal information about
the other party’s input that could not be otherwise learned from the output).
The basic idea behind Yao’s protocol is to provide a method of computing a
circuit so that values obtained on all wires other than circuit-output wires are
never revealed. For every wire in the circuit, two random values are specified
such that one value represents 0 and the other represents 1. For example,
let w be the label of some wire. Then, two values k0w and k1w are chosen,
where kσw represents the bit σ. An important observation here is that even if
one of the parties knows the value kσw obtained by the wire w, this does not
help it to determine whether σ = 0 or σ = 1 (because both k0w and k1w are
identically distributed). Of course, the difficulty with such an idea is that it
seems to make computation of the circuit impossible. That is, let g be a gate
with incoming wires w1 and w2 and output wire w3. Then, given two random
values kσ1 and kτ2 , it does not seem possible to compute the gate because σ
and τ are unknown. We therefore need a method of computing the value of
the output wire of a gate (also a random value k03 or k13) given the value of
the two input wires to that gate.

In short, this method involves providing “garbled computation tables”
that map the random input values to random output values. However, this
mapping should have the property that given two input values, it is only
possible to learn the output value that corresponds to the output of the gate
(the other output value must be kept secret). This is accomplished by viewing
the four possible inputs to the gate, k01, k

1
1, k

0
2, and k12, as encryption keys.

Then, the output values k03 and k13, which are also keys, are encrypted under
the appropriate keys from the incoming wires. For example, let g be an OR
gate. Then, the key k13 is encrypted under the pairs of keys associated with
the values (1, 1), (1, 0) and (0, 1). In contrast, the key k03 is encrypted under
the pair of keys associated with (0, 0). See Table 3.1 below.

input wire w1 input wire w2 output wire w3 garbled computation table

k01 k02 k03 Ek0
1
(Ek0

2
(k03))

k01 k12 k13 Ek0
1
(Ek1

2
(k13))

k11 k02 k13 Ek1
1
(Ek0

2
(k13))

k11 k12 k13 Ek1
1
(Ek1

2
(k13))

Table 3.1 Garbled OR Gate

Notice that given the input wire keys kα1 and kβ2 corresponding to α and
β, and the four table values (found in the fourth column of Table 3.1), it is

possible to decrypt and obtain the output wire key k
g(α,β)
3 . Furthermore, as

3.1 An Overview of the Protocol 55

required above, this is the only value that can be obtained (the other keys
on the input wires are not known and so only a single table value can be

decrypted). In other words, it is possible to compute the output key k
g(α,β)
3

of a gate, and only that key, without learning anything about the real values
α, β or g(α, β). (We note that the values of the table are randomly ordered so
that a key’s position does not reveal anything about the value it is associated
with. Despite this random ordering, the specific construction is such that
given a pair of input wire keys, it is possible to locate the table entry that is
encrypted by those keys.)

So far we have described how to construct a single garbled gate. A gar-
bled circuit consists of garbled gates along with “output decryption tables”.
These tables map the random values on circuit-output wires back to their cor-
responding real values. That is, for a circuit-output wire w, the pairs (0, k0w)
and (1, k1w) are provided. Then, after obtaining the key kγw on a circuit-output
wire, it is possible to determine the actual output bit by comparing the key
to the values in the output decryption table.1 Notice that given the keys as-
sociated with inputs x and y, it is possible to (obliviously) compute the entire
circuit gate by gate. Then, having obtained the keys on the circuit-output
wires, these can be “decrypted” providing the result C(x, y).

The above construction can be described metaphorically using “locked
boxes”. The basic idea, as above, is that every wire is allocated two padlock
keys; one key is associated with the bit 0 and the other with the bit 1.
Then, for each gate four doubly locked boxes are provided, where each box is
associated with a row in the truth table computing the gate (i.e., one box is
associated with inputs (0, 0), another with (0, 1), and so on). The four boxes
are locked so that each pair of keys (one from each input wire) opens exactly
one box. Furthermore, in each box a single key relating to the output wire of
the gate is stored. This key is chosen so that it correctly associates the input
bits with the output bit of the gate. (For example, if the keys that open the
box are associated with 0 and 1 and the gate computes the and function,
then the key inside the box is the key associated with 0 on the output wire.)

The first important observation is that given the set of keys that are as-
sociated with the parties’ inputs, it is possible to “compute the circuit” by
opening the locked boxes one at a time (for each gate, only one box will
open). The process concludes at the output-gate boxes, which can contain
the actual output rather than a key. The second important observation is
that the computation of the circuit reveals absolutely no information beyond
the output itself. This is due to the fact that the keys are not labelled and so
it is impossible to know whether a given key is associated with 0 or with 1.
This all holds under the assumption that the keys associated with the circuit-
input wires are obtained in an “oblivious manner” that does not reveal the
association with the parties’ inputs. Furthermore, we must assume that only

1 Alternatively, in the output gates it is possible to directly encrypt 0 or 1 instead of k0w
or k1w, respectively.

56 3 Semi-honest Adversaries

a single set of keys is provided (and so in each gate only a single box can
be opened). Of course, in the actual garbled-circuit construction, double en-
cryption replaces doubly locked boxes and decryption keys replace physical
padlock keys.

We now proceed to informally describe Yao’s protocol. In this protocol, one
of the parties, henceforth the sender, constructs a garbled circuit and sends
it to the other party, henceforth the receiver. The sender and receiver then
interact so that the receiver obtains the input-wire keys that are associated
with the inputs x and y (this interaction is described below). Given these keys,
the receiver then computes the circuit as described, obtains the output and
concludes the protocol. This description only shows how the receiver obtains
its output, while ignoring the output of the sender. However, the receiver’s
output can include the sender’s output in encrypted form (where only the
sender knows the decryption key). Then, the receiver can just forward the
sender its output at the end of the computation. Since the sender’s output is
encrypted, the receiver learns nothing more than its own output, as required.

It remains for us to describe how the receiver obtains the keys for the
circuit-input wires. Here we differentiate between the inputs of the sender
and the inputs of the receiver. Regarding the sender, it simply sends the
receiver the values that correspond to its input. That is, if its ith input bit is 0
and the wire wi receives this input, then the sender just hands the receiver
the string k0i . Notice that since all of the keys are identically distributed,
the receiver can learn nothing about the sender’s input from these keys.
Regarding the receiver, this is more problematic. The sender cannot hand
it all of the keys pertaining to its input (i.e., both the 0 and 1 keys on the
receiver’s input wires), because this would enable the receiver to compute
more than just its output. (For a given input x of the sender, this would enable
the receiver to compute C(x, ỹ) for every ỹ. This is much more information
than a single value C(x, y).) On the other hand, the receiver cannot openly
tell the sender which keys to send it, because then the sender would learn the
receiver’s input. The solution to this is to use a 1-out-of-2 oblivious transfer
protocol [72, 25]. In such a protocol, a sender inputs two values x0 and x1 (in
this case, k0w and k1w for some circuit-input wire w), and a receiver inputs a
bit σ (in this case, corresponding to its appropriate input bit). The outcome
of the protocol is that the receiver obtains the value xσ (in this case, the key
kσw). Furthermore, the receiver learns nothing about the other value x1−σ, and
the sender learns nothing about the receiver’s input σ. By having the receiver
obtain its keys in this way, we obtain that (a) the sender learns nothing of
the receiver’s input value, and (b) the receiver obtains only a single set of
keys and so can compute the circuit on only a single value, as required. This
completes our high-level description of Yao’s protocol.

3.2 Tools 57

3.2 Tools

3.2.1 “Special” Private-Key Encryption

Our construction uses a private-key encryption scheme that has indistinguish-
able encryptions for multiple messages. Informally speaking, this means that
for every two (known) vectors of messages x and y, no polynomial-time adver-
sary can distinguish an encryption of the vector x from an encryption of the
vector y. We stress that according to our construction of Yao’s garbled cir-
cuit, the encryption scheme must be secure for multiple messages. Therefore
one-time pads cannot be used. In our proof of security, we will actually use
an encryption scheme that is secure under chosen-plaintext attacks (strictly
speaking this is not necessary, but it does simplify the presentation). We refer
the reader to [32, Chapter 5] for formal definitions of secure encryption.

We will require an additional property from the encryption scheme that we
use. Loosely speaking, we require that an encryption under one key will fall
in the range of an encryption under another key with negligible probability.
We also require that given the key k, it is possible to efficiently verify if a
given ciphertext is in the range of k. (These two requirements are very easily
satisfied, as demonstrated below.) The reason that we require these additional
properties is to enable the receiver to correctly compute the garbled circuit.
Recall that in every gate, the receiver is given two random keys that enable it
to decrypt and obtain the random key for the gate-output wire; see Table 3.1.
A problem that immediately arises here is how the receiver can know which
value is the intended decryption. (Note that it may be the case that all strings
can be decrypted.) By imposing the requirement that encryptions under one
key will almost never be valid encryptions under another key, and requiring
that this also be efficiently verifiable, it will hold that only one of the values
will be valid (except with negligible probability). The receiver will then take
the (single) correctly decrypted value as the key for the gate-output wire. We
now formally define the requirements on the encryption scheme:

Definition 3.2.1 Let (G,E,D) be a private-key encryption scheme and de-

note the range of a key in the scheme by Rangen(k)
def
= {Ek(x)}x∈{0,1}n .

1. We say that (G,E,D) has an elusive range if for every probabilistic
polynomial-time machine A, every polynomial p(·) and all sufficiently
large ns

Prk←G(1n)[A(1
n) ∈ Rangen(k)] <

1

p(n)
.

2. We say that (G,E,D) has an efficiently verifiable range if there exists a
probabilistic polynomial-time machine M such that M(1n, k, c) = 1 if and
only if c ∈ Rangen(k).

By convention, for every c /∈ Rangen(k), we have that Dk(c) = ⊥.

58 3 Semi-honest Adversaries

Notice that the requirements for an “elusive range” are quite weak. In
particular, the machine A is oblivious in that it is given no information on
k and no examples of ciphertexts within Rangen(k). Thus, A must “hit” the
range with no help whatsoever.

We now show that it is easy to construct encryption schemes with the
above properties. For example, let F = {fk} be a family of pseudorandom
functions, where fk : {0, 1}n → {0, 1}2n for k ∈ {0, 1}n. Then, define

Ek(x) = ⟨r, fk(r)⊕ x0n⟩

where x ∈ {0, 1}n, r ←R {0, 1}n and x0n denotes the concatenation of x
and 0n. A similar idea can be used to encrypt a message x ∈ {0, 1}ℓ(n) of
length ℓ(n) for an arbitrary polynomial ℓ(·), by setting the output of fk to
be of length ℓ(n) + n and concatenating n zeroes at the end.2 (This can be
achieved efficiently in practice by using an appropriate mode of operation
for block ciphers.) The fact that this encryption scheme has indistinguish-
able encryptions under chosen-plaintext attacks is well known. Regarding our
additional requirements:

1. Elusive range:Notice that if a truly random function frand was used instead
of fk, then the probability that a value c output by the machine A is in
the range of ⟨r, frand(r) ⊕ x0n⟩ is negligible. This follows from the fact
that obtaining such a c involves finding a value r and then predicting the
last n bits of frand(r) (notice that these last n bits are fully revealed in
frand(r) ⊕ x0n). Since frand is random, this prediction can succeed with
probability at most 2−n. Now, by the assumption that fk is pseudorandom,
it follows that a polynomial-time machine A will also succeed in generating
such a c with at most negligible probability. Otherwise, such an A could
be used to distinguish fk from a random function.

2. Efficiently verifiable range: Given k and c = ⟨r, s⟩, it is possible to compute
fk(r) and verify that the last n bits of fk(r) equal the last n bits of s. If
so, then it follows that c ∈ Rangen(k), and if not, then c /∈ Rangen(k).

We stress that there are many possible ways to ensure that P2 will obtain
the correct output of a garbled gate. For example, as described in [63], explicit
(and randomly permuted) indices may be used instead.3

Double-encryption security. In Yao’s protocol, the private-key encryp-
tion scheme is used in order to double encrypt values. As we have described,
the protocol works by double encrypting four values, where each double en-
cryption uses a different combination of the keys associated with the input
wires. Intuitively, given only two keys, it is possible to decrypt only one of the

2 In fact, the string of 0s can have any super-logarithmic length. We set it to be of length
n for simplicity.
3 We chose this method somewhat arbitrarily. We feel some preference due to the fact

that the gate description and circuit construction is the simplest this way. As we will see,
however, some price is paid in the proof of correctness.

3.2 Tools 59

values. However, formally, this must be proven. We define a double encryp-
tion experiment here and prove that any encryption scheme that is secure
under chosen-plaintext attacks is secure for double encryption here. We re-
mark that the experiment does not look very natural. However, it is exactly
what is needed in our proof of security. Let (G,E,D) be a private-key en-
cryption scheme and assume without loss of generality that G(1n) returns a
string of length n (i.e., the length of a key generated with security parame-
ter 1n is exactly n). We write E(k0, k1,m) = Ek0(Ek1(m)). The experiment
definition is as follows:

ExptdoubleA (n, σ)

1. The adversary A is invoked upon input 1n and outputs two keys
k0 and k1 of length n and two triples of messages (x0, y0, z0) and
(x1, y1, z1) where all messages are of the same length.

2. Two keys k′0, k
′
1 ← G(1n) are chosen for the encryption scheme.

3. A is given the challenge ciphertext

⟨E(k0, k
′
1, xσ), E(k′0, k1, yσ), E(k′0, k

′
1, zσ)⟩

as well as oracle access to E(·, k′1, ·) and E(k′0, ·, ·).4

4. A outputs a bit b and this is taken as the output of the experiment.

Security under double encryption simply means that the adversary outputs
1 when σ = 0 with almost the same probability as it outputs 1 when σ = 1.

Definition 3.2.2 An encryption scheme (G,E,D) is secure under chosen
double encryption if for every non-uniform probabilistic polynomial-time ma-
chine A, every polynomial p(·) and all sufficiently large ns,∣∣∣Pr [ExptdoubleA (n, 1) = 1

]
− Pr

[
ExptdoubleA (n, 0) = 1

]∣∣∣ < 1

p(n)
.

We now show that any encryption scheme that is secure (i.e., has indistin-
guishable encryptions) under chosen-plaintext attacks, is secure under chosen
double encryption. We remark that all security here is in the non-uniform
model (and so we assume security under chosen-plaintext attacks for non-
uniform adversaries). It is well known that under chosen-plaintext attacks,
security for a single message implies security for multiple messages (see [32,
Section 5.4]), and we will thus assume this in our proof. For the sake of com-
pleteness, we define the chosen-plaintext experiment for the case of multiple

4 Note that in the ciphertexts that A receives, at least one of the keys used is unknown to
A. In addition, the oracle access here means that A can provide any k and m to E(·, k′1, ·)
and receive back E(k, k′1,m); likewise for E(k′0, ·, ·).

60 3 Semi-honest Adversaries

messages. In fact, we consider only the case of two messages, because this
suffices for our proof later.

ExptcpaA (n, σ)

1. A key k ← G(1n) is chosen and the adversary A is invoked with
input 1n and oracle access to Ek(·). The adversary A outputs two
pairs of messages (x0, y0) and (x1, y1).

2. The challenge ciphertexts c1 = Ek(xσ) and c2 = Ek(yσ) are com-
puted.

3. A is given the pair (c1, c2) as well as continued oracle access to Ek(·)
4. A outputs a bit b and this is taken as the output of the experiment.

The definition of security under chosen-plaintext attacks is analogous to
Definition 3.2.2 except that ExptdoubleA is replaced with ExptcpaA . We are now
ready to state the lemma.

Lemma 3.2.3 Let (G,E,D) be a private-key encryption scheme that has
indistinguishable encryptions under chosen-plaintext attacks in the presence
of non-uniform adversaries. Then (G,E,D) is secure under chosen double
encryption.

Proof. In order to prove this lemma, we define a modified experiment,
denoted by Exptmod

A (n, σ), which is exactly the same as ExptdoubleA (σ) except
that the y part of the challenge ciphertext does not depend on σ. That
is, the challenge ciphertext equals ⟨E(k0, k

′
1, xσ), E(k′0, k1, y0), E(k′0, k

′
1, zσ)⟩;

note that xσ and zσ are encrypted as before, but y0 is always encrypted (even
if σ = 1). Clearly,

Pr
[
ExptdoubleA (n, 0) = 1

]
= Pr

[
Exptmod

A (n, 0) = 1
]

(3.1)

because in both cases, the encrypted values are x0, y0 and z0. We will prove
that for every non-uniform probabilistic polynomial-time adversary and for
some negligible function µ(·), the following two equations hold:∣∣∣Pr [Exptmod

A (n, 0) = 1
]
− Pr

[
Exptmod

A (n, 1) = 1
]∣∣∣ < µ(n); (3.2)∣∣∣Pr [Exptmod

A (n, 1) = 1
]
− Pr

[
ExptdoubleA (n, 1) = 1

]∣∣∣ < µ(n). (3.3)

Combining Equations (3.1) to (3.3), we obtain that (G,E,D) is secure under
chosen double encryption. We will prove (3.2); (3.3) is proven in an analogous
way.

We begin by modifying Exptmod
A in the following way. First, we claim that

indistinguishability holds even if the adversary A can choose k′0 by itself.
(Observe that once the “y” value is always taken to be y0, the value σ is

3.2 Tools 61

found only in the encryptions of xσ and zσ. Since both of these values are
encrypted with k′1, the adversary A cannot distinguish between them even if
it knows all other keys k0, k1 and k′0.) We can therefore let A choose k0, k1
and k′0. Given that this is the case, we need not generate E(k′0, k1, y0) as
part of the challenge ciphertext (because given k′0 and k1, A can compute it
by itself). For the same reason, we can remove the oracle E(k′0, ·, ·) from the
experiment. We therefore need only to prove that (3.2) holds for the further

modified experiment Exptmod′

A defined as follows:

Exptmod′

A (n, σ)

1. The adversary A is invoked upon input 1n and outputs three keys k0,
k1 and k′0 of length n and two pairs of messages (x0, z0) and (x1, z1)
where all messages are of the same length.

2. A key k′1 ← G(1n) is chosen for the encryption scheme.

3. A is given ⟨E(k0, k
′
1, xσ), E(k′0, k

′
1, zσ)⟩ as well as oracle access to

E(·, k′1, ·).
4. A outputs a bit b and this is taken as the output of the experiment.

From what we have stated above, if we prove that the analogue of (3.2) holds

for Exptmod′

A , then (3.2) itself clearly also holds. However, Exptmod′

A is now
almost identical to ExptcpaA . The only differences are:

1. In Exptmod′

A the challenge ciphertext is first encrypted with k′1 (the secret
key) and then with k0 or k′0, whereas in ExptcpaA the challenge ciphertext is
encrypted with the k′1 only. However, this clearly does not matter because
the adversary attacking the CPA scheme with secret key k′1 can know k0
and k′0 and so can compute this itself.

2. In Exptmod′

A the oracle given to the adversary is E(·, k′1, ·) whereas in ExptcpaA
it is Ek(·). However, since k and k′1 play the same role as the secretly chosen
key, it is clear that given oracle Ek′

1
(·) it is possible to efficiently emulate

the oracle E(·, k′1, ·). Therefore, this also makes no difference.

We conclude that (3.2) follows from the security of (G,E,D) under chosen-
plaintext attacks; the formal proof of this, and (3.3), can be derived in a
straightforward way from the above discussion and is thus left as an exercise
to the reader. We conclude that (G,E,D) is secure under chosen double
encryption, concluding the proof.

3.2.2 Oblivious Transfer

As we have mentioned, the 1-out-of-2 oblivious transfer functionality is de-
fined by ((x0, x1), σ) 7→ (λ, xσ) where λ denotes the empty string. For the

62 3 Semi-honest Adversaries

sake of self-containment, we will briefly describe the oblivious transfer pro-
tocol of [25], which is secure in the presence of semi-honest adversaries and
assumes any enhanced trapdoor permutation.5 Our description will be for
the case where x0, x1 ∈ {0, 1}; when considering semi-honest adversaries, the
general case can be obtained by running the single-bit protocol many times
in parallel.

PROTOCOL 3.2.4 (Oblivious Transfer)

• Inputs: P1 has x0, x1 ∈ {0, 1} and P2 has σ ∈ {0, 1}.
• The protocol:

1. P1 randomly chooses a trapdoor permutation (f, t) from a family of en-
hanced trapdoor permutations. P1 sends f (but not the trapdoor t) to P2.

2. P2 chooses a random vσ in the domain of f and computes wσ = f(vσ). In ad-

dition, P2 chooses a random w1−σ in the domain of f , using the “enhanced”
sampling algorithm (see Footnote 5). P2 sends (w0, w1) to P1.

3. P1 uses the trapdoor t and computes v0 = f−1(w0) and v1 = f−1(w1).
Then, it computes b0 = B(v0) ⊕ x0 and b1 = B(v1) ⊕ x1, where B is a

hard-core bit of f . Finally, P1 sends (b0, b1) to P2.
4. P1 computes xσ = B(vσ)⊕ bσ and outputs xσ .

Oblivious transfer – semi-honest model

Theorem 3.2.5 Assuming that (f, t) are chosen from a family of enhanced
trapdoor permutations, Protocol 3.2.4 securely computes the 1-out-of-2 obliv-
ious transfer functionality in the presence of static semi-honest adversaries.

Recall that since the oblivious transfer functionality is deterministic, it
suffices to use the simplified definition of Equations (2.1) and (2.2). Thus,
it is guaranteed that there exist simulators, denoted by Sot

1 and Sot
2 , that

generate the appropriate views of parties P1 and P2, respectively. We remark
that simulator Sot

1 receives P1’s input (x0, x1) and outputs a full view of P1

that includes the input (x0, x1), a random tape, and the incoming messages
that P1 expects to see in a real execution (of course, this view output by Sot

1 is
only computationally indistinguishable from a real view). Notice that P1 has
no output in the oblivious transfer functionality, and so Sot

1 receives only P1’s
input. The simulator Sot

2 receives P2’s input σ and output xσ and outputs
a view, as described above. The proof of Theorem 3.2.5 can be found in [32,
Section 7.3.2]. In Chapter 7, we present a number of efficient constructions
for oblivious transfer with security for more powerful adversaries.

5 Informally speaking, an enhanced trapdoor permutation has the property that it is
possible to sample from its range, so that given the coins used for sampling it is still hard
to invert the value. See [32, Appendix C.1] for more details.

3.3 The Garbled-Circuit Construction 63

3.3 The Garbled-Circuit Construction

In this section, we describe the garbled-circuit construction. Let C be a
boolean circuit that receives two inputs x, y ∈ {0, 1}n and outputs C(x, y) ∈
{0, 1}n (for simplicity, we assume that the input length, output length and
the security parameter are all of the same length n). We also assume that C
has the property that if a circuit-output wire comes from a gate g, then gate
g has no wires that are input to other gates.6 (Likewise, if a circuit-input
wire is itself also a circuit-output, then it is not input into any gate.)

We begin by describing the construction of a single garbled gate g in C.
The circuit C is boolean, and therefore any gate is represented by a function
g : {0, 1} × {0, 1} → {0, 1}. Now, let the two input wires to g be labelled
w1 and w2, and let the output wire from g be labelled w3. Furthermore, let
k01, k

1
1, k

0
2, k

1
2, k

0
3, k

1
3 be six keys obtained by independently invoking the key-

generation algorithm G(1n); for simplicity, assume that these keys are also

of length n. Intuitively, we wish to be able to compute k
g(α,β)
3 from kα1 and

kβ2 , without revealing any of the other three values k
g(1−α,β)
3 , k

g(α,1−β)
3 , and

k
g(1−α,1−β)
3 . The gate g is defined by the following four values:

c0,0 = Ek0
1
(Ek0

2
(k

g(0,0)
3)),

c0,1 = Ek0
1
(Ek1

2
(k

g(0,1)
3)),

c1,0 = Ek1
1
(Ek0

2
(k

g(1,0)
3)),

c1,1 = Ek1
1
(Ek1

2
(k

g(1,1)
3)),

where E is from a private-key encryption scheme (G,E,D) that has indis-
tinguishable encryptions under chosen-plaintext attacks, and has an elusive
efficiently verifiable range; see Section 3.2.1. The actual gate is defined by a
random permutation of the above values, denoted by c0, c1, c2, c3; from here
on we call them the garbled table of gate g. Notice that given kα1 and kβ2 , and

the values c0, c1, c2, c3, it is possible to compute the output of the gate k
g(α,β)
3

as follows. For every i, compute Dkβ
2
(Dkα

1
(ci)). If more than one decryption

returns a non-⊥ value, then output abort. Otherwise, define kγ3 to be the
only non-⊥ value that is obtained. (Notice that if only a single non-⊥ value

is obtained, then this will be k
g(α,β)
3 because it is encrypted under the given

keys kα1 and kβ2 . Later we will show that except with negligible probability,
only one non-⊥ value is indeed obtained.)

We are now ready to show how to construct the entire garbled circuit. Let
m be the number of wires in the circuit C, and let w1, . . . , wm be labels of
these wires. These labels are all chosen uniquely with the following exception:

6 This requirement is due to our labelling of gates described below; see Footnote 7. We

note that this assumption on C increases the number of gates by at most n.

64 3 Semi-honest Adversaries

if wi and wj are both output wires from the same gate g, then wi = wj

(this occurs if the fan-out of g is greater than one). Likewise, if a bit of a
party’s input enters more than one gate, then all circuit-input wires associated
with this bit will have the same label.7 Next, for every label wi, choose two
independent keys k0i , k

1
i ← G(1n); we stress that all of these keys are chosen

independently of the others. Now, given these keys, the four garbled values
of each gate are computed as described above and the results are permuted
randomly. Finally, the output or decryption tables of the garbled circuit are
computed. These tables simply consist of the values (0, k0i) and (1, k1i) where
wi is a circuit-output wire. (Alternatively, output gates can just compute 0 or
1 directly. That is, in an output gate, one can define cα,β = Ekα

1
(Ekβ

2
(g(α, β)))

for every α, β ∈ {0, 1}.)
The entire garbled circuit of C, denoted by G(C), consists of the garbled

table for each gate and the output tables. We note that the structure of C is
given, and the garbled version of C is simply defined by specifying the output
tables and the garbled table that belongs to each gate. This completes the
description of the garbled circuit.

Correctness. We now claim that the above garbled circuit enables correct
computation of the function. That is, given the appropriate input strings and
the garbled table for each gate, it is possible to obtain the correct output. It
is at this point that we use the “special” properties of the encryption scheme
described in Section 3.2.1.

Claim 3.3.1 (correctness): Let x = x1 · · ·xn and y = y1 · · · yn be two n-bit
inputs for C. Furthermore, let win1 , . . . , winn be the labels of the circuit-input
wires corresponding to x, and let winn+1 , . . . , win2n be the labels of the circuit-
input wires corresponding to y. Finally, assume that the encryption scheme
used to construct G(C) has an elusive and efficiently verifiable range. Then,
given the garbled circuit G(C) and the strings kx1

in1
, . . . , kxn

inn
, ky1

inn+1
, . . . , kyn

in2n
,

it is possible to compute C(x, y), except with negligible probability.

Proof. We begin by showing that every gate can be “decrypted” correctly.
Specifically, let g be a gate with incoming wires w1, w2 and outgoing wire
w3. Then, we show that for every α, β ∈ {0, 1}, given kα1 and kβ2 and the

garbled table of g, it is possible to determine k
g(α,β)
3 , except with negligible

probability. More formally, let c0, c1, c2, c3 be the garbled table of gate g. We

wish to find ci such that ci = Ekα
1
(Ekβ

2
(k

g(α,β)
3)). We claim that, except with

negligible probability, there exists a single i such that ci ∈ Rangen(k
α
1) and

7 This choice of labelling is not essential and it is possible to provide unique labels for all

wires. However, in such a case, the table of a gate with fan-out greater than 1 will have to
be redefined so that the keys of all of the wires leaving the gate are encrypted. We chose
this labelling because it seems to make for a simpler gate definition. We note, however,
that due to this choice, we must assume that if a gate g has an output wire exiting from

it, then it does not have another wire that exits it and enters another gate. As we have
mentioned, this increases the number of gates by at most n.

3.3 The Garbled-Circuit Construction 65

Dkα
1
(ci) ∈ Rangen(k

β
2). In other words, at most one of the values decrypts

correctly (from here on we use this informal term to mean what is formally
described above).

This follows from the fact that the encryption scheme has an elusive range.
Specifically, recall that the gate was constructed by first choosing independent
values for the gate-input and gate-output wires k01, k

1
1, k

0
2, k

1
2, k

0
3, k

1
3. Next, the

values c0, c1, c2 and c3 are computed. Now, assume that there are (at least)

two values ci, cj such that ci ∈ Range(kα1) andDkα
1
(ci) ∈ Rangen(k

β
2); likewise

for cj . Without loss of generality, assume also that ci = Ekα
1
(Ekβ

2
(k

g(α,β)
3));

i.e., assume that ci should be correctly decrypted. There are two cases re-
garding cj :

1. cj = Ekα
1
(Ek1−β

2
(z)) for z ∈ {k03, k13}:

By our assumption regarding cj , it follows that cj ∈ Range(kα1) and

Dkα
1
(cj) ∈ Rangen(k

β
2). This means that Ek1−β

2
(z) ∈ Rangen(k

β
2). Next,

as mentioned above, recall that k1−β2 , k03, and k13 are all uniform and

independent of kβ2 . Therefore, we can define a machine A that chooses
two random keys k′, k′′ ← G(1n) and outputs c = Ek′(k′′). The prob-
ability that c ∈ Range(k) for k ← G(1n) equals the probability that

Ek1−β
2

(z) ∈ Rangen(k
β
2) (recall that z ∈ {k03, k13}). Since the encryp-

tion scheme (G,E,D) has an elusive range, we conclude that the prob-
ability that c ∈ Rangen(k) is negligible. Therefore, the probability that

Ek1−β
2

(z) ∈ Rangen(k
β
2) is also negligible. This concludes this case.

2. cj = Ek1−α
1

(z) for z = Ek′(k′′) where k′ ∈ {k02, k12} and k′′ ∈ {k03, k13}:
In this case, we have that Ek1−α

1
(z) ∈ Rangen(k

α
1). Using the same ar-

guments as above, and noticing once again that k1−α1 , k′ and k′′ are all
independent of kα1 , we have that this case occurs also with at most negli-
gible probability.

Now, given that in every gate at most one ci decrypts correctly, we prove the
claim. In order to do this, we define that the key k is correct for wire wi if
k = kγi , where γ ∈ {0, 1} is the value obtained on wire wi when computing
the ungarbled circuit C on inputs (x, y). By induction on the circuit, starting
from the bottom and working up, we show that for every wire, the correct
key for the wire is obtained. This holds for the circuit-input wires by the fact
that the keys kx1

in1
, . . . , kxn

inn
, ky1

inn+1
, . . . , kyn

in2n
are given, and is the base case of

the induction. Assume that it is true for a gate g with gate-input wires wi and
wj and let kαi and kβj be the respective keys held for these wires. Then, by

the decryption procedure, it follows that the value k
g(α,β)
ℓ = Dkβ

j
(Dkα

i
(cα,β))

is obtained, where wℓ is the output wire of the gate.8 Furthermore, by the

8 This holds if there are no decryption errors (i.e., if for every k and every x, Dk(Ek(x)) =

x). If there is a negligible error in the decryption, then we will inherit a negligible error
probability here.

66 3 Semi-honest Adversaries

arguments shown above, this is the only value that is decrypted correctly.
Therefore, the correct key for the output wire of gate g is also obtained. This
concludes the inductive step.

It follows that the correct keys of the output wires of the circuit are ob-
tained, except with negligible probability. That is, the keys obtained for the
circuit-output wires all correspond to the output value C(x, y). Therefore, the
value obtained after using the output tables is exactly C(x, y), as required.

Removing the error probability. The above construction allows for a
negligible probability of error. This is due to two possible events: (a) in some
gate more than one value decrypts correctly, or (b) in some gate, the correct
value does not decrypt correctly. As we have mentioned in Footnote 8, this
second event can occur if the encryption scheme has decryption errors. This
problem can be removed by using a scheme without decryption errors (this
is not a limitation because decryption errors can always be removed [23]).

Regarding the first event causing error, this can be overcome in one of two
ways. First, when constructing the circuit, it is possible to check that an error
does not occur. Then, if an error has occurred, it is possible to reconstruct
the garbled circuit again, repeating until no errors occur. (For this to work,
we need to assume that the machine that verifies if a value is in the range of a
key runs in deterministic polynomial time, as is the case in our construction.
Alternatively, it suffices to assume that it has only a one-sided error and never
returns 1 when a value is not in the range.) The problem with this approach
is that the construction of the circuit now runs in expected, and not strict,
polynomial time. Another approach is to use explicit randomly permuted
indices, meaning that the decrypted values in the gates reveal exactly which
item in the next table is to be opened. This approach was described in [63].

3.4 Yao’s Two-Party Protocol

As we have seen above, given the keys that correspond to the correct input,
it is possible to obtain the correct output from the garbled circuit. Thus, the
protocol proceeds by party P1 constructing the garbled circuit and giving it
to P2. Furthermore, P1 hands P2 the keys that correspond to x = x1 · · ·xn. In
addition, P2 must obtain the keys that correspond to its input y = y1 · · · yn.
However, this must be done carefully, ensuring the following:

1. P1 should not learn anything about P2’s input string y.
2. P2 should obtain the keys corresponding to y and no others. (Otherwise,

P2 could compute C(x, y) and C(x, y′) for y′ ̸= y, in contradiction to the
requirement that C(x, y) and nothing else is learned.)

The above two problems are solved by having P1 and P2 run 1-out-of-2 obliv-
ious transfer protocols [72, 25]. That is, for every bit of P2’s input, the parties

3.4 Yao’s Two-Party Protocol 67

run an oblivious transfer protocol where P1’s input is (k0n+i, k
1
n+i) and P2’s

input is yi. In this way, P2 obtains the keys ky1

n+1, . . . , k
yn

2n , and only these
keys. In addition, P1 learns nothing about y. The complete description ap-
pears in Protocol 3.4.1. We remark that the protocol is written for the case of
deterministic single-output functionalities; see Section 2.5 for a justification
as to why this suffices.

PROTOCOL 3.4.1 (Yao’s Two-Party Protocol)

• Inputs: P1 has x ∈ {0, 1}n and P2 has y ∈ {0, 1}n.
• Auxiliary input: A boolean circuit C such that for every x, y ∈ {0, 1}n it

holds that C(x, y) = f(x, y), where f :{0, 1}n × {0, 1}n → {0, 1}n. We require
that C is such that if a circuit-output wire leaves some gate g, then gate g has
no other wires leading from it into other gates (i.e., no circuit-output wire is also
a gate-input wire). Likewise, a circuit-input wire that is also a circuit-output

wire enters no gates.
• The protocol:

1. P1 constructs the garbled circuit G(C) as described in Section 3.3, and sends
it to P2.

2. Let w1, . . . , wn be the circuit-input wires corresponding to x, and let

wn+1, . . . , w2n be the circuit-input wires corresponding to y. Then,
a. P1 sends P2 the strings kx1

1 , . . . , kxn
n .

b. For every i, P1 and P2 execute a 1-out-of-2 oblivious transfer protocol in

which P1’s input equals (k0n+i, k
1
n+i) and P2’s input equals yi.

The above oblivious transfers can all be run in parallel.
3. Following the above, P2 has obtained the garbled circuit and 2n keys cor-

responding to the 2n input wires to C. Party P2 then computes the circuit,

as described in Section 3.3, obtaining f(x, y).

We now provide a formal proof that Protocol 3.4.1 securely computes the
functionality f . Our proof could be simplified by relying on a composition
theorem as in Section 2.7 (see [32, Section 7.3.1] for a statement and proof of
modular sequential composition for the semi-honest case). However, we have
chosen to provide a fully self-contained and direct proof of the security of
the protocol. The rest of the proofs in this book will all rely on composition
instead.

Theorem 3.4.2 Let f : {0, 1}∗×{0, 1}∗ → {0, 1}∗ be a polynomial-time two-
party single-output functionality. Assume that the oblivious transfer protocol
is secure in the presence of static semi-honest adversaries, and that the en-
cryption scheme has indistinguishable encryptions under chosen-plaintext at-
tacks, and has an elusive and efficiently verifiable range. Then, Protocol 3.4.1
securely computes f in the presence of static semi-honest adversaries.

Proof. Intuitively, since the oblivious transfer protocol is secure, party P2

receives exactly one key per circuit-input wire. Then, by the security of the
encryption scheme, it is only able to decrypt one value in each gate. Fur-
thermore, it has no idea if the value obtained in this decryption corresponds

68 3 Semi-honest Adversaries

to a 0 or a 1. Therefore, it learns nothing from this computation, except for
the output itself. We now formally prove this. Recall that since we consider
deterministic functionalities, we can use the simpler formulation of security
as stated in Equations (2.1) and (2.2); note that the separate correctness re-
quirement has already been proven in Claim 3.3.1. We prove the simulation
separately when P1 is corrupted and when P2 is corrupted.

A simplifying convention. In the proof below, we will use the simulators
Sot
1 and Sot

2 that exist for the oblivious transfer functionality in order to
generate views for the corrupted parties. In general, a view is represented as
the party’s input followed by its random tape and concluding with the series
of incoming messages. In order to simplify the presentation, we will present
the view of a party in a different order. Specifically, we will write the view
of a party in Protocol 3.4.1 – excluding the oblivious transfers – in the usual
way. However, the view of the party in the oblivious transfers is written in
full where it appears in the protocol transcript. That is, instead of splitting
the view in the oblivious transfers into input, random tape and incoming
messages, the input and random tape are written together with the incoming
messages. This clearly makes no difference and is just to simplify notation
(the standard way of writing the view of a party can be received by a trivial
transformation of the view that we write below).

Case 1 – P1 is corrupted

Note that P1’s view in an execution of π consists only of its view in the
oblivious transfer protocols. By the security of the oblivious transfer proto-
col, P1’s view in the oblivious transfer executions can be generated without
knowing P2’s input. The formal proof of this follows a rather standard hybrid
argument.

We begin by describing the simulator S1: Upon input (x, f(x, y)), sim-
ulator S1 uniformly chooses a random tape rC for P1 and generates the
garbled circuit that P1 would generate with randomness rC . Then, let
k0n+1, k

1
n+1, . . . , k

0
2n, k

1
2n be the keys that correspond to P2’s input in the con-

structed garbled circuit, and let Sot
1 be the simulator that is guaranteed to

exist for party P1 in the oblivious transfer protocol. For every i = 1, . . . , n,
simulator S1 invokes the simulator SOT

1 upon input (k0n+i, k
1
n+i) in order to

obtain P1’s view in the ith oblivious transfer (since P1 has no output from the
oblivious transfer, the simulator is invoked with its input only). Recall that
the view generated by Sot

1 is made up of the input (in this case (k0n+i, k
1
n+i)),

a random tape, and a transcript of messages received. As we have mentioned,
we will place the entire view of the party in the oblivious transfers together
with the message transcript. We have that S1 outputs(

x, rC , S
ot
1 (k0n+1, k

1
n+1), . . . , S

ot
1 (k02n, k

1
2n)

)
. (3.4)

3.4 Yao’s Two-Party Protocol 69

This concludes the description of S1. We now prove that

{S1(x, f(x, y))}x,y∈{0,1}∗
c≡ {viewπ

1 (x, y)}x,y∈{0,1}∗

where S1(x, f(x, y)) is as shown in (3.4) and π denotes Protocol 3.4.1. We first
prove a hybrid argument over the simulated views for the oblivious transfers.
That is, we define a hybrid distribution Hi in which the first i oblivious
transfers are simulated and the last n− i are real. Formally, let Hi(x, y, rC)
denote the distribution{

(x, rC , S
ot
1 (k0n+1, k

1
n+1), . . . , S

ot
1 (k0n+i, k

1
n+i),

Rot
1 ((k0n+i+1, k

1
n+i+1), yi+1), . . . , R

ot
1 ((k02n, k

1
2n), yn))

}
where Rot

1 ((k0n+j , k
1
n+j), yj) denotes the incoming messages from the appro-

priate real oblivious transfer execution; these incoming messages are part of
viewot

1 ((k0n+j , k
1
n+j), yj). Notice that the keys k0n+j , k

1
n+j here are as defined

by the garbled circuit when generated with the random tape rC . Notice also
that when rC is uniformly chosen, Hn(x, y, rC) equals the distribution that
appears in (3.4); i.e., it equals S1(x, f(x, y)). Furthermore, H0(x, y, rC) is ex-
actly the same as viewπ

1 (x, y). For simplicity, from here on we will assume
that x, y, rC are all of the same length, and in particular, are of length n.

We now prove that {H0(x, y, rC)}
c≡ {Hn(x, y, rC)}. By contradiction,

assume that there exists a probabilistic polynomial-time distinguisher D and
a polynomial p(·) such that for infinitely many ns (and x, y, rC ∈ {0, 1}n),

|Pr[D(H0(x, y, rC)) = 1]− Pr[D(Hn(x, y, rC)) = 1]| > 1

p(n)
.

It follows that there exists an i such that for infinitely many x, y, rC ,

|Pr[D(Hi(x, y, rC)) = 1]− Pr[D(Hi+1(x, y, rC)) = 1]| > 1

np(n)
.

We now use D to contradict the security of the oblivious transfer protocol.
First, note that the only difference between Hi(x, y, rC) and Hi+1(x, y, rC)
is that the random tape and transcript of the (i + 1)th oblivious trans-
fer are according to viewot

1 ((k0n+i+1, k
1
n+i+1), yi+1) in Hi and according to

Sot
1 (k0n+i+1, k

1
n+i+1) in Hi+1. Furthermore, given x, y, rC , i and a view v

(which is either viewot
1 ((k0n+i+1, k

1
n+i+1), yi+1) or Sot

1 (k0n+i+1, k
1
n+i+1)) it is

possible to construct a distribution H such that if v is from viewOT
1 then

H = Hi(x, y, rC) and if v is from Sot
1 then H = Hi+1(x, y, rC). It therefore

follows that for infinitely many inputs, it is possible to distinguish the view of
P1 in a real oblivious transfer execution from its simulated view with the same
probability that it is possible to distinguish Hi(x, y, rC) from Hi+1(x, y, rC).
However, this contradicts the security of the oblivious transfer protocol. We

therefore conclude that {H0(x, y, rC)}
c≡ {Hn(x, y, rC)}. (We remark that the

70 3 Semi-honest Adversaries

distinguisher that we construct here is non-uniform because it needs to have
x, y, rC and i. For this reason, we defined non-uniform indistinguishability;
see the beginning of Section 2.1.) We conclude that

{S1(x, f(x, y))}
c≡
{
(x, rC , R

ot
1 ((k0n, k

1
n), y1), . . . , R

ot
1 ((k02n, k

1
2n), yn))

}
as required.

Case 2 – P2 is corrupted

In this case, we construct a simulator S2 that is given input (y, f(x, y)) and
generates the view of P2 in Protocol 3.4.1. Notice that P2 expects to re-
ceive a garbled circuit, and so S2 must generate such a circuit. Furthermore,
this circuit must be such that P2 would obtain f(x, y) when computing the
circuit according to the protocol instructions. Of course, S2 cannot just hon-
estly generate the circuit, because it does not know x. (Without knowing
x, it would not know which of the keys k01, k

1
1, . . . , k

0
n, k

1
n to hand to P2.) It

therefore generates a “fake” garbled circuit that always evaluates to f(x, y),
irrespective of which keys are used. This is achieved by using gate tables in
which all four entries encrypt the same key, and therefore the values of the
input wires do not affect the value of the output wire. The crux of the proof is
in showing that this circuit is indistinguishable from the real garbled circuit
that P2 receives in a real execution.

In order to show this we use a hybrid argument. We first show that P2’s
view in a real execution of the protocol is indistinguishable from a hybrid
distribution Hot(x, y) in which the real oblivious transfers are replaced with
simulated ones. Next, we consider a series of hybrids Hi(x, y) in which one
gate at a time is replaced in the real garbled circuit. The hybrid distributions
are such that H0(x, y) contains a real garbled circuit (and therefore equals
Hot(x, y)). In contrast, distribution H|C|(x, y) contains the same fake circuit
constructed by S2 (and, as we will see, therefore equals S2(y, f(x, y))). By a
standard hybrid argument, it follows that a distinguisher between H0(x, y)
and H|C|(x, y) can be used to distinguish between two successive hybrids.
However, the security of the encryption scheme that is used for generating
the gate tables ensures that neighboring hybrids are computationally indis-
tinguishable. We conclude that H0(x, y) is indistinguishable from H|C|(x, y),

and so {S2(y, f(x, y))}
c≡ {viewπ

2 (x, y)}.
We now formally describe S2. Simulator S2 begins by constructing a fake

garbled circuit, denoted by G̃(C). This is accomplished as follows. For every
wire wi in the circuit C, simulator S2 chooses two random keys ki and k′i.
Next, the gates are computed: let g be a gate with input wires wi, wj and
output wire wℓ. Then, g contains encryptions of the single key kℓ under
all four combinations of the keys ki, k

′
i, kj , k

′
j that are associated with the

input wires to g (in contrast, the key k′ℓ is not encrypted at all). That is, S2

3.4 Yao’s Two-Party Protocol 71

computes the values

c0,0 = Eki(Ekj (kℓ)), c0,1 = Eki(Ek′
j
(kℓ)),

c1,0 = Ek′
i
(Ekj (kℓ)), c1,1 = Ek′

i
(Ek′

j
(kℓ)),

and writes them in random order. This is carried out for all of the gates
of the circuit. It remains to describe how the output decryption tables are
constructed. Denote the n-bit output f(x, y) by z1 · · · zn (recall that this is
part of S2’s input), and denote the circuit-output wires by wm−n+1, . . . , wm.
In addition, for every i = 1, . . . , n, let km−n+i be the (single) key encrypted
in the gate from which wire wm−n+i left, and let k′m−n+i be the other key (as
described above). Then, the output decryption table for wire wm−n+i is given
by [(0, km−n+i), (1, k

′
m−n+i)] if zi = 0, and [(0, k′m−n+i), (1, km−n+i)] if zi = 1.

This completes the description of the construction of the fake garbled circuit
G̃(C). (Notice that the keys km−n+1, . . . , km decrypt to z1 · · · zn = f(x, y)
exactly.)

Next, S2 generates the view of P2 in the phase where it obtains the keys.
First, in the simulated view, it sets the keys that P2 receives from P1 in
Step 2a of Protocol 3.4.1 to be k1, . . . , kn. (Recall that w1, . . . , wn are the
circuit-input wires associated with P1’s input x and that the keys for these
wires are k1, k

′
1, . . . , kn, k

′
n. Here, S2 takes the keys k1, . . . , kn. However, it

could have taken k′1, . . . , k
′
n or any other combination and this would make

no difference.) Next, let Sot
2 be the simulator that is guaranteed to exist for

the oblivious transfer protocol. Then, for every i = 1, . . . , n, simulator S2

invokes the simulator Sot
2 upon input (yi, kn+i) in order to obtain P2’s view

in the ith oblivious transfer. (Here yi and kn+i are P2’s respective input and
output in the ith oblivious transfer. As above, we use the keys kn+1, . . . , k2n
associated with the input wires for y. However, this choice is arbitrary and
we could have used k′n+1, . . . , k

′
2n or any other combination.) Recall that the

view generated by Sot
2 is made up of the input (in this case yi), a random

tape, and a transcript of messages received. Recall also that by convention,
we place the entire view in the oblivious transfer (including the random tape)
together. We therefore have that S2 outputs(

y, G̃(C), k1, . . . , kn, S
ot
2 (y1, kn+1), . . . , S

ot
2 (yn, k2n)

)
.

This concludes the description of S2. We now prove that

{S2(y, f(x, y))}x,y∈{0,1}∗
c≡ {viewπ

2 (x, y)}x,y∈{0,1}∗ .

First, observe that

{viewπ
2 (x, y)}

≡
{
(y,G(C), kx1

1 , . . . , kxn
n , Rot

2 ((k0n+1, k
1
n+1), y1), . . . , R

ot
2 ((k02n, k

1
2n), yn))

}

72 3 Semi-honest Adversaries

where Rot
2 ((k0n+i, k

1
n+i), yi) denotes the real transcript obtained from the view

viewot
2 ((k0n+i, k

1
n+i), yi). We also denote the hybrid distribution where the real

oblivious transfers are replaced with simulated ones by

Hot(x, y) = (y,G(C), kx1
1 , . . . , kxn

n , Sot
2 (y1, k

y1

n+1), . . . , S
ot
2 (yn, k

yn

2n)).

We stress that in the hybrid distribution Hot, the garbled circuit G(C) that
appears is the real one and not the fake one. We first claim that

{Hot(x, y)}x,y∈{0,1}∗
c≡ {viewπ

2 (x, y)}x,y∈{0,1}∗ . (3.5)

The only difference between the distributions in (3.5) is due to the fact that
simulated views of the oblivious transfers are provided instead of real ones.
Indistinguishability therefore follows from the security of the oblivious trans-
fer protocol. The formal proof of this is almost identical to the case where P1

is corrupted, and is therefore omitted.
Next, we consider a series of hybrid experiments Hi(x, y) in which one gate

at a time is replaced in the real garbled circuit G(C) until the result is the
fake garbled circuit G̃(C). Before we do this, we consider an alternative way
of constructing the fake garbled circuit G̃(C). This alternative construction
uses knowledge of both inputs x and y, but results in exactly the same fake
garbled circuit as that constructed by S2 that is given only y and f(x, y).
(This is therefore just a mental experiment, or a different description of S2.
Nevertheless, it is helpful in describing the proof.)

The alternative construction works by first traversing the circuit from the
circuit-input wires to the circuit-output wires, and labelling all keys as active
or inactive. Intuitively, a key is active if it is used in order to compute the
garbled circuit upon input (x, y); otherwise it is inactive. Formally, a key
kαa that is associated with wire wa is active if when computing the non-
garbled circuit C on input (x, y), the bit that is obtained on wire wa equals
α. As expected, an inactive key is just any key that is not active. Now, the
alternative construction of G̃(C) works by first constructing the real garbled
circuit G(C). Next, using knowledge of both x and y, all keys in G(C) are
labelled active or inactive (given x and y, it is possible to compute C(x, y) and
obtain the real values on each wire). Finally, G̃(C) is obtained by replacing
each gate g as follows: Let wa be the wire that exits gate g. Then, recompute
g by encrypting the active key on wire wa with all four combinations of the
(active and inactive) keys that are on the wires that enter g. This completes
the alternative construction.

We claim that the circuit obtained in this alternative construction is iden-
tically distributed to the circuit constructed by S2(x, f(x, y)). First, in both
constructions, all gates contain encryptions of a single key only. Second, in
both constructions, the order of the ciphertexts in each gate is random. Fi-
nally, in both constructions, the output decryption tables yield the same
result (i.e., exactly f(x, y)). This last observation is due to the fact that in

3.4 Yao’s Two-Party Protocol 73

the alternative construction, the output decryption table decrypts active keys
to f(x, y) and these active keys are the only ones encrypted in the gates from
which the circuit-output wires exit. Likewise, in the circuit G̃(C), the only
keys encrypted in the gates from which the circuit-output wires exit are the
keys that decrypt to f(x, y).

Before proceeding we order the gates g1, . . . , g|C| of the circuit C as follows:
if the input wires to a gate gℓ come from gates gi and gj , then i < ℓ and
j < ℓ; this is called a topological sort of the circuit. We are now ready to
define the hybrid experiment Hi(x, y).

Hybrid experiment Hi(x, y). In this experiment the view of P2

in the oblivious transfers is generated in exactly the same way as in
HOT(x, y). However, the garbled circuit is constructed differently. As
in the alternative construction of G̃(C), the first step is to construct
the real garbled circuit G(C) and then use x and y in order to label
all keys in G(C) as active or inactive. Next, the first i gates g1, . . . , gi
are modified as in the alternative construction. That is, let wa be the
wire that exits gate gj for 1 ≤ j ≤ i. Then, recompute gj by encrypting
the active key on wire wa with all four combinations of the (active
and inactive) keys that are on the wires that enter gj . The remaining
gates gi+1, . . . , g|C| are left unmodified, and are therefore as in the real
garbled circuit G(C).

We claim that the distribution {H0(x, y)} equals {Hot(x, y)}. This follows
from the fact that the only difference is that in H0(x, y) the keys are labelled
active or inactive. However, since nothing is done with this labelling, there
is no difference in the resulting distribution. Next, notice that in H|C|(x, y),
the circuit that appears in the distribution is exactly the fake garbled circuit
G̃(C) as constructed by S2. This follows immediately from the fact that in
H|C| all gates are replaced, and so the circuit obtained is exactly that of the
full alternative construction described above.

We wish to show that {H0(x, y)}
c≡ {H|C|(x, y)}. Intuitively, this follows

from the indistinguishability of encryptions. Specifically, the only difference
between H0 and H|C| is that the circuit in H0 is made up of gates that
contain encryptions of active and inactive keys, whereas the circuit in H|C|
is made up of gates that contain encryptions of active keys only. Since only
active keys are seen by P2 during the computation of the garbled circuit, the
difference between H0 and H|C| cannot be detected.

We prove that {H0(x, y)}
c≡ {H|C|(x, y)} using a hybrid argument. That

is, assume that there exists a non-uniform probabilistic polynomial-time dis-
tinguisher D and a polynomial p(·) such that for infinitely many ns (and
values x, y ∈ {0, 1}n),

|Pr[D(H0(x, y)) = 1]− Pr[D(H|C|(x, y)) = 1]| > 1

p(n)
.

74 3 Semi-honest Adversaries

Then, it follows that there exists an i such that

|Pr[D(Hi−1(x, y)) = 1]− Pr[D(Hi(x, y)) = 1]| > 1

|C| · p(n)
.

We use D and x, y, i in order to construct a non-uniform probabilistic
polynomial-time distinguisher AE for the encryption scheme (G,E,D). The
high-level idea here is for AE to receive some ciphertexts from which it will
construct a partially real and partially fake garbled circuit G′(C). However,
the construction will be such that if the ciphertexts received were of one
“type”, then the resulting circuit is according to Hi−1(x, y). However, if
the ciphertexts received were of another “type”, then the resulting circuit
is according to Hi(x, y). In this way, the ability to successfully distinguish
Hi−1(x, y) from Hi(x, y) yields the ability to distinguish ciphertexts, in con-
tradiction to the security of the encryption scheme. We now formally prove
the above intuition, using Lemma 3.2.3 that states that (G,E,D) is secure
under chosen double encryption.

A concrete case. First, let us consider the concrete case where gi is an OR
gate, and that wires wa and wb enter gi, and wire wc exits gi. Furthermore,
assume that the wires wa and wb enter gate gi and no other gate. Finally,
assume that when the inputs to the circuit are x and y, the wire wa obtains
the bit 0 and the wire wb obtains the bit 1. Then, it follows that the keys k0a
and k1b are active, and the keys k1

a and k0
b are inactive (we mark the inactive

keys in bold in order to distinguish them from the active ones). Likewise, the
key k1c is active (because gi(0, 1) = 0 ∨ 1 = 1) and the key k0

c is inactive.
The difference between a real garbled gate gi and a fake garbled gate gi is
with respect to the encrypted values. Specifically, the real garbled OR gate
gi contains the following values:

Ek0
a
(Ek0

b
(k0c)), Ek0

a
(Ek1

b
(k1c)), Ek1

a
(Ek0

b
(k1c)), Ek1

a
(Ek1

b
(k1c)) (3.6)

In contrast, the fake garbled OR gate gi contains the following values which
are all encryptions of the active value k1c (recall that the input to gi equals 0
and 1, and so the output is 1):

Ek0
a
(Ek0

b
(k1c)), Ek0

a
(Ek1

b
(k1c)), Ek1

a
(Ek0

b
(k1c)), Ek1

a
(Ek1

b
(k1c)) (3.7)

Thus, in this concrete case, the indistinguishability between the gates depends
on the indistinguishability of a single encryption (of k0c versus k1c) under the
inactive key k0

b . (In other cases, the indistinguishability may depend on both
inactive keys k1

a and k0
b , and may depend on more than one encryption under

a key; see the general case below.) Indistinguishability follows directly from
the definition of ExptdoubleA and security under chosen double encryption (see
Definition 3.2.2 in Section 3.2.1).

3.4 Yao’s Two-Party Protocol 75

Formally, we construct a non-uniform probabilistic polynomial-time ma-
chine AE for ExptdoubleAE

such that∣∣∣Pr [ExptdoubleAE
(n, 1) = 1

]
− Pr

[
ExptdoubleAE

(n, 0) = 1
]∣∣∣ ≥ 1

|C|p(n)
.

Upon input 1n, machine AE outputs keys k0a, k
1
b ← G(1n) and message triples

(k0c , k
1
c , k

1
c) and (k1c , k

1
c , k

1
c). By the experiment Exptdouble, two keys are chosen.

For the sake of consistency, we denote them by k1
a and k0

b . Then, machine
AE receives either the ciphertexts

⟨Ek0
a
(Ek0

b
(k0c)),Ek1

a
(Ek1

b
(k1c)),Ek1

a
(Ek0

b
(k1c))⟩ (3.8)

or the ciphertexts

⟨Ek0
a
(Ek0

b
(k1c)),Ek1

a
(Ek1

b
(k1c)),Ek1

a
(Ek0

b
(k1c))⟩ (3.9)

depending on whether σ = 0 (the first case) or σ = 1 (the second case); note
that the only difference is that in the first case the first plaintext is k0c and
in the second case the first plaintext is k1c . Denote the ciphertexts received
by AE by (c1, c2, c3). Now, AE first computes the value c = Ek0

a
(Ek1

b
(k1c));

it can do this by itself because it knows both k0a and k1b , as well as k
1
c . Next,

given c, AE generates the tuple ⟨c1, c, c3, c2⟩. The important point to no-
tice here is that if AE received the ciphertexts in (3.8) then ⟨c1, c, c3, c2⟩
is identical to the ciphertexts in (3.6). On the other hand, if AE received
the ciphertexts in (3.9) then ⟨c1, c, c3, c2⟩ is identical to the ciphertexts in
(3.7). Therefore, if it is possible to distinguish between the gates in Equa-
tions (3.6) and (3.7) with non-negligible probability, then AE can succeed in
ExptdoubleAE

with non-negligible probability, in contradiction to the security of
the encryption scheme.

This does not yet suffice because we must still show how AE can generate
the rest of the Hi−1 or Hi distributions. Notice that AE knows the active
keys that enter gi (because it chose them itself), but does not know the
inactive keys. We therefore show that the distributions can be constructed
without knowledge of the inactive keys k1

a and k0
b . In order to show this, we

distinguish between two cases:

1. Case 1 – wb is a circuit-input wire: In this case, the keys associated with
wire wb do not appear in any gates gj for j < i. However, keys that are
associated with circuit-input wires do appear in the distributionsHi−1 and
Hi: the keys kxi

i appear directly and the keys kyi

n+i are used to generate
the view of P2 in the oblivious transfers. Nevertheless, notice that the keys
used here are all active. Therefore, AE can construct the distributions, as
required. We note that AE uses the keys k0c and k1c from the experiment
in order to construct the gates into which wire wc enters.

76 3 Semi-honest Adversaries

2. Case 2 – wb is not a circuit-input wire: In this case, the keys associated
with wire wb can appear only in the gate gj from which wb exits. However,
by our ordering of the gates, j < i. Therefore, in both Hi−1 and Hi, gate
gj contains encryptions of the active key k0b only. It follows that AE can
construct the rest of the distribution, as required. (Again, as above, AE

uses the keys k0c and k1c in this construction.)

Now, as we have shown above, if AE participates in ExptdoubleAE
(n, 0), then

the gate gi is constructed as for a real garbled circuit. In contrast, if AE

participates in ExptdoubleAE
(n, 1), then the gate gi is constructed as for a fake

garbled circuit. The only dependence between the gate gi and the rest of the
distribution Hi−1 or Hi is with respect to the keys k0c and k1c ; however, these
are known to AE and used appropriately. We therefore conclude that if AE

participates in ExptdoubleAE
(n, 0), then it generates a distribution H that equals

Hi−1(x, y). In contrast, if it participates in ExptdoubleAE
(n, 1), then it generates

a distribution H that equals Hi(x, y). Distinguisher AE concludes by running
machine D on the distribution H and outputting whatever D does. By the
contradicting assumption, machine D distinguishes Hi−1(x, y) from Hi(x, y)
with probability 1/|C|p(n). That is, we have that for infinitely many ns

|Pr[ExptdoubleAE
(n, 0) = 1]− Pr[ExptdoubleAE

(n, 1) = 1]|

= |Pr[D(Hi−1(x, y)) = 1]− Pr[D(Hi(x, y)) = 1]| > 1

|C|p(n)

in contradiction to the security of the encryption scheme. It follows that

{H0(x, y)}
c≡ {H|C|(x, y)}. Having proven the argument with respect to a

concrete case, we now move to the general case.

The general case. Let gi be an arbitrary gate, let wa and wb be the wires
entering gi and let wc be the wire that exits gi. Furthermore, let α and β be
the respective values obtained on wa and wb in C(x, y). Note that this means

that kαa and kβb are active, and k1−α
a and k1−β

b are inactive. Then, the real
garbled gate gi contains the following values (in a random order):

Ekα
a
(Ekβ

b
(k

gi(α,β)
c)), Ekα

a
(E

k
1−β
b

(k
gi(α,1−β)
c)),

E
k
1−α
a

(Ekβ
b
(k

gi(1−α,β)
c)), E

k
1−α
a

(E
k
1−β
b

(k
gi(1−α,1−β)
c)).

(3.10)

In contrast, the fake garbled gate gi contains the following values which are

all encryptions of the active value k
gi(α,β)
c :

Ekα
a
(Ekβ

b
(k

gi(α,β)
c)), Ekα

a
(E

k
1−β
b

(k
gi(α,β)
c)),

E
k
1−α
a

(Ekβ
b
(k

gi(α,β)
c)), E

k
1−α
a

(E
k
1−β
b

(k
gi(α,β)
c)).

(3.11)

Thus, the indistinguishability between the gates depends on the indistin-
guishability of encryptions under the inactive keys k1−α

a and k1−β
b . As above,

3.4 Yao’s Two-Party Protocol 77

we use Exptdouble and security under chosen double encryption. The gate is
generated in exactly the same way here as in the concrete case. Now, in the
restricted case where both wires wa and wb enter the gate gi only, it is possi-
ble to proceed in the same way as in the concrete case above. However, in the
more general case wires wa and wb may enter multiple gates (in particular,
one of the wires may enter a gate gj with j > i). In this case, AE cannot con-
struct the rest of the circuit given only the active keys, because the inactive
keys k1−α

a and k1−β
b are used in more than one gate. (We stress that in order

to prove the indistinguishability of the neighboring hybrid Hi−1 and Hi, it is
crucial thatAE is not given these inactive keys. Therefore, it cannot construct
these other gates itself.) This is solved by using the special chosen-plaintext
attack of Exptdouble. Recall that in Exptdouble, the adversary has access to or-
acles E(·, k′1, ·) and E(k′0, ·, ·), where k′0 =k1−α

a and k′1 =k1−β
b . Here, this

means that the adversary can ask for encryptions under these inactive keys,
as needed for constructing all of the other gates gai1 , . . . , g

a
ij

and gbi1 , . . . , g
b
ij

that use them. Once again, we have that in ExptdoubleAE
(n, 0) the distribution

generated by AE is exactly that of Hi−1(x, y), whereas in ExptdoubleAE
(n, 1)

the distribution generated by AE is exactly that of Hi(x, y). Therefore, as
above, we conclude that Hi−1(x, y) is indistinguishable from Hi(x, y) and so

{H0(x, y)}
c≡ {H|C|(x, y)}.

Concluding the proof. Having proven that {H0(x, y)}
c≡ {H|C|(x, y)}, we

obtain that{
(y, G̃(C), kx1

1 , . . . , kxn
n , Sot

2 (y1, k
y1

n+1), . . . , S
ot
2 (yn, k

yn

2n))
}

c≡
{
(y,G(C), kx1

1 , . . . , kxn
n , Sot

2 (y1, k
y1

n+1), . . . , S
ot
2 (yn, k

yn

2n))
}

≡ {Hot(x, y)}. (3.12)

Notice that the first distribution in (3.12) looks almost the same as the
distribution {S2(y, f(x, y))}. The only difference is that in S2(y, f(x, y))
the keys k1, . . . , kn, kn+1, . . . , k2n are used instead of the keys kx1

1 , . . . , kxn
n ,

ky1

n+1, . . . , k
yn

2n . That is, the keys that S2 takes for the circuit-input wires
have no correlation to the actual input (unlike in a real execution). How-
ever, in the fake garbled circuit G̃(C), there is no difference between ki
and k′i because all combinations of keys are used to encrypt the same (ac-
tive) key. Thus, the distribution over the keys k1, . . . , kn, kn+1, . . . , k2n and
kx1
1 , . . . , kxn

n , ky1

n+1, . . . , k
yn

2n are identical in the fake garbled-circuit construc-
tion. We therefore obtain that the first distribution in (3.12) is actually iden-
tical to the distribution {S2(y, f(x, y))} and so

{S2(y, f(x, y))}x,y∈{0,1}∗
c≡ {Hot(x, y)}x,y∈{0,1}∗ .

78 3 Semi-honest Adversaries

Recalling that by (3.5), {Hot(x, y)}
c≡ {viewπ

2 (x, y)}, we conclude that

{S2(y, f(x, y))}x,y∈{0,1}∗
c≡ {viewπ

2 (x, y)}x,y∈{0,1}∗

as required.

By Theorem 3.2.5 it is possible to securely compute the oblivious trans-
fer functionality assuming the existence of enhanced trapdoor permutations.
Furthermore, secure encryption schemes as required in Theorem 3.4.2 can
be constructed from one-way functions, and so also from enhanced trapdoor
permutations. Finally, recall that given a secure protocol for deterministic
single-output functionalities, it is possible to obtain a secure protocol for
arbitrary probabilistic reactive functionalities. Combining these facts with
Theorem 3.4.2, we obtain the following corollary:

Corollary 3.4.3 Let f = (f1, f2) be a probabilistic polynomial-time (possibly
reactive) functionality. Then, assuming the existence of enhanced trapdoor
permutations, there exists a constant-round protocol that securely computes
f in the presence of static semi-honest adversaries.

3.5 Efficiency of the Protocol

In this book, we analyze the efficiency of protocols according to their round
complexity, bandwidth and local computation, where the latter is typically
divided into the number of symmetric operations (which are generally very
fast) and asymmetric operations (which are slower). The reason for counting
the number of symmetric and asymmetric operations is that they usually
dominate the local computation of the parties in cryptographic protocols.
Needless to say, in protocols or schemes where other computation dominates,
this must be taken into account.

In light of the above, we now analyze the complexity of Protocol 3.4.1
by counting the number of rounds of communication, the number of asym-
metric and symmetric computations, and the bandwidth (or overall length of
messages sent):

• Number of rounds: The protocol consists of only four rounds of com-
munication (two messages are sent by each party). Note that the garbled
circuit itself and the strings kx1,

1 , . . . , kxn
n can be sent by P1 together with

the first (or last) round of the oblivious transfer protocol. Thus, we have
three rounds of oblivious transfer and a final round where P2 sends P1

the output of the circuit computation (the protocol for single-output func-
tionalities does not have this round, but we included it for the general
case). We remark that by using a two-round oblivious transfer protocol
(see Section 7.2) that is secure in the presence of semi-honest adversaries
under the DDH assumption, we have three rounds overall.

3.5 Efficiency of the Protocol 79

• Asymmetric computations: The parties run a single oblivious transfer
protocol for each bit of the input of P2. Thus, denoting the input of P2

by y, we have that the protocol requires O(|y|) asymmetric operations.
Being more exact, if we use the oblivious transfer protocol presented as
Protocol 3.2.4, then P1 needs to sample a trapdoor permutation and then
P1 carries out one asymmetric computation (to compute wσ = f(vσ)) and
P2 carries out two asymmetric computations (to invert v0 and v1). We note
that the most expensive operation is typically sampling the permutation-
trapdoor pair. However, this can be carried out once for all the |y| oblivious
transfers. In addition, the protocol of Section 7.2 can be used, which is
more efficient.

• Symmetric computations: In order to construct the circuit, P1 needs
to prepare the garbled circuit gates; each such gate requires eight encryp-
tions and so P1 carries out 8 · |C| symmetric computations. Then, in order
to compute the circuit, P2 needs to attempt to decrypt all values in a gate
until it finds one that decrypts correctly. Thus, in the worse case P2 also
carries out 8 · |C| symmetric computations. However, given that the val-
ues in each gate are provided in a random order, the expected number of
symmetric computations in every gate is four (to compute half) and thus
we expect P2 to carry out 4 · |C| symmetric computations.

• Bandwidth: The bandwidth is comprised of the messages sent for the
oblivious transfers and the garbled circuit (the keys kx1

1 , . . . , kxn
n sent by

P1 are dominated by the size of the garbled circuit). Now, once again using
Protocol 3.2.4 for the oblivious transfers, and reusing the same trapdoor
permutation, we have that P2 sends P1 two asymmetric values per bit
transferred. Thus, overall 2 · |y| asymmetric values are sent. In addition,
P1 replies with two strings of the length of the symmetric keys. Thus de-
noting by nasym the length of asymmetric values and by nsym the length
of symmetric values (or keys), we have that the oblivious transfers involve
sending 2 · |y| · (nasym + nsym) bits. In addition, P1 sends P2 the garbled
circuit itself, which is of size O(nsym · |C|). We remark that the constant
hidden inside the O value is significant here. This is because each encryp-
tion adds 2nsym bits to the length of the ciphertext (this is the case when
using the construction of an encryption scheme with an elusive range that
appears in Section 3.2.1) and thus a single encryption of a symmetric key
yields a ciphertext of size 3nsym. Since this is encrypted again (for the
double encryption of each key), we have that each double encryption is of
size 5nsym. Each gate has four such encryptions and so we have that the
overall size of the circuit is 20 · nsym · |C|. We stress, however, that it is
possible to do this much more efficiently in practice; see [58, 71].

In conclusion, when computing a function with a reasonably small circuit on
inputs that are not too large, Yao’s protocol is very efficient. In some cases
this is what is needed. For example, in Chapter 8 it is necessary to use a
subprotocol for comparing two numbers; the circuit for such a computation
is small. Of course, it only suffices for the case of semi-honest adversaries.

80 3 Semi-honest Adversaries

We will deal with the case of malicious adversaries (which is what is really
needed in Chapter 8) in the coming chapter.

Chapter 4

Malicious Adversaries

In this chapter, we show how to securely compute any deterministic, single-
output non-reactive functionality in the presence of malicious adversaries. As
we have shown in Section 2.5, this suffices for obtaining secure computation
of any two-party probabilistic reactive functionality, with almost the same
complexity.

4.1 An Overview of the Protocol

The protocol that we present in this chapter is based upon Yao’s garbled-
circuit construction, as described in Chapter 3. There are a number of issues
that must be dealt with when attempting to make Yao’s protocol secure
against malicious adversaries rather than just semi-honest ones (beyond the
trivial observation that the oblivious transfer subprotocol must now be secure
in the presence of malicious adversaries).

First and foremost, a malicious P1 must be forced to construct the garbled
circuit correctly so that it indeed computes the desired function. The method
that is typically referred to for this task is called cut-and-choose. According
to this methodology, P1 constructs many independent copies of the garbled
circuit and sends them to P2. Party P2 then asks P1 to open half of them
(chosen randomly). After P1 does so, and party P2 checks that the opened
circuits are correct, P2 is convinced that most of the remaining (unopened)
garbled circuits are also constructed correctly. (If there are many incorrectly
constructed circuits, then with high probability, one of those circuits will
be in the set that P2 asks to open.) The parties can then evaluate the re-
maining unopened garbled circuits as in the original protocol for semi-honest
adversaries, and take the majority output value.1

1 The reason for taking the majority value as the output is that the aforementioned test
only reveals a single incorrectly constructed circuit with probability 1/2. Therefore, if P1

generates a single or constant number of “bad” circuits, there is a reasonable chance that

81C. Hazay, Y. Lindell, Efficient Secure Two-Party Protocols,
Information Security and Cryptography, DOI 10.1007/978-3-642-14303-8_4,
© Springer-Verlag Berlin Heidelberg 2010

82 4 Malicious Adversaries

The cut-and-choose technique described above indeed solves the problem of
a malicious P1 constructing incorrect circuits. However, it also generates new
problems! The primary problem that arises is that since there are now many
circuits being evaluated, we must make sure that both P1 and P2 use the same
inputs in each circuit; we call these consistency checks. Consistency checks are
important since if the parties were able to provide different inputs to different
copies of the circuit, then they can learn information that is different from
the desired output of the function. It is obvious that P2 can do so, since it
observes the outputs of all circuits, but in fact even P1, who only gets to see
the majority output, can learn additional information: Suppose, for example,
that the protocol computes n invocations of a circuit computing the inner
product of n-bit inputs. A malicious P2 could provide the inputs ⟨10 · · · 0⟩,
⟨010 · · · 0⟩,. . . ,⟨0 · · · 01⟩, and learn all of P1’s input. If, on the other hand, P1 is
malicious, it could also provide the inputs ⟨10 · · · 0⟩, ⟨010 · · · 0⟩,. . . ,⟨0 · · · 01⟩.
In this case, P2 sends it the value which is output by the majority of the
circuits, and which is equal to the majority value of P2’s input bits.

Another problem that arises when proving security is that the simulator
must be able to fool P2 and give it incorrect circuits (even though P2 runs
a cut-and-choose test). This is solved using rather standard techniques, like
choosing the circuits to be opened via a coin-tossing protocol. Yet another
problem is that P1 might provide corrupt inputs to some of P2’s possible
choices in the OT protocols (for shorthand, we will sometimes use “OT”
instead of “oblivious transfer”). P1 might then learn P2’s input based on
whether or not P2 aborts the protocol.

We begin by presenting a high-level overview of the protocol. We then
proceed to describe the consistency checks, and finally the full protocol.

4.1.1 High-Level Protocol Description

We work with two security parameters. The parameter n is the security pa-
rameter for the commitment schemes, encryption, and the oblivious transfer
protocol. The parameter s is a statistical security parameter which specifies
how many garbled circuits are used. The difference between these parameters

it will not be caught. In contrast, there is only an exponentially small probability that
the test reveals no corrupt circuit and at the same time a majority of the circuits that
are not checked are incorrect. Consequently, with overwhelming probability it holds that

if the test succeeds and P2 takes the majority result of the remaining circuits, the result is
correct. We remark that the alternative of aborting in case not all the outputs are the same
(namely, where cheating is detected) is not secure and actually yields a concrete attack.
The attack works as follows. Assume that P1 is corrupted and that it constructs all of the

circuits correctly except for one. The “incorrect circuit” is constructed so that it computes
the exclusive-or of the desired function f with the first bit of P2’s input. Now, if P2 policy
is to abort as soon as two outputs are not the same then P1 knows that P2 aborts if, and

only if, the first bit of its input is 1.

4.1 An Overview of the Protocol 83

is due to the fact that the value of n depends on computational assumptions,
whereas the value of s reflects the possible error probability that is incurred
by the cut-and-choose technique and as such is a “statistical” security param-
eter. Although it is possible to use a single parameter n, it may be possible
to take s to be much smaller than n. Recall that for simplicity, and in order
to reduce the number of parameters, we denote the length of the input by n
as well.

PROTOCOL 4.1.1 (high-level description): Parties P1 and P2 have re-
spective inputs x and y, and wish to compute the output f(x, y) for P2.

1. The parties decide on a circuit computing f . They then change the circuit
by replacing each input wire of P2 with a gate whose input consists of s
new input wires of P2 and whose output is the exclusive-or of these wires
(an exclusive-or gate with s bits of input can be implemented using s−1
exclusive-or gates with two bits of input). Consequently, the number of
input wires of P2 increases by a factor of s. This is depicted in Figure 4.1.

2. P1 commits to s different garbled circuits computing f , where s is a statis-
tical security parameter. P1 also generates additional commitments to the
garbled values corresponding to the input wires of the circuits. These com-
mitments are constructed in a special way in order to enable consistency
checks.

3. For every input bit of P2, parties P1 and P2 run a 1-out-of-2 oblivious
transfer protocol in which P2 learns the garbled values of input wires cor-
responding to its input.

4. P1 sends to P2 all the commitments of Step 1.
5. P1 and P2 run a coin-tossing protocol in order to choose a random string

that defines which commitments and which garbled circuits will be opened.
6. P1 opens the garbled circuits and committed input values that were chosen

in the previous step. P2 verifies the correctness of the opened circuits and
runs consistency checks based on the decommitted input values.

7. P1 sends P2 the garbled values corresponding to P1’s input wires in the
unopened circuits. P2 runs consistency checks on these values as well.

8. Assuming that all of the checks pass, P2 evaluates the unopened circuits
and takes the majority value as its output.

Fig. 4.1 Transforming one of P2’s input wires (Step 1 of Protocol 4.1.1)

84 4 Malicious Adversaries

4.1.2 Checks for Correctness and Consistency

As can be seen from the above overview, P1 and P2 run a number of checks,
with the aim of forcing a potentially malicious P1 to construct the circuits
correctly and use the same inputs in (most of) the evaluated circuits. This
section describes these checks. Unfortunately, we are unable to present the
protocol, nor prove its security, in a modular fashion. Rather, the correctness
and consistency checks are closely intertwined with the other parts of the
protocol. We will therefore describe the correctness and consistency checks
here, and describe the full protocol in Section 4.2. We hope that this improves
the readability of the actual protocol.

Encoding P2’s input: As mentioned above, a malicious P1 may provide
corrupt input to one of P2’s possible inputs in an OT protocol. If P2 chooses
to learn this input it will not be able to decode the garbled tables which
use this value, and it will therefore have to abort. If P2 chooses to learn the
other input associated with this wire then it will not notice that the first
input is corrupt. P1 can therefore learn P2’s input based on whether or not
P2 aborts. (Note that checking that the circuit is well formed will not help
in thwarting this attack, since the attack is based on changing P1’s input
to the OT protocol.) The attack is prevented by the parties replacing each
input bit of P2 with s new input bits whose exclusive-or is used instead
of the original input (this step was described as Step 0 of Protocol 4.1.1,
and is analyzed in Lemma 4.3.3). P2 therefore has 2s−1 ways to encode a 0
input, and 2s−1 ways to encode a 1, and given its input it chooses an encoding
with uniform probability. The parties then execute the protocol with the new
circuit, and P2 uses oblivious transfer to learn the garbled values of its new
inputs. As we will show, if P1 supplies incorrect values as garbled values that
are associated with P2’s input, the probability of P2 detecting this cheating
is almost independent (up to a bias of 2−s+1) of P2’s actual input. This is not
true if P2’s inputs are not “split” in the way described above. The encoding
presented here increases the number of P2’s input bits and, respectively, the
number of OTs, from n to ns. In [55] it is shown how to reduce the number
of new inputs for P2 (and thus OTs) to a total of only O(max(s, n)). Due to
its complexity, we omit this improvement here.

An unsatisfactory method for proving consistency of P1’s input: Con-
sider the following idea for forcing P1 to provide the same input to all circuits.
Let s be a security parameter and assume that there are s garbled copies of
the circuit. Then, P1 generates two ordered sets of commitments for every
one of its input wires to the circuit. Each set contains s commitments: the
“0 set” contains commitments to the garbled encodings of 0 for this wire in
every circuit, and the “1 set” contains commitments to the garbled encod-
ings of 1 for this wire in every circuit. P2 receives these commitments from
P1 and then chooses a random subset of the circuits, which will be defined
as check circuits. These circuits will never be evaluated and are used only for

4.1 An Overview of the Protocol 85

checking correctness and consistency. Specifically, P2 asks P1 to de-garble all
of the check circuits and to open the values that correspond to the check
circuits in both commitment sets. (That is, if circuit i is a check circuit, then
P1 decommits to both the 0 encoding and 1 encoding of all the input wires
in circuit i.) Upon receiving the decommitments, P2 verifies that all opened
commitments from the “0 set” correspond to garbled values of 0, and that a
similar property holds for commitments from the “1 set”.

It now remains for P2 to evaluate the remaining circuits. In order to do
this, P1 provides (for each of its input wires) the garbled values that are
associated with the wire in all of the remaining circuits. Then, P1 must prove
that all of these values come from the same set, without revealing whether
the set that they come from is the “0 set” or the “1 set” (otherwise, P2

will know P1’s input). In this way, on the one hand, P2 does not learn the
input of P1, and on the other hand, it is guaranteed that all of the values
come from the same set, and so P1 is forced into using the same input in
all circuits. This proof can be carried out using, for example, the proofs of
partial knowledge of [19]. However, this would require n proofs, each for s
values, thereby incurring O(ns) costly asymmetric operations, which we want
to avoid.

Proving consistency of P1’s input: P1 can prove consistency of its inputs
without using public-key operations. The proof is based on a cut-and-choose
test for the consistency of the commitment sets, which is combined with
the cut-and-choose test for the correctness of the circuits. (Note that in the
previous proposal, there is only one cut-and-choose test, and it is for the
correctness of the circuits.) We start by providing a high-level description of
the proof of consistency: The proof is based on P1 constructing, for each of
its input wires, s pairs of sets of commitments. One set in every pair contains
commitments to the 0 values of this wire in all circuits, and the other set is
the same with respect to 1. The protocol chooses a random subset of these
pairs, and a random subset of the circuits, and checks that these sets provide
consistent inputs for these circuits. Then the protocol evaluates the remaining
circuits, and asks P1 to open, in each of the remaining pairs, and only in one
set in every pair, its garbled values for all evaluated circuits. (In this way,
P2 does not learn whether these garbled values correspond to a 0 or to a 1.)
In order for the committed sets and circuits to pass P2’s checks, there must
be large subsets C and S, of the circuits and commitment sets, respectively,
such that every choice of a circuit from C and a commitment set from S
results in a circuit and garbled values which compute the desired function f .
P2 accepts the verification stage only if all the circuits and sets it chooses to
check are from C and S, respectively. This means that if P2 does not abort
then circuits which are not from C are likely to be a minority of the evaluated
circuits, and a similar argument holds for S. Therefore the majority result of
the evaluation stage is correct. The exact construction is as follows:

86 4 Malicious Adversaries

Stage 1 – Commitments: P1 generates s garbled versions of the circuit.
Furthermore, it generates commitments to the garbled values of the wires
corresponding to P2’s input in each circuit. These commitments are gener-
ated in ordered pairs so that the first item in a pair corresponds to the 0 value
and the second to the 1 value. The procedure regarding the input bits of P1

is more complicated (see Figure 4.2 for a diagram explaining this construc-
tion). P1 generates s pairs of sets of committed values for each of its input
wires. Specifically, for every input wire i of P1, it generates s sets of the form
{Wi,j ,W

′
i,j}sj=1; we call these commitment sets. Before describing the content

of these sets, denote by kbi,r the garbled value that is assigned to the value
b ∈ {0, 1} in wire i of circuit r. Then, the sets Wi,j and W ′i,j both contain
s+ 1 commitments and are defined as follows. Let b←R {0, 1} be a random
bit, chosen independently for every {Wi,j ,W

′
i,j} pair. Define Wi,j to contain

a commitment to b, as well as commitments to the garbled value correspond-
ing to b in wire i in all of the s circuits, and define W ′i,j similarly, but with

respect to 1 − b. In other words, Wi,j = {com(b), com(kbi,1), . . . , com(kbi,s)}
and W ′i,j = {com(1−b), com(k1−bi,1), . . . , com(k1−bi,s)}. The fact that b is chosen
randomly means that with probability 1/2 the set Wi,j contains the commit-
ments to values corresponding to 0, and with probability 1/2 it contains the
commitments to values corresponding to 1. We stress that in each of the pairs
(Wi,1,W

′
i,1), . . . , (Wi,s,W

′
i,s) , the values that are committed to are the same

because these are all commitments to the garbled values of the ith wire in
all s circuits. The only difference is that independent randomness is used in
each pair for choosing b and constructing the commitments. We denote the
first bit committed to in a commitment set as the indicator bit.

Fig. 4.2 The commitment sets corresponding to P1’s first input wire

4.1 An Overview of the Protocol 87

After constructing these circuits and commitment sets, party P1 sends
to P2 all of the s garbled circuits (i.e., the garbled gate tables and output
tables, but not the garbled values corresponding to the input wires), and all
the commitment sets. Note that if P1’s input is of length n, then there are sn
pairs of commitment sets, and a total of sn(2s+ 2) = O(s2n) commitments.

Stage 2 – Challenge: Two random strings ρ, ρ′ ←R {0, 1}s are chosen
and sent to P1 (in the actual protocol, these strings are determined via a
simple coin-tossing protocol). The string ρ is a challenge indicating which
garbled circuits to open, and the string ρ′ is a challenge indicating which
commitment sets to open. We call the opened circuits check circuits and the
unopened ones evaluation circuits. Likewise, we call the opened sets check sets
and the unopened ones evaluation sets. A circuit (resp., commitment set) is
defined to be a check circuit (resp., check set) if the corresponding bit in ρ
(resp., ρ′) equals 1; otherwise, it is defined to be an evaluation circuit (resp.,
evaluation set).

Stage 3 – Opening: First, party P1 opens all the commitments corre-
sponding to P2’s input wires in all of the check circuits. Second, in all of
the check sets P1 opens the commitments that correspond to check circuits.
That is, if circuit r is a check circuit, then P1 decommits to all of the values
com(k0i,r), com(k1i,r) in check sets, where i is any of P1’s input bits. Finally,
for every check set, P1 opens the commitment to the indicator bit; i.e., the
initial value in each of the sets Wi,j ,W

′
i,j . See Figure 4.3 for a diagram in

which the values which are opened are highlighted (the diagram refers to only
one of P1’s input wires in the circuit).

Fig. 4.3 In every check set, the commitment to the indicator bit and the commitments
corresponding to check circuits are all opened

88 4 Malicious Adversaries

Stage 4 – Verification: In this step, party P2 verifies that all of the
check circuits were correctly constructed. In addition, it verifies that, with
regard to P1’s inputs, all the opened commitments in sets whose first item is
a commitment to 0 are to garbled encodings of 0; likewise for 1. These checks
are carried out as follows. First, in all of the check circuits, P2 receives the
decommitments to the garbled values corresponding to its own input, and by
the order of the commitments P2 knows which value corresponds to 0 and
which value corresponds to 1. Second, for every check circuit, P2 receives
decommitments to the garbled input values of P1 in all the check sets, along
with a bit indicating whether these garbled values correspond to 0 or to 1.
It first checks that for every wire, the garbled values of 0 are all equal and
the garbled values of 1 are all equal. Then, the above decommitments enable
the complete opening of the garbled circuits (i.e., the decryption of all of the
garbled tables). Once this has been carried out, it is possible to simply check
that the check circuits are all correctly constructed. Namely, that they agree
with a specific and agreed-upon circuit computing f .

Stage 5 – Evaluation and Verification: Party P1 reveals the garbled
values corresponding to its input: If i is a wire that corresponds to a bit of P1’s
input and r is an evaluation circuit, then P1 decommits to the commitments
kbi,r in all of the evaluation sets, where b is the value of its input bit. This is
depicted in Figure 4.4. Finally, P2 verifies that (1) for every input wire, all the
opened commitments that were opened in evaluation sets contain the same
garbled value, and (2) for every i, j P1 opened commitments of evaluated
circuits in exactly one of Wi,j and W ′i,j . If these checks pass, it continues to
evaluate the circuit.

Fig. 4.4 P1 opens the commitments that correspond to its input in the evaluation sets.

In every evaluation set these commitments come from the same item in the pair

4.2 The Protocol 89

Intuition. Having described the mechanism for checking consistency, we
now provide some intuition as to why it is correct. A simple cut-and-choose
check verifies that most of the evaluated circuits are correctly constructed.
The main remaining issue is ensuring that P1’s inputs to most circuits are
consistent. If P1 wants to provide different inputs to a certain wire in two
circuits, then all the Wi,j (or W ′i,j) sets it opens in evaluation sets must
contain a commitment to 0 in the first circuit and a commitment to 1 in the
other circuit. However, if any of these sets is chosen to be checked, and the
circuits are among the checked circuits, then P2 aborts. This means that if P1

attempts to provide different inputs to two circuits and they are checked, it is
caught. Now, since P2 outputs the majority output of the evaluated circuits,
the effect of P1 providing different inputs has an influence only if it does this
in a majority of the evaluation circuits. However, this means that P1 provides
different inputs in a constant fraction of the circuits (if half of the circuits are
evaluation circuits, then it must provide different inputs in at least a quarter
of the circuits overall). However, in this case, the probability that P1 is not
caught (which happens whenever it provides different inputs in a circuit that
turns out to be a check circuit) is exponentially small in s.

4.2 The Protocol

We now describe the full protocol in detail. We use the notation com to
refer to a perfectly binding commitment scheme, and comh to refer to a
perfectly hiding commitment scheme (see [30] for definitions). The protocol
below uses oblivious transfer that is secure in the presence of malicious ad-
versaries. Furthermore, it uses “batch” oblivious transfer, which means that
many executions are run in parallel. An efficient protocol that achieves this
level of security can be found in Chapter 7.

PROTOCOL 4.2.1 (protocol for computing f(x, y)):

• Input: P1 has input x ∈ {0, 1}n and P2 has input y ∈ {0, 1}n.
• Auxiliary input: a statistical security parameter s and the description

of a circuit C0 such that C0(x, y) = f(x, y).
• Specified output: party P2 should receive f(x, y) and party P1 should

receive no output. (Recall that this suffices for the general case where both
parties receive possibly different outputs; see Section 2.5.2.)

• The protocol:

0. Circuit construction: The parties replace C0 with a circuit C which
is constructed by replacing each input wire of P2 by the result of an
exclusive-or of s new input wires of P2, as depicted in Figure 4.1. The
number of input wires of P2 is increased from |y| = n to sn. Let the
bit-wise representation of P2’s original input be y = y1 . . . yn. Denote
its new input as ŷ = ŷ1, . . . , ŷns. P2 chooses its new input at random
subject to the constraint yi = ŷ(i−1)·s+1 ⊕ · · · ⊕ ŷi·s.

90 4 Malicious Adversaries

1. Commitment construction: P1 constructs the circuits and commits
to them, as follows:
a. P1 constructs s independent copies of a garbled circuit of C, denoted

by GC1, . . . , GCs.
b. P1 commits to the garbled values of the wires corresponding to P2’s

input to each circuit. That is, for every input wire i corresponding to
an input bit of P2, and for every circuit GCr, P1 computes the ordered
pair (com(k0i,r), com(k1i,r)), where kbi,r is the garbled value associated
with b on input wire i in circuit GCr.

c. P1 computes commitment-sets for the garbled values that correspond
to its own inputs to the circuits. That is, for every wire i that corre-
sponds to an input bit of P1, it generates s pairs of commitment sets
{Wi,j ,W

′
i,j}sj=1, in the following way:

Denote by kbi,r the garbled value that was assigned by P1 to the value
b ∈ {0, 1} of wire i in GCr. Then, for every j = 1, . . . , s, party P1

chooses b←R {0, 1} (independently for each j) and computes

Wi,j = ⟨com(b), com(kbi,1), . . . , comb(k
b
i,s)⟩, and

W ′i,j = ⟨com(1−b), com(k1−bi,1), . . . , com(k1−bi,s)⟩.

For each i, j, the sets are constructed using independent randomness,
and in particular the value of b is chosen independently for every
j = 1, . . . , s. There is a total of ns commitment-sets. We divide them
into s supersets, where superset Sj is defined to be the set containing
the jth commitment set for all wires. Namely, it is defined as Sj =
{(W1,j ,W

′
1,j), . . . , (Wn,j ,W

′
n,j)}.

2. Oblivious transfers: For every input bit of P2, parties P1 and P2

run a 1-out-of-2 oblivious transfer protocol in which P2 receives the
garbled values for the wires that correspond to its input bit (in every
circuit). That is, let cbi,r denote the commitment to the garbled value

kbi,r and let dcbi,r denote the decommitment value for cbi,r. Furthermore,
let i1, . . . , ins be the input wires that correspond to P2’s input.
Then, for every j = 1, . . . , ns, parties P1 and P2 run a 1-out-of-2 batch
oblivious transfer protocol in which:
a. P1’s input is the pair of vectors ([dc

0
ij ,1

, . . . , dc0ij ,s], [dc
1
ij ,1

, . . . , dc1ij ,s]).

b. P2’s input is its jth input bit ŷj (and its output should thus be

[dc
ŷj

ij ,1
, . . . , dc

ŷj

ij ,s
]).

3. Send circuits and commitments: P1 sends to P2 the garbled circuits
(i.e., the gate and output tables), as well as all of the commitments that
it prepared above.

4. Prepare challenge strings:
a. P2 chooses a random string ρ2 ←R {0, 1}s and sends comh(ρ2) to P1.
b. P1 chooses a random string ρ1 ∈ {0, 1}s and sends com(ρ1) to P2.
c. P2 decommits, revealing ρ2.
d. P1 decommits, revealing ρ1.

4.2 The Protocol 91

e. P1 and P2 set ρ = ρ1 ⊕ ρ2.
The above steps are run a second time, defining an additional string
ρ′.2

5. Decommitment phase for check circuits: From here on, we refer
to the circuits for which the corresponding bit in ρ is 1 as check circuits,
and we refer to the other circuits as evaluation circuits. Likewise, if
the jth bit of ρ′ equals 1, then all commitment sets in superset Sj =
{(Wi,j ,W

′
i,j)}i=1...n are referred to as check sets; otherwise, they are

referred to as evaluation sets.

For every check circuit GCr, party P1 operates in the following way:
a. For every input wire i corresponding to an input bit of P2, party P1

decommits to the pair (com(k0i,r), com(k1i,r)) (namely to both of P2’s
inputs).

b. For every input wire i corresponding to an input bit of P1, party P1

decommits to the appropriate values in the check sets {Wi,j ,W
′
i,j}.

Specifically, P1 decommits to the com(k0i,r) and com(k1i,r) values in
(Wi,j ,W

′
i,j) for every check set Sj (see Figure 4.3). In addition, P1

decommits to the indicator bits of these sets (i.e., to the first com-
mitted value in each set) .

For every pair of check sets (Wi,j ,W
′
i,j), party P1 decommits to the

first value in each set (i.e., to the value that is supposed to be a com-
mitment to the indicator bit, com(0) or com(1)).

6. Decommitment phase for P1’s input in evaluation circuits: P1

decommits to the garbled values that correspond to its inputs in evalu-
ation circuits. Let i be the index of an input wire that corresponds to
P1’s input (the following procedure is applied to all such wires). Let b be
the binary value that P1 assigns to input wire i. In every evaluation set
(Wi,j ,W

′
i,j), P1 chooses the set (out of (Wi,j ,W

′
,j)), which corresponds

to the value b. It then opens in this set the commitments that correspond
to evaluation circuits, namely, to the values kbi,r, where r is an index of
an evaluation circuit (see Figure 4.4).

7. Correctness and consistency checks: P2 performs the following
checks; if any of them fails it aborts.
a. Checking correctness of the check circuits: P2 verifies that each check

circuit GCi is a garbled version of C. This check is carried out by P2

first constructing the input tables that associate every garbled value
of an input wire to a binary value. The input tables for P2’s inputs
are constructed by checking that the decommitments in Step 5a to the

2 Recall that ρ and ρ′ are used to ensure that P1 constructs the circuits correctly and
uses consistent input in each circuit. Thus, it may seem strange that they are generated

via a coin-tossing protocol, and not just chosen singlehandedly by P2. Indeed, in order to
prove the security of the protocol when P1 is corrupted, there is no need for a coin-tossing
protocol here. However, having P2 choose ρ and ρ′ singlehandedly creates a problem for
the simulation in the case where P2 is corrupted. We therefore use a coin-tossing protocol

instead.

92 4 Malicious Adversaries

pairs (com(k0i,r), com(k1i,r)) (where i is a wire index and r is a circuit
index) are valid, and then interpreting the first value to be associated
with 0 and the second value to be associated with 1.

Next, P2 checks the decommitments to P1’s inputs. This check in-
volves first checking that the decommitment values of Step 5b are
valid. Then, P2 verifies that in each pair of check sets, one of
(Wi,j ,W

′
i,j) begins with a commitment to 0 (henceforth the 0 tuple),

and the other begins with a commitment to 1 (henceforth the 1 tuple).
Then P2 checks that for every wire, the values that are decommitted
to in the 0 tuples in all check sets are all equal, and that a similar
property holds for the 1 tuples. P2 then assigns the logical value of
0 to all of the opened commitments in the 0 tuples, and the logical
value of 1 to the opened commitments in the 1 tuples.

Finally, given all the garbled values to the input wires and their as-
sociated binary values, P2 decrypts the circuit and compares it to the
circuit C.

b. Verifying P2’s input in the check circuits: P2 verifies that P1’s decom-
mitments to the wires corresponding to P2’s input values in the check
circuits are correct, and agree with the logical values of these wires
(the indicator bits). P2 also checks that the inputs it learned in the
oblivious transfer stage for the check circuits correspond to its actual
input. Specifically, it checks that the decommitment values that it re-
ceived in the oblivious transfer stage open the committed values that
correspond to the garbled values of its logical input (namely, that it
received the first value in the pair if the input bit is 0 and the second
value if it is 1).3

c. Checking P1’s input to evaluation circuits: Finally, P2 verifies that
for every input wire i of P1 the following two properties hold:
i. In every evaluation set, P1 chose one of the two sets and de-

committed to all the commitments in it which corresponded to
evaluation circuits.

ii. For every evaluation circuit, all of the commitments that P1

opened in evaluation sets commit to the same garbled value.
8. Circuit evaluation: If any of the above checks fails, P2 aborts and

outputs ⊥. Otherwise, P2 evaluates the evaluation circuits (in the same
way as for the semi-honest protocol of Yao). It might be that in certain
circuits the garbled values provided for P1’s inputs, or the garbled values
learned by P2 in the OT stage, do not match the tables and so decryption
of the circuit fails. In this case P2 also aborts and outputs ⊥. Otherwise,
P2 takes the output that appears in most circuits, and outputs it (the
proof shows that this value is well defined).

3 This check is crucial and thus the order of first running the oblivious transfer and then
sending the circuits and commitments is not at all arbitrary.

4.3 Proof of Security 93

4.3 Proof of Security

The security of Protocol 4.2.1 is stated in the following theorem.

Theorem 4.3.1 Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be any polynomial-time
two-party single-output functionality. Assume that the oblivious transfer pro-
tocol is secure in the presence of static malicious adversaries, that com is
a perfectly-binding commitment scheme, that comh is a perfectly-hiding com-
mitment scheme, and that the garbled circuits are constructed as in Chapter 3.
Then, Protocol 4.2.1 securely computes f in the presence of static malicious
adversaries.

The theorem is proved in two stages: first for the case where P1 is corrupted
and next for the case where P2 is corrupted.

4.3.1 Security Against a Malicious P1

Intuition. The proof constructs an ideal-model adversary/simulator which
has access to P1 and to the trusted party, and can simulate the view of an
actual run of the protocol. It uses the fact that the strings ρ, ρ′, which choose
the circuits and commitment sets that are checked, are uniformly distributed
even if P1 is malicious. The simulator runs the protocol until P1 opens the
commitments of the checked circuits and checked commitment sets, and then
rewinds the execution and runs it again with new random ρ, ρ′ values. We
expect that about one quarter of the circuits will be checked in the first
execution and evaluated in the second execution. For these circuits, in the
first execution the simulator learns the translation between the garbled values
of P1’s input wires and the actual values of these wires, and in the second
execution it learns the garbled values that are associated with P1’s input
(this association is learned from the garbled values that P1 sends to P2).
Combining the two, it learns P1’s input x, which can then be sent to the
trusted party, completing the simulation.

When examining the detailed proof, first note that the strings ρ, ρ′ com-
puted in Step 4 of Protocol 4.2.1 are uniformly distributed even in the pres-
ence of a malicious P1. This is due to the perfect hiding of P2’s commitments
in the coin-tossing subprotocol. We say that a circuit GCi and a superset Sj

agree if the checks in Step 7 of the protocol succeed when considering only
the check circuit GCi and the superset of check sets Sj . In particular, this
means that GCi computes the required function when the garbled values of
P1’s input wires are taken from Sj , and that these garbled values agree with
the indicator bit of the sets in Sj . This also means that the committed values
of the garbled values of P2’s input wires in GCi are correctly constructed.

94 4 Malicious Adversaries

(Some circuits might not agree with any set Sj , e.g., if they do not compute
f . Other circuits might agree with some supersets and not agree with others.)

We begin by proving two lemmas that will be used in analyzing the simu-
lation (described below). We say that a circuit is ε-bad if more than εs of the
supersets disagree with it. The following lemma shows that P2 aborts (with
high probability) if more than εs of the circuits are ε-bad. We can therefore
concentrate on the case where εs or fewer of the circuits are bad.

Lemma 4.3.2 If at least εs of the circuits are ε-bad, then P2 aborts with
probability of at least 1− 2 · 2−εs.

Proof. As a warm-up, suppose that there is a single ε-bad circuit. Then the
probability of P2 not aborting is at most 1/2+1/2 ·2−εs, i.e., the probability
that the bad circuit is not chosen as a check circuit plus the probability
that it is a check circuit but none of the disagreeing check sets are chosen
(since the circuits and sets are chosen independently, we can just multiply
the probabilities in the latter case). Suppose now that there are j different
ε-bad circuits. Then the probability of P2 not aborting is at most 2−j + (1−
2−j)2−εs ≤ 2−j + 2−εs. Setting j = εs yields the lemma.

The following lemma shows that P2 aborting does not reveal information
to P1 about P2’s input.

Lemma 4.3.3 For any two different inputs y and y′ of P2 for the function
f , the difference between the probability that P2 aborts Protocol 4.2.1 when
its input is y and when its input is y′ is at most n2−s+1.

Proof. P2 may abort Protocol 4.2.1 in Step 7(a) while checking the cor-
rectness of the check circuits and the check sets. In this case, the decision
to abort is based on P1’s construction of the sets and circuits, and on the
random inputs of the parties, and is independent of P2’s input. The same is
true of Step 7(c) where P2 checks P1’s input to the evaluation circuits. In
Step 7(b), however, P2 aborts based on whether the values it learned in the
oblivious transfer invocations open P1’s commitments to the garbled values
of P2’s input. This case must be examined in detail.

Consider a specific input bit of P2. In Step 0 of Protocol 4.2.1 the circuit
is changed so that this bit is computed as the exclusive-or of s new input
bits of P2. Consider the s new inputs which replace a single input wire of the
original circuit. Suppose that P1 provides in the OT protocol corrupt values
to both garbled values of one of P2’s (new) input wires. Then P2 aborts with
probability 1 regardless of its input. If P1 provides a corrupt OT value to
exactly one of the two possible OT choices of 1 ≤ j < s new wires, then P2

aborts with probability 1 − 2−j , again regardless of the actual value of its
original input. This holds because the values assigned by P2 to any proper
subset of the s bits are independent of P2’s actual input. Assume now that
P1 corrupts one OT value for each of the s new wires (say all ‘1’ values).
Then P2 aborts with probability 1 if its original input had one value (‘1’

4.3 Proof of Security 95

in this example), and aborts with probability 1− 2−s+1 if its original input
had the other value (in this example, P2 does not abort if its input is ‘0’
and it chose only ‘0’ inputs in the s OT invocations). Therefore, for any two
different inputs y and y′ of P2 of length n bits each, the probability that P2

aborts the protocol differs by at most n2−s+1, as required.

We are now ready to prove the security of the protocol under simulation-
based definitions. (For shorthand, from here on by “secure” we mean secure
in the presence of malicious adversaries.)

Lemma 4.3.4 Assume that the oblivious transfer protocol is secure, that
the commitment scheme comh is perfectly hiding, and that the commitment
scheme com is perfectly binding. Then, Protocol 4.2.1 is secure in the case
where P1 is corrupted. (We say that a protocol is secure in the case where P1

is corrupted if Definition 2.3.1 holds when the adversary A controls P1.)

Proof. Let A be an adversary corrupting P1; we construct an ideal-model
adversary/simulator S. Since we assume that the oblivious transfer protocol
is secure, we analyze the security of Protocol 4.2.1 in the hybrid model with
a trusted party computing the oblivious transfer functionality.

The simulator. The simulator S chooses a random input y′ for P2 and
uses it in all but the last stage of the simulation. S receives all of the garbled
circuits and commitments from A. Simulator S then runs the coin-tossing
phase (for preparing the challenge strings) as P2 would, and receives all of
the required decommitments from A, including the garbled values that sup-
posedly correspond to its input. S runs all of the checks that P2 would run. If
any of the checks fail, S sends an abort message to A, sends ⊥ to the trusted
party and halts, outputting whatever A outputs. Otherwise, S rewinds A
and returns to the coin-tossing phase. Once again S runs this phase as P2

would (but with new randomness) and runs all of the checks that P2 would
run. S continues this until all of the checks pass for a second time. Let α be
the output of A in this second successful execution (note that an honest P1

has no output).
Denote by ρ, ρ′ the (uniformly distributed) challenge strings from the first

execution of S with A, and denote by ρ̂, ρ̂′ the challenge strings from the
second execution. Furthermore, denote ρ = ρ1 · · · ρs and ρ̂ = ρ̂1 · · · ρ̂s. Now, if
there are less than s/8 indices i for which ρi = 1 and ρ̂i = 0, then S outputs
fail1. Otherwise, let I be a subset of indices of size exactly s/8 for which
ρi = 1 and ρ̂i = 0 (it is easier to work with a fixed number of is that have
this property, so we choose them here). Then, for every i ∈ I, we have that in
the first execution GCi is a check circuit and in the second execution it is an
evaluation circuit. Thus, S obtains all of the decommitments of GCi in the
first execution (including the association of the garbled values corresponding
to P1’s input, i.e., the decommitment to com(b) in the commitment-sets),
and in the second execution it obtains the garbled values corresponding to
P1’s input that P1 sends to P2. For each such i, it is possible to define P1’s

96 4 Malicious Adversaries

input in circuit GCi by associating the indicator bit obtained when GCi was
a check circuit with the garbled value sent by P1 when GCi was an evaluation
circuit. Thus, S obtains s/8 possible n-bit input vectors for P1. If no input
value appears more than s/16 times, then S outputs fail2. Otherwise, S sets
x to be the value that appears more than s/16 times and sends it to the
trusted party. S then outputs α (the output of A in the second execution)
and halts.

Analysis. We claim that the view of A in the simulation with S is statisti-
cally close to its view in a hybrid execution of Protocol 4.2.1 with a trusted
party computing the oblivious transfer protocol. We first claim that the dif-
ference between the probability that P2 receives “abort” (i.e., ⊥) in an ideal
execution with S and the probability that P2 outputs “abort” (i.e. ⊥) in a
real execution with A is at most negligible. Observe that in the simulation,
S uses a random input for its emulation of P2 instead of the real y that P2

holds. This makes a difference when S checks the decommitments for the
wires that are associated with P2’s input. (Notice that in the real protocol
P2 also uses its input in oblivious transfer subprotocols. Nevertheless, in the
hybrid model that we are analyzing here, A learns nothing about P2’s input
in the oblivious transfer because it is ideal.) Nevertheless, by Lemma 4.3.3 we
know that the probability of abort is at most negligibly different between the
case where P2 has a random input and the case where it has a specific input
y. From here on, we therefore consider the case where P2 does not abort the
protocol (i.e., does not output ⊥). We now prove that S outputs fail1 or fail2
with at most negligible probability.

Bounding fail1. The proof that fail1 occurs with negligible probability fol-
lows from the Chernoff bound, as follows. Denote an index i as good if ρi = 1
and ρ̂i = 0. The probability of this event is 1/4, independently of other in-
dices. Event fail1 happens if less than s/8 of the indices are good. Let Xi = 1
if and only if index i is good. Then, Pr[Xi = 1] = 1/4 and the Chernoff bound
implies that

Pr

[
s∑

i=1

Xi <
s

8

]
= Pr

[∑s
i=1 Xi

s
<

1

8

]
≤ Pr

[∣∣∣∣∑s
i=1 Xi

s
− 1

4

∣∣∣∣ > 1

8

]
< 2 · e−

(1/8)2

2·(1/4)·(3/4) ·s

= 2 · e
−s
24

< 2 · 2
−s
17 .

Bounding fail2. We now show that the event fail2 occurs with negligible
probability. Let ε = 1/16 and denote by many-bad the event that at least εs
of the circuits are ε-bad (i.e., the event that s/16 of the circuits are 1/16-bad).

4.3 Proof of Security 97

Denote by abort the event that S sends ⊥ to the trusted party. Lemma 4.3.2
shows that Pr[¬abort | many-bad] ≤ 2 · 2−s/16.

We begin by analyzing the probability that fail2 occurs given ¬many-bad;
i.e., given the event that less than s/16 of the circuits are 1/16-bad. Con-
sider the set of s/8 circuits GCi with i ∈ I. The definition of ¬many-bad
implies that a majority of the s/8 circuits in I are not 1/16-bad. The
circuits which are not 1/16-bad agree with at least 15s/16 of the com-
mitment sets. The probability that any of these circuits does not agree
with a majority of the evaluation sets is negligible: this event only hap-
pens if the number of evaluation sets is less than s/8, and the probabil-
ity of this event happening can be bounded (using the Chernoff bound) by

(s/8) · 2 · e−
(3/8)2

2·(1/2)2
·s
= (s/8) · e− 9s

32 < 2
−s
2.5 . If a circuit agrees with a majority

of the evaluation sets then the committed values of these sets open the circuit
correctly. In the evaluation step, for each of its input wires P1 opens the val-
ues for all evaluation circuits taken from the same commitment set. P2 and
S check that the values opened for a wire in all sets are equal. For the good
circuits in I these values agree with the same logical value (the indicator bit
of the set). Therefore in this case a majority of the circuits in I obtain the
same logical input, and fail2 does not occur.

When ε = 1/16, the previous argument shows that

Pr[fail2 | ¬many-bad] < 2−s/2.5,

and Lemma 4.3.2 shows that Pr[¬abort | many-bad] < 2 · 2−s/16. We are
interested in Pr[fail2], which we bound as follows:

Pr[fail2] = Pr[fail2 ∧ abort] + Pr[fail2 ∧ ¬abort] = Pr[fail2 ∧ ¬abort]

where the last equality is due to the fact that in the event of fail2 the simulator
S does not send ⊥ (and so ¬abort does not occur) and vice versa. Thus,
Pr[fail2 ∧ abort] = 0. Now,

Pr[fail2 ∧ ¬abort] = Pr[fail2 ∧ ¬abort ∧many-bad]

+ Pr[fail2 ∧ ¬abort ∧ ¬many-bad]

≤ Pr[¬abort ∧many-bad] + Pr[fail2 ∧ ¬many-bad].

Combining the above and using the fact that for all two events X and Y it
holds that Pr[X ∧ Y] ≤ Pr[X | Y] we conclude that

Pr[fail2] ≤ Pr[¬abort | many-bad] + Pr[fail2 | ¬many-bad]

< 2 · 2−s/16 + 2−s/2.5

< 3 · 2−s/16.

98 4 Malicious Adversaries

Completing the proof. We now show that conditioned on S not outputting
any fail message, the view of A in the simulation is statistically close to its
view in an execution of Protocol 4.2.1. First note that the probability of
abort in the real and ideal executions is at most negligibly far apart (this
follows from Lemma 4.3.3 and the fact that S uses a random input instead
of the one that the honest P2 has). Next, consider the case where abort does
not occur. Recall that S just runs the honest P2’s instructions. The only
difference is that in the event that all of S’s checks pass in the first execution
(which is the event of no abort that we are considering here), it rewinds the
second execution until this event occurs again. The final view of A is then
the view that appears in this second execution in which this occurs. Since S
uses independent random coins each time, and follows P2’s instructions each
time, the above process results in a distribution that is identical to the view
of A in a real execution with P2.

We now proceed to show that the joint distribution of S’s output (which
is just A’s output α) and the honest B2’s output, is computationally indis-
tinguishable from the joint distribution of A and P2’s output in an execution
of Protocol 4.2.1 (where an ideal oblivious transfer is used instead of the
OT subprotocol). We will actually show statistical closeness. (This does not
mean, however, that the overall protocol gives statistical security because our
analysis is in the hybrid model for an oblivious transfer functionality and it
depends on the security of the actual oblivious transfer subprotocol used.) In
order to prove this, we show that if the real P2 would have received the set of
evaluation circuits and decommitments that A sent in the second execution
with S, and it has input y, then it would compute f(x, y) in a majority of
the circuits (where x is the input value that S sent to the trusted party com-
puting f). This follows from the same argument that was used to show above
that fail2 occurs with negligible probability: with all but negligible probabil-
ity, most of the evaluation circuits are not ε-bad and they each agree with
a majority of the evaluation sets. Denote these circuits as good (or ε-good)
circuits. In particular, the committed values provided in these sets for P1’s
inputs in these circuits correctly decrypt them according to their association
with the indicator bit. P2 also checks that each of P1’s input wires receives
the same garbled value in all sets. Therefore, the evaluation step is aborted
unless P1 opens garbled values for the good circuits that agree with the same
logical value (the indicator bit of the set). The fact that these circuits are
good also implies that P2 obtains garbled values in the OT stage that agree
with its input. As a result, a majority of the evaluation circuits obtain the
same logical input (x, y) and compute f(x, y).

It remains to show that S runs in expected polynomial time. In order to
see this, notice that aside from the rewinding, all of S’s work takes a strict
polynomial number of steps. Furthermore, each rewinding attempt also takes
a strict polynomial number of steps. Now, denote by p the probability that
A responds correctly and so S’s checks all pass. Then, the probability that
S enters the rewinding phase equals p. Furthermore, the expected number of

4.3 Proof of Security 99

rewinding attempts equals exactly 1/p (notice that S runs exactly the same
strategy in each rewinding attempt). Thus, the overall expected running time
of S equals poly(n, s) + p · 1/p · poly(n, s) = poly(n, s). This completes the
proof of Lemma 4.3.4 and thus the case where P1 is corrupted.

(We note one important subtlety in this part of the proof: the sequen-
tial composition theorem of Section 2.7 was only proven for the case where
the security of the subprotocol is proven via a simulator that runs in strict
polynomial time (see [48, 33] for a full discussion of this issue). Thus, the
modular sequential composition theorem does not cover the case where the
simulator for the oblivious transfer subprotocol runs in expected polynomial
time. Despite this, we claim that this is no problem in our specific case. In
order to see that S runs in expected polynomial time even if the oblivious
transfer protocol is proven secure using expected polynomial-time simulation,
note that we can divide A into two parts. The first part runs up until the end
of the oblivious transfer protocol and outputs state information; the second
part takes the state information and continues until the end of the execution.
Now, the simulator for the oblivious transfer protocol may result in an ex-
pected polynomial-time adversary for the first part of A. However, the second
part of A still runs in strict polynomial time, and S only rewinds this second
part. Therefore, the overall running time of S – even after replacing the ideal
oblivious transfer functionality with a real protocol that may use expected
polynomial-time simulation – is expected polynomial time, as required.)

4.3.2 Security Against a Malicious P2

Intuition. Intuitively, the security in this case is derived from the fact that
(a) the oblivious transfer protocol is secure, and so P2 only learns a single
set of keys (corresponding to a single input y) for decrypting the garbled
circuits, and (b) the commitment schemes are hiding and so P2 does not know
what input corresponds to the garbled values that P1 sends it for evaluating
the circuit. Of course, in order to formally prove security we construct an
ideal-model simulator S working with an adversary A that has corrupted
P2. The simulator first extracts A’s input bits from the oblivious transfer
protocol, and then sends the input y it obtained to the trusted party and
receives back τ = f(x, y). Given the output, the simulator constructs the
garbled circuits. However, rather than constructing them all correctly, for
each circuit it tosses a coin and, based on the result, either constructs the
circuit correctly, or constructs it to compute the constant function outputting
τ (the output is received from the trusted party). In order to make sure that
the simulator is not caught cheating, it biases the coin-tossing phase so that
all of the correctly constructed garbled circuits are check circuits, and all of
the other circuits are evaluation circuits (this is why the protocol uses joint

100 4 Malicious Adversaries

coin-tossing rather than let P2 alone choose the circuits to be opened). A then
checks the correctly constructed circuits, and is satisfied with the result as if
it were interacting with a legitimate P1. A therefore continues the execution
with the circuits which always output τ . The proof is based on the following
lemma:

Lemma 4.3.5 Assume that the oblivious transfer protocol is secure, that
comh is a perfectly-hiding commitment scheme, and that com is a perfectly-
binding commitment scheme. Then, Protocol 4.2.1 is secure in the case where
P2 is corrupted.

Proof. As described above, the simulator works by constructing some of
the circuits correctly and some of them incorrectly. Before proceeding with
the formal proof of the lemma, we show that it is possible to construct such
“false circuits”, so that A cannot distinguish between them and correctly
constructed circuits.

Lemma 4.3.6 Given a circuit C and an output value τ (of the same length

as the output of C) it is possible to construct a garbled circuit G̃C such that:

1. The output of G̃C is always τ , regardless of the garbled values that are
provided for P1 and P2’s input wires, and

2. If τ = f(x, y), then no non-uniform probabilistic polynomial-time adver-

sary A can distinguish between the distribution ensemble consisting of G̃C
and a single arbitrary garbled value for every input wire, and the distri-
bution ensemble consisting of a real garbled version of C, together with
garbled values that correspond to x for P1’s input wires, and to y for P2’s
input wires.

Proof (sketch). The proof of this lemma is taken from the proof of The-
orem 3.4.2 (it is not stated in this way there, but is proven). We sketch the

construction of G̃C here for the sake of completeness, and refer the reader to
Section 3.4 for a full description and proof. The first step in the construction
of the fake circuit G̃C is to choose two random keys ki and k′i for every wire
wi in the circuit C. Next, the gate tables of C are computed: let g be a gate
with input wires wi, wj and output wire wℓ. The table of gate g contains en-
cryptions of the single key kℓ that is associated with wire wℓ, under all four
combinations of the keys ki, k

′
i, kj , k

′
j that are associated with the input wires

wi and wj to g. (This is in contrast to a real construction of the garbled cir-
cuit that involves encrypting both kℓ and k′ℓ, depending on the function that
the gate in question computes.) That is, the following values are computed:

c0,0 = Eki(Ekj (kℓ)),

c0,1 = Eki(Ek′
j
(kℓ)),

c1,0 = Ek′
i
(Ekj (kℓ)),

c1,1 = Ek′
i
(Ek′

j
(kℓ)).

4.3 Proof of Security 101

The gate table for g is then just a random ordering of the above four values.
This process is carried out for all of the gates of the circuit. It remains to
describe how the output decryption tables are constructed. Denote the n-bit
output τ by τ1 · · · τn, and denote the circuit-output wires by wm−n+1, . . . , wm.
In addition, for every i = 1, . . . , n, let km−n+i be the (single) key encrypted
in the gate whose output wire is wm−n+i, and let k′m−n+i be the other key
(as described above). Then, the output decryption table for wire wm−n+i is
given by [(0, km−n+i), (1, k

′
m−n+i)] if τi = 0, and [(0, k′m−n+i), (1, km−n+i)] if

τi = 1. This completes the description of the construction of the fake garbled
circuit G̃C.

Notice that by the above construction of the circuit, the output keys (or
garbled values) obtained by P2 for any set of input keys (or garbled values),
equals km−n+1, . . . , km. Furthermore, by the above construction of the output
tables, these keys km−n+1, . . . , km decrypt to τ = τ1 · · · τn = τ exactly. Thus,
property (1) of the lemma trivially holds. The proof of property (2) follows
from a hybrid argument in which the gate construction is changed one at a
time from the real construction to the above fake one (indistinguishability
follows from the indistinguishability of encryptions). The construction and
proof of this hybrid are described in full in Section 3.3.

We are now ready to begin with the formal proof of Lemma 4.3.5. We
denote the number of input wires of P2 as n′ (P2 had originally n input
wires, but in Step 0 of the protocol they are expanded to n′ = ns wires, to
prevent an attack by P1). Let A be an adversary controlling P2. We construct
a simulator S as follows:

1. S chooses garbled values for the input wires of P2 in s garbled circuits.
That is, it chooses n′·s pairs of garbled values k0i and k1i , and constructs 2n′

vectors of garbled values of length s. Denote the vectors v01 , v
1
1 , . . . , v

0
n′ , v1n′ ,

where vbi contains the garbled values in all circuits that are associated
with the bit b for the input wire associated with P2’s ith input bit. Next,
S computes the commitment and decommitment values for these vectors.
That is, let cbi be a vector of commitments, with the jth element being
a commitment to the jth element of vbi . Likewise, let dcbi be a vector of
decommitments, where the jth element of dcbi is the decommitment of the
jth element of cbi .

2. S invokes A upon its initial input and obtains the inputs that A sends
to the trusted party computing the oblivious transfer functionality (recall
that our analysis is in the hybrid model). Let yi denote the bit sent by
A that corresponds to the ith oblivious transfer, and let y = y1, . . . , yn
(note that y is not necessarily the same as A and S’s initial input). S
hands A the vector of decommitments to garbled values dcyi

i as if they
are the output for A from the trusted party in the ith computation of the
oblivious transfer functionality.

3. S externally sends y to the trusted party computing f and receives back
τ = f(x, y).

102 4 Malicious Adversaries

4. S chooses a random string ρ←R {0, 1}s and constructs s garbled circuits
GC1, . . . GCs, as follows. Let ρ = ρ1, . . . , ρs. Then, for i = 1, . . . , s, if ρi = 1
(and soGCi is a check circuit), simulator S constructs circuitGCi correctly
(exactly as described in Step 1 of Protocol 4.2.1). Otherwise, if ρi = 0

(and so GCi is an evaluation circuit), it constructs circuit GCi = G̃C as
described in Lemma 4.3.6. That is, it constructs a garbled circuit whose
output is always τ , regardless of the inputs used. The above constructions
use the garbled values chosen for the input wires above. That is, the garbled
values from v0i and v1i are used to define the input values for the ith wire
in all of the s circuits (the jth value in vbi defines the value in the jth
circuit).
S constructs the commitments and commitment sets as follows.

• First, for every r such that ρr = 1 (and so GCr is a check circuit), the
commitment pairs (com(k0i,r), com(k1i,r)) that correspond to P2’s input

wires in circuit GCr are computed correctly (note that kbi,r is the rth

value in vbi and com(kbi,r) is taken from cbi).
• In contrast, for every j for which ρr = 0 (and so GCr is an evaluation

circuit), these commitment pairs are computed as follows. Assume that
P2’s ith input bit is associated with wire i. Then, S sets kyi

i,r to equal the

rth garbled value in the vector vyi

i , and sets k1−yi

i,r to be the string of all

zeros. S then defines the commitment pair to be (com(k0i,r), com(k1i,r)).
• Second, S chooses a random string ρ′ ←R {0, 1}s and constructs the

commitment-sets Wi,j and W ′i,j (of P1’s inputs), as follows. For every
input wire i and for every j such that ρ′j = 0 (i.e., such that the setsWi,j

and W ′i,j are evaluation sets), S generates the commitment-set Wi,j so
that the first commitment is com(0) and the rest are “correct” (i.e., as
instructed in the protocol). It then computes W ′i,j incorrectly, commit-
ting to the exact same values as Wi,j (we stress that the commitments
are computed using fresh randomness, but they are commitments to the
same values).

• Finally, S constructs the commitment-sets for the values of j such that
ρ′j = 1 (i.e., such that Wi,j and W ′i,j are check sets). Recall that the
commitment-set Wi,j is made up of an initial indicator commitment
(to 0 or 1) followed by s commitments, where the rth commitment
corresponds to the rth circuit; denote the rth commitment in Wi,j by
W r

i,j . Now, for every input wire i and every j such that ρ′j = 1:
– For every r such that ρr = 1 (corresponding to a check circuit),

simulator S places the correct commitments in W r
i,j and W ′

r
i,j .

– For every r such that ρr = 0 (corresponding to an evaluation circuit),
simulator S places commitments to zeros. (These commitments are
never opened; see Figures 4.3 and 4.4.)

S internally hands A the garbled circuits and commitments that it con-
structed. (Note that the commitments corresponding to P1 and P2’s input

4.3 Proof of Security 103

wires in all of the evaluation circuits contain only a single garbled value
from the pair associated with the wire. This will be important later on.)

5. S simulates the coin-tossing (“prepare challenge strings”) phase with A
so that the outcome of ρ1 ⊕ ρ2 equals the string ρ that it chose above.
If it fails, it outputs fail and halts. Likewise, the coin-tossing phase for
the second challenge string is also simulated so that the outcome is ρ′ as
chosen above. Again, if it fails, it outputs fail and halts. We describe how
this is achieved below.

6. S opens the commitments for check circuits and check sets for A, exactly
as described in Step 5 of Protocol 4.2.1.

7. S internally hands A decommitments for the garbled values for each of the
input wires corresponding to P1’s input, in each of the evaluation circuits.
In order to do this, S just chooses randomly betweenWi,j andW ′i,j for each
evaluation set, and decommits to the garbled values that are associated
with the evaluation circuits.

8. S outputs whatever A outputs and halts.

If at any time during the simulation, A aborts (either explicitly or by send-
ing an invalid message that would cause the honest P1 to abort), S halts
immediately and outputs whatever A does.

Analysis. We now show that the view of A in the above simulation by
S is computationally indistinguishable from its view in a hybrid execution
with P1 where the oblivious transfer functionality is computed by a trusted
party. (For the sake of clarity, we will refer to A as a real adversary running
a real execution. However, this actually refers to A running the real protocol
but with an ideal oblivious transfer.) We note that since only A receives
output in this protocol, it suffices to consider the view of A only. Before
demonstrating this, we show that the coin-tossing phases can be simulated
so that S outputs fail with at most negligible probability. Intuitively, the
simulation of this phase (for ρ) is carried out as follows:

1. S receives a perfectly-hiding commitment c from A.
2. S generates a perfectly-binding commitment ĉ to a random string ρ̂ and

internally hands it to A.
3. If A aborts without decommitting, then S halts the simulation immedi-

ately and outputs whatever A outputs. Otherwise, let ρ2 be the value
decommitted to by A.

4. S rewinds A to after the point that it sends c, and sends it a new com-
mitment c̃ to the string ρ1 = ρ ⊕ ρ2 (where the result of the coin-tossing
is supposed to be the string ρ).

5. If A decommits to ρ2, then S has succeeded. Thus, it continues by decom-
mitting to ρ1, and the result of the coin-tossing is ρ = ρ1 ⊕ ρ2.
If A decommits to some ρ′2 ̸= ρ2, then S outputs ambiguous.
If A does not decommit (but rather aborts), then S continues by sending a
new commitment to ρ1 = ρ2⊕ρ. Notice that S sends a commitment to the

104 4 Malicious Adversaries

same value ρ1, but uses fresh randomness in generating the commitments
and executes Step 5 of the simulation again.

Unfortunately, as was shown by [34], the above simulation strategy does not
necessarily run in expected polynomial time. Rather, it is necessary to first es-
timate the probability that A decommits when it receives a commitment ĉ to
a random value ρ̂. Then, the number of rewinding attempts, when A is given
a commitment to ρ1 = ρ⊕ ρ2, is truncated as some function of the estimate.
In [34], it is shown that this strategy yields an expected polynomial-time sim-
ulation that fails with only negligible probability (including the probability
of outputting ambiguous). Furthermore, the simulation has the property that
the view of A is computationally indistinguishable from its view in a real
execution. See Section 6.5.3 for a full detailed analysis of this exact proce-
dure. Of course, the same strategy exactly is used for the simulation of the
coin-tossing phase for ρ′.

We now continue with the analysis of the simulation. Intuitively, given that
the above coin-tossing simulation succeeds, it follows that all of the check cir-
cuits are correctly constructed, as in the protocol (because S constructs all
the circuits for which ρi = 1 correctly). Thus, the view of A with respect
to these circuits is the same as in a real execution with an honest P1. Fur-
thermore, the commitments for the evaluation circuits reveal only a single
garbled value for each input wire. Thus, Lemma 4.3.6 can be applied.

Formally, we prove indistinguishability in the following way. First, we mod-
ify S into S ′, which works in exactly the same way as S except for how it
generates the circuits. Specifically, S ′ is given the honest P1’s input value x
and constructs all of the circuits correctly. However, it only uses the garbled
values corresponding to x in the commitment-sets. That is, if the value ki,ℓ
is used in all of the commitment sets Wi,j and W ′i,j with respect to circuit
ℓ, then ki,ℓ is the garbled value associated with xi (i.e., the ith bit of x) in
circuit ℓ (the other garbled value associated with the wire is associated with
1 − xi). Everything else remains the same. In order to see that A’s view in
an execution with S is indistinguishable from its view in an execution with
S ′, we apply Lemma 4.3.6. In order to apply this claim, recall first that the
evaluation circuits with S are all constructed according to G̃C, yielding out-
put τ = f(x, y) where y is the input obtained from A and x is the honest
party’s input. In contrast, the evaluation circuits with S ′ are all correctly
constructed. Note also that the input y obtained by S ′ from A is the same
value as that obtained by S, which defines τ = f(x, y).4 Finally, note that
S ′ sends A the garbled values that correspond to P1’s input x. Thus, by
Lemma 4.3.6, A’s view with S is indistinguishable from its view with S ′.

4 Note that there is one oblivious transfer for each input bit. Furthermore, the input of P1

into these executions is a pair of vectors of s garbled values so that in the ith execution,
the first vector contains all of the decommitments for garbled values that correspond to 0
for the ith input wire of P2, and the second vector contains all of the decommitments for

garbled values that correspond to 1 for the ith input wire of P2. This means that in every
circuit, A receives garbled values that correspond to the same input y.

4.4 Efficient Implementation of the Different Primitives 105

(The full reduction here works by an adversary obtaining the garbled circuits
and values, and then running the simulation of S or S ′. Specifically, it gen-
erates all the check circuits correctly and uses the garbled values it obtained
to generate the evaluation sets and the commitments in the evaluation sets.
However, it does not generate the evaluation circuits itself, but uses the ones
that it receives. If it receives real circuits, then it will obtain the distribution
of S ′, and if it receives fake garbled circuits, then it will obtain the distribu-
tion of S. We therefore conclude by Lemma 4.3.6 that these distributions are
indistinguishable. We note that the full proof of this also requires a hybrid
argument over the many evaluation circuits, as opposed to the single circuit
referred to in Lemma 4.3.6.)

Next, we construct a simulator S ′′ that works in the same way as S ′ except
that it generates all of the commitments correctly (i.e., as in the protocol
specification). Note that this only affects commitments that are never opened.
Note also that S ′′ is given x and so it can do this. The indistinguishability
between S ′ and S ′′ follows from the hiding property of the commitment
scheme com. (The full reduction is straightforward and is therefore omitted.)

Finally, note that the distribution generated by S ′′ is the same as the
one generated by an honest P1, except for the simulation of the coin-tossing
phases. Since, as we have mentioned, the view of A in the simulation of the
coin-tossing is indistinguishable from its view in a real execution, we conclude
that the view of A in the simulation by S ′′ is indistinguishable from its view
in a real execution with P1. Combining the above steps, we conclude that
A’s view in the simulation with S is indistinguishable from its view in a
real execution with P1. Recalling that our analysis actually applies to the
hybrid model where the oblivious transfer is ideal, we conclude by applying
the sequential composition theorem in order to obtain that A’s view in the
simulation with S is indistinguishable from its view in a completely real
execution with P1 (where even the oblivious transfer is real). This completes
the proof of Lemma 4.3.5 and thus the case where P2 is corrupted.

Combining the cases. The proof of Theorem 4.3.1 is completed by com-
bining Lemmas 4.3.4 and 4.3.5.

4.4 Efficient Implementation of the Different Primitives

In this section, we describe efficient implementations of the different building
blocks of the protocol.

Encryption scheme. As in the semi-honest construction of Chapter 3, the
construction uses a symmetric key encryption scheme that has indistinguish-
able encryptions for multiple messages and an elusive efficiently verifiable
range. Informally, this means (1) that for any two (known) messages x and y,
no polynomial-time adversary can distinguish between the encryptions of x

106 4 Malicious Adversaries

and y, and (2) that there is a negligible probability that an encryption under
one key falls into the range of encryptions under another key, and given a
key k it is easy to verify whether a certain ciphertext is in the range of en-
cryptions with k. See Chapter 3 for a detailed discussion of these properties,
and for examples of easy implementations satisfying them. For example, the
encryption scheme could be Ek(m) = ⟨r, fk(r) ⊕m0n⟩, where fk is a pseu-
dorandom function keyed by k whose output is |m|+ n bits long, and r is a
randomly chosen value.

Commitment schemes. The protocol uses both unconditionally hiding
and unconditionally binding commitments. Our goal should be, of course,
to use the most efficient implementations of these primitives, and we there-
fore concentrate on schemes with O(1) communication rounds (all commit-
ment schemes we describe here have only two rounds). Efficient uncondi-
tionally hiding commitment schemes can be based on number-theoretic as-
sumptions, and use O(1) exponentiations (see, e.g., [69]). The most efficient
implementation is probably the one due to Damg̊ard, Pedersen, and Pfitz-
mann, which uses a collision-free hashing function and no other cryptographic
primitive [21]; see also [41]. Efficient unconditionally binding commitments
can be constructed using the scheme of Naor [60], which has two rounds and
is based on using a pseudorandom generator.

Oblivious transfer. The protocol uses an oblivious transfer protocol which
is secure in the presence of malicious adversaries (and thus proven secure
according to the real/ideal model simulation paradigm). Efficient protocols
for this task can be found in Chapter 7.

4.5 Efficiency of the Protocol

The overhead of the protocol depends heavily on the statistical security pa-
rameter s. The security proof shows that the adversary’s cheating probability
is exponentially small in s. In particular, the adversary can cheat with prob-
ability at most 2−s/17. We conjecture that this can be made significantly
smaller given a tighter analysis. Nevertheless, we have preferred to present a
full and clear proof, rather than to overly optimize the construction at the
cost of complicating the proof.

We analyze the complexity of the protocol as above in Section 3.5. We do
not count the cost of the oblivious transfers, and refer to Chapter 7 (and in
particular Sections 7.4.2 and 7.5 for an exact analysis of this cost):

• Number of rounds: The number of rounds of communication in the pro-
tocol equals the number of rounds required to run the oblivious transfers
plus five.

4.6 Suggestions for Further Reading 107

• Asymmetric computations: In Protocol 4.2.1 each input bit of P2 is
replaced with s new input bits and therefore O(ns) oblivious transfers are
required. We remark that in [55] it is shown how this can be reduced.

• Symmetric computations: Each garbled circuit is of size |C| = |C0|+
O(ns), and requires eight encryptions per gate for constructing the circuit
and, as shown in Section 3.5, an expected four encryptions per gate for
evaluating it. Since P2 checks half of the circuits (which involves construct-
ing them from scratch) and evaluates half of the circuits, we conclude that
the cost is 8|C| · s + 8|C| · s/2 + 4|C| · s/2 = 14|C|s symmetric encryp-
tion/decryption operations. In addition, there are 2s(s+ 1) commitments
for each of the n inputs of P1. We conclude that there are approximately
12s|C|+ 2s2n symmetric operations.

• Bandwidth: The communication overhead of the protocol is dominated
by sending s copies of the garbled circuit and the commitment sets. The
communication overhead is therefore O(s|C|+ s2n) ciphertexts and com-
mitment values.

4.6 Suggestions for Further Reading

Recently, a number of different approaches have been proposed for construct-
ing efficient general protocols that are secure in the presence of malicious ad-
versaries. In this chapter we have shown just one of these approaches. Other
approaches include the following:

• Jarecki and Shmatikov [47] designed a protocol in which the parties ef-
ficiently prove, gate by gate, that their behavior is correct. The protocol
runs in a constant number of rounds, and is based on the use of a special
homomorphic encryption system, which is used to encode the tables of
each gate of the circuit (compared to the use of symmetric encryption in
Yao’s original protocol and in the protocol presented above in this chap-
ter). This protocol works in a completely different way than the protocol
presented above because it does not use the cut-and-choose technique.
Rather, the circuit constructor proves in zero-knowledge that all gates are
correctly constructed; this is carried out efficiently by utilizing properties
of the homomorphic encryption scheme. The result is a protocol requiring
a constant number of asymmetric operations per gate (and no symmetric
operations). Although this approach has the potential to yield an efficient
solution for circuits that are not too large, currently the exact number
of asymmetric operations required is 720, which is very large. If this con-
stant could be reduced to a small number, this approach would be far more
appealing.

• Nielsen and Orlandi [65] use the cut-and-choose technique but in a very
different way than in the protocol presented in this chapter. Specifically,
the circuit constructor first sends the receiver many gates, and the receiver

108 4 Malicious Adversaries

checks that they are correctly constructed by asking for some to be opened.
After this stage, the parties interact in a way that enables the gates to be
securely soldered (like Lego blocks) into a correct circuit. Since it is not
guaranteed that all of the gates are correct, but just a vast majority, a
fault-tolerant circuit of size O(s · |C|/ log |C|) is constructed, where s is
a statistical security parameter. The error as a function of s is 2−s and
the constant inside the “O” notation for the number of exponentiations is
32 [66].

• Ishai, Prabhakaran and Sahai [46] present a protocol that works by having
the parties simulate a virtual multiparty protocol with an honest majority.
The cost of the protocol essentially consists of the cost of running a semi-
honest protocol for computing the multiplication of additive shares, for
every multiplication carried out by a party in a multiparty protocol with
honest majority. Thus, the actual efficiency of the protocol depends heavily
on the multiparty protocol to be simulated, and on the semi-honest proto-
cols used for simulating the multiparty protocol. An asymptotic analysis
demonstrates that this method may be competitive. However, no concrete
analysis has been carried out, and it is currently an open question whether
or not it is possible to instantiate this protocol in a way that will be com-
petitive with other known protocols.

• Lindell and Pinkas [57] present a protocol that is built on the same concept
as the protocol in this chapter, but is significantly simpler and more effi-
cient. The protocol relies on specific assumptions and tools that we present
in the second part of this book. For this reason we chose to present the
protocol of [55], and not its improved version [57].

Chapter 5

Covert Adversaries

In this chapter, we present protocols for securely computing any functionality
in the model of covert adversaries; see Section 2.4 for motivation and defini-
tions of the model. We begin by presenting a protocol for oblivious transfer
that is secure in the covert model. We present this protocol mainly for di-
dactic reasons; it serves as a good warm-up for understanding how to prove
security in this model. Nevertheless, we stress that more efficient oblivious
transfer protocols are known (both for the covert and malicious settings; see
Section 7.4 for an example).

5.1 Oblivious Transfer

In this section we will construct an efficient oblivious transfer protocol that
is secure in the presence of covert adversaries with ϵ-deterrent. We will first
present the basic scheme that considers a single oblivious transfer and ϵ =
1/2. We will then extend this to enable the simultaneous (batch) execution
of many oblivious transfers and also higher values of ϵ. Our constructions all
rely on the existence of secure homomorphic encryption schemes.

We remark that it is possible to use the highly efficient oblivious trans-
fer protocol with full simulation-based security that appears in Chapter 7.
This is due to the fact that security in the presence of malicious adversaries
implies security in the presence of covert adversaries; see Proposition 2.4.3.
Nevertheless, we present the protocol here since it is more general and in
addition provides a good warm-up to proofs of security in this model.

Homomorphic encryption. Intuitively, a public-key encryption scheme is
homomorphic if given two ciphertexts c1 = Epk(m1) and c2 = Epk(m2) it is
possible to efficiently compute Epk(m1+m2) without knowledge of the secret
decryption key or the plaintexts. Of course this assumes that the plaintext
message space is a group; we actually assume that both the plaintext and
ciphertext spaces are groups (with respective group operations + and ·). A

109C. Hazay, Y. Lindell, Efficient Secure Two-Party Protocols,
Information Security and Cryptography, DOI 10.1007/978-3-642-14303-8_5,
© Springer-Verlag Berlin Heidelberg 2010

110 5 Covert Adversaries

natural way to define this is to require that for all pairs of keys (pk, sk), all
m1,m2 ∈ P and c1, c2 ∈ C with m1 = Dsk(c1) and m2 = Dsk(c2) it hold
that Dsk(c1 · c2) = m1 + m2. However, we actually need a stronger prop-
erty. Specifically, we require that the result of computing c1 · c2, when c2 is a
random encryption of m2, is a random encryption of m1 +m2 (by a random
encryption we mean a ciphertext generated by encrypting the plaintext with
uniformly distributed coins). This property ensures that if one party gener-
ated c1 and the other party applied a series of homomorphic operations to
c1 in order to generate c, then the only thing that the first party can learn
from c is the underlying plaintext. In particular, it learns nothing about the
steps taken to arrive at c (e.g., it cannot know if the second party added m2

in order to obtain an encryption of m1 +m2, or if it first added m3 and then
m4 where m2 = m3 +m4). We stress that this holds even if the first party
knows the secret key of the encryption scheme. We formalize the above by re-
quiring that the distribution of {pk, c1, c1 · c2} is identical to the distribution
of {pk,Epk(m1), Epk(m1 +m2)}, where in the latter case the encryptions of
m1 and m1 +m2 are generated independently of each other, using uniformly
distributed random coins. We denote by Epk(m) the random variable gener-
ated by encrypting m with public key pk using uniformly distributed random
coins. We have the following formal definition.

Definition 5.1.1 A public-key encryption scheme (G,E,D) is homomorphic
if for all n and all (pk, sk) output by G(1n), it is possible to define groups
M, C such that:

• The plaintext space is M, and all ciphertexts output by Epk are elements
of C,1 and

• For every m1,m2 ∈M it holds that

{pk, c1 = Epk(m1), c1 · Epk(m2)} ≡ {pk,Epk(m1), Epk(m1 +m2)} (5.1)

where the group operations are carried out in C andM, respectively.

Note that in the left distribution in (5.1) the ciphertext c1 is used to gen-
erate an encryption of m1+m2 using the homomorphic operation, whereas in
the right distribution the encryptions ofm1 andm1+m2 are independent. An
important observation is that any such scheme supports the multiplication
of a ciphertext by a scalar, which can be achieved by computing multiple ad-
ditions. Such encryption schemes can be constructed under the quadratic
residuosity, N -residuosity, decisional Diffie-Hellman (DDH) and other as-
sumptions; see [68, 2] for some references. By convention, no ciphertext is
invalid. That is, any value that is not in the ciphertext group C is interpreted
as an encryption of the identity element of the plaintext groupM.

1 The plaintext and ciphertext spaces may depend on pk; we leave this implicit.

5.1 Oblivious Transfer 111

5.1.1 The Basic Protocol

PROTOCOL 5.1.2 (OT from homomorphic encryption):

• Inputs: Party P1 has a pair of strings (x0, x1) for input; P2 has a bit σ.
Both parties have the security parameter 1n as auxiliary input. (In order to
satisfy the constraints that all inputs are of the same length, it is possible
to define |x0| = |x1| = k and give P2 (σ, 12k−1).)

• Assumption: We assume that the group determined by the homomorphic
encryption scheme with security parameter n is large enough to contain
all strings of length k. Thus, if the homomorphic encryption scheme only
works for single bits, we will only consider k = 1 (i.e., bit oblivious trans-
fer).

• The protocol:

1. Party P2 chooses two sets of two pairs of keys:
a. (pk01, sk

0
1)← G(1n); (pk02, sk

0
2)← G(1n) using random coins r0G, and

b. (pk11, sk
1
1)← G(1n); (pk12, sk

1
2)← G(1n) using random coins r1G

P2 sends (pk01, pk
0
2) and (pk11, pk

1
2) to P1.

2. Key generation challenge:
a. P1 chooses a random coin b←R {0, 1} and sends b to P2.
b. P2 sends P1 the random coins rbG that it used to generate (pkb1, pk

b
2).

c. P1 checks that the public keys output by the key generation algorithm
G when given input 1n and the appropriate portions of the random
tape rbG equal pkb1 and pkb2. If this does not hold, or if P2 did not
send any message here, P1 outputs corrupted2 and halts. Otherwise,
it proceeds.
Denote pk1 = pk1−b1 and pk2 = pk1−b2 .

3. P2 chooses two random bits α, β ←R {0, 1}. Then:
a. P2 computes

c10 = Epk1(α), c20 = Epk2(1− α),

c11 = Epk1(β), c21 = Epk2(1− β),

using random coins r10, r
2
0, r

1
1 and r21, respectively.

b. P2 sends (c10, c
2
0) and (c11, c

2
1) to P1.

4. Encryption generation challenge:
a. P1 chooses a random bit b′ ←R {0, 1} and sends b′ to P2.
b. P2 sends r1b′ and r2b′ to P1 (i.e., P2 sends an opening to the ciphertexts

c1b′ and c2b′).
c. P1 checks that one of the ciphertexts {c1b′ , c2b′} is an encryption of

0 and the other is an encryption of 1. If not (including the case
where no message is sent by P2), P1 outputs corrupted2 and halts.
Otherwise, it continues to the next step.

5. P2 sends a “reordering” of the ciphertexts {c11−b′ , c21−b′}. Specifically, if
σ = 0 it sets c0 to be the ciphertext that is an encryption of 1, and
sets c1 to be the ciphertext that is an encryption of 0. Otherwise, if

112 5 Covert Adversaries

σ = 1, it sets c0 to be the encryption of 0, and c1 to be the encryption
of 1. (Only the ordering needs to be sent and not the actual ciphertexts.
Furthermore, this can be sent together with the openings in Step 4b.)

6. P1 uses the homomorphic property and c0, c1 as follows.
a. P1 computes c̃0 = x0 ·E c0 (this operation is relative to the key pk1

or pk2 depending on whether c0 is an encryption under pk1 or pk2)
b. P1 computes c̃1 = x1 ·E c1 (this operation is relative to the key pk1

or pk2 depending on whether c1 is an encryption under pk1 or pk2)
P1 sends c̃0 and c̃1 to P2. (Notice that one of the ciphertexts is encrypted
with key pk1 and the other is encrypted with key pk2.)

7. If σ = 0, P2 decrypts c̃0 and outputs the result (if c̃0 is encrypted under
pk1 then P2 outputs x0 = Dsk1(c̃0); otherwise it outputs x0 = Dsk2(c̃0)).
Otherwise, if σ = 1, P2 decrypts c̃1 and outputs the result.

8. If at any stage during the protocol, P1 does not receive the next message
that it expects to receive from P2 or the message it receives is invalid and
cannot be processed, it outputs abort2 (unless it was already instructed
to output corrupted2). Likewise, if P2 does not receive the next message
that it expects to receive from P1 or it receives an invalid message, it
outputs abort1.

We remark that the reordering message of Step 5 can actually be sent by P2

together with the message in Step 4b. Furthermore, the messages of the key-
generation challenge can be piggybacked on later messages, as long as they
conclude before the final step. We therefore have that the number of rounds
of communication can be exactly four (each party sends two messages).

Before proceeding to the proof of security, we present the intuitive argu-
ment showing why Protocol 5.1.2 is secure. We begin with the case where
P2 is corrupted. First note that if P2 follows the instructions of the protocol,
it learns only a single value x0 or x1. This is because one of c0 and c1 is
an encryption of 0. If it is c0, then c̃0 = x0 ·E c0 = Epk(0 · x0) = Epk(0)
(where pk ∈ {pk1, pk2}), and so c̃0 is a random encryption of 0 that is inde-
pendent of x0, implying that nothing is learned about x0; similarly if it is c1
then c̃1 = Epk(0) and so nothing is learned about x1. However, in general,
P2 may not generate the encryptions c10, c

1
1, c

2
0, c

2
1 properly (and so it may

be that at least one of the pairs (c10, c
2
0) and (c11, c

2
1) are both encryptions

of 1, in which case P2 could learn both x0 and x1). This is prevented by the
encryption-generation challenge. That is, if P2 tries to cheat in this way then
it is guaranteed to be caught with probability at least 1/2. The above explains
why a malicious P2 can learn only one of the outputs, unless it is willing to
be caught cheating with probability 1/2. This therefore demonstrates that
“privacy” holds. However, we actually need to prove security via simulation,
which involves showing how to extract P2’s implicit input and how to simu-
late its view. Extraction works by first providing the corrupted P2 with the
encryption-challenge bit b′ = 0 and then rewinding it and providing it with
the challenge b′ = 1. If the corrupted P2 replies to both challenges, then the
simulator can construct σ from the opened ciphertexts and the reordering

5.1 Oblivious Transfer 113

provided. Given this input, the simulation can be completed in a straight-
forward manner; see the proof below. A crucial point here is that if P2 does
not reply to both challenges then an honest P1 would output corrupted2 with
probability 1/2, and so this corresponds to a cheat2 input in the ideal world.

We now proceed to discuss why the protocol is secure in the presence of a
corrupt P1. In this case, it is easy to see that P1 cannot learn anything about
P2’s input because the encryption scheme is semantically secure (and so a
corrupt P1 cannot determine σ from the unopened ciphertexts). However,
as above, we need to show how extraction and simulation work. Extraction
here works by providing encryptions so that in one of the pairs (c10, c

2
0) or

(c11, c
2
1) both of the encrypted values are 1. If this pair is the one used (and

not the one opened), then we have that c̃0 is an encryption of x0 and c̃1
is an encryption of c̃1. An important point here is that unlike a real P2,
the simulator can do this without being “caught”. Specifically, the simulator
generates the ciphertexts so that for a random b′ ←R {0, 1} it holds that
c11−b′ and c21−b′ are both encryptions of 1, whereas c1b′ and c2b′ are generated
correctly, one being an encryption of 0 and the other an encryption of 1. Then,
the simulator “hopes” that the corrupted P1 asks it to open the ciphertexts
c1b′ and c2b′ , which look like they should. In such a case, the simulator proceeds
and succeeds in extracting both x0 and x1. However, if the corrupted P1 asks
the simulator to open the other ciphertexts (which are clearly invalid), the
simulator just rewinds the corrupted P1 and tries again. Thus, extraction
can be achieved. Regarding the simulation of P1’s view, this follows from the
fact that the only differences between the above and a real execution are
the values encrypted in the ciphertexts c10, c

2
0, c

1
1, c

2
1. These distributions are

therefore indistinguishable by the semantic security of the encryption scheme.
We now formally prove that Protocol 5.1.2 meets Definition 2.4.1 with

ϵ = 1
2 .

Theorem 5.1.3 Assuming that (G,E,D) constitutes a semantically secure
homomorphic encryption scheme, Protocol 5.1.2 securely computes the obliv-
ious transfer functionality ((x0, x1), σ) 7→ (λ, xσ) in the presence of covert
adversaries with ϵ-deterrent for ϵ = 1

2 .

Proof. We will separately consider the case where P2 is corrupted and the
case where P1 is corrupted. We note that although we construct two different
simulators (one for each corruption case), a single simulator as required by
the definition can be constructed by simply combining them and working
appropriately given the identity of the corrupted party.

Corrupted P2: Let A be a real adversary that controls P2. We construct a
simulator S that works as follows:

1. S receives (σ, 12k−1) and z as input and invokes A on this input.
2. S plays the honest P1 with A as P2.

114 5 Covert Adversaries

3. When S reaches the key generation challenge step, it first sends b = 0 and
receives back A’s response. Then, S rewinds A, sends b = 1 and receives
back A’s response.

a. If both of the responses fromA would cause a corrupted output (meaning
a response that would cause P1 to output corrupted2 in a real execution),
S sends corrupted2 to the trusted party, simulates the honest P1 aborting
due to detected cheating, and outputs whatever A outputs.

b. If A sends back exactly one response that would cause a corrupted out-
put, then S sends cheat2 to the trusted party.
i. If the trusted party replies with corrupted2, then S rewinds A and

hands it the query for which A’s response would cause a corrupted
output. S then simulates the honest P1 aborting due to detected
cheating, and outputs whatever A outputs.

ii. If the trusted party replies with undetected and the honest P1’s in-
put pair (x0, x1), then S plays the honest P1 with input (x0, x1) in
the remainder of the execution with A as P2. At the conclusion, S
outputs whatever A outputs.

c. If neither of A’s responses causes a corrupted output, then S rewinds
A, gives it a random b and proceeds as below.

4. S receives ciphertexts c10, c
2
0, c

1
1, c

2
1 from A.

5. Next, in the encryption-generation challenge step, S first sends b′ = 0 and
receives back A’s response, which includes the reordering of the ciphertexts
(recall that the reordered messages are actually sent together with the
ciphertext openings). Then, S rewinds A, sends b′ = 1 and receives back
A’s response.

a. If both of the responses from A would cause a corrupted output, S sends
corrupted2 to the trusted party, simulates the honest P1 aborting due
to detected cheating, and outputs whatever A outputs.

b. If A sends back exactly one response that would cause a corrupted out-
put, then S sends cheat2 to the trusted party.
i. If the trusted party replies with corrupted2, then S rewinds A and

hands it the query for which A’s response would cause a corrupted
output. S then simulates the honest P1 aborting due to detected
cheating, and outputs whatever A outputs.

ii. If the trusted party replies with undetected and the honest P1’s input
pair (x0, x1), then S plays the honest P1 with input (x0, x1) and
completes the execution with A as P2. (Note that P1 has not yet
used its input at this stage of the protocol. Thus, S has no problem
completing the execution like an honest P1.) At the conclusion, S
outputs whatever A outputs.

c. If neither of A’s responses would cause a corrupted output, then S uses
the reorderings to determine the value of σ. Specifically, S chooses a
random b′ and takes the reordering that relates to c11−b′ and c21−b′ (if

5.1 Oblivious Transfer 115

c11−b′ is an encryption of 1, then S determines σ = 0 and otherwise it
determines σ = 1). The value b′ that is chosen is the one that S sends
to A and appears in the final transcript.

S sends σ to the trusted party and receives back x = xσ. Simulator
S then completes the execution playing the honest P1 and using x0 =
x1 = x.

6. If at any point A sends a message that would cause the honest P1 to halt
and output abort2, simulator S immediately sends abort2 to the trusted
party, halts the simulation and proceeds to the final “output” step.

7. Output: At the conclusion, S outputs whatever A outputs.

This completes the description of S. Denoting Protocol 5.1.2 as π and noting
that I here equals {R} (i.e., P2 is corrupted), we need to prove that for ϵ = 1

2 ,{
idealscϵ

OT,S(z),2(((x0, x1), σ), n)
}

c≡
{
realπ,A(z),2(((x0, x1), σ), n)

}
.

It is clear that the simulation is perfect if S sends corrupted2 or cheat2 at
any stage. This is due to the fact that the probability that an honest P1

outputs corrupted2 in the simulation is identical to the probability in a real
execution (probability 1 in the case where A responds incorrectly to both
challenges and probability 1/2 otherwise). Furthermore, in the case where S
sends cheat2 and receives back undetected, it concludes the execution using
the true input of P1. The simulation until the last step is perfect (it involves
merely sending random challenges); therefore the completion using the true
P1’s input yields a perfect simulation. The above is clearly true of abort2 as
well (because this can only occur before the last step where P1’s input is
used).

It remains to analyze the case where S does not send corrupted2, cheat2 or
abort2 to the trusted party. Notice that in this case, A responded correctly to
both the key generation and encryption generation challenges. In particular,
this implies that the keys pk1 and pk2 are correctly generated, and that S
computes σ based on the encrypted values sent by A and the reordering.

Now, if σ = 0, then S hands A the ciphertexts c̃0 = Epk(x0) and c̃1 =
Epk′(0), where pk, pk′ ∈ {pk1, pk2} and pk ̸= pk′, and if σ = 1, it hands A the
ciphertexts c̃0 = Epk(0) and c̃1 = Epk′(x1). This follows from the instructions
of S and the honest party (S plays the honest party with x0 = x1 = xσ and
so c̃σ is an encryption of xσ and c̃1−σ is an encryption of 0). The important
point to notice is that these messages are distributed identically to the honest
P1’s messages in a real protocol; the fact that S does not know x1−σ makes no
difference because for every x′ it holds that x′ ·Epk(0) = Epk(0). We note that
this assumes that the homomorphic property of the encryption scheme holds,
but this is given by the fact that pk1 and pk2 are correctly formed. Regarding
the rest of the messages sent by S, these are generated independently of P1’s
input and so exactly like an honest P1.

116 5 Covert Adversaries

We conclude that the view of A as generated by the simulator S is iden-
tical to the distribution generated in a real execution. Thus, its output is
identically distributed in both cases. (Since P1 receives no output, we do not
need to consider the output distribution of the honest P1 in the real and ideal
executions.) We conclude that{

idealscϵ
OT,S(z),2(((x0, x1), σ), n)

}
≡

{
realπ,A(z),2(((x0, x1), σ), n)

}
,

completing this corruption case.

Corrupted P1: Let A be a real adversary that controls P1. We construct a
simulator S that works as follows:

1. S receives (x0, x1) and z and invokes A on this input.
2. S interacts with A and plays the honest P2 until Step 3 of the protocol.
3. In Step 3 of the protocol, S works as follows:

a. S chooses random bits b, α←R {0, 1};
b. S computes:

c1b = Epk1(α), c2b = Epk2(1− α),

c11−b = Epk1(1), c21−b = Epk2(1);

c. S sends c10, c
2
0, c

1
1, c

2
1 to A.

4. In the next step (Step 4 of the protocol), A sends a bit b′. If b′ = b, then
S opens the ciphertexts c1b and c2b as the honest P2 would (note that the
ciphertexts are “correctly” constructed). Otherwise, S returns to Step 3
of the simulation above (i.e., it returns to the beginning of Step 3 of the
protocol) and tries again with fresh randomness.2

5. S sends a random reordering of the ciphertexts c11−b and c21−b (the actual
order does not matter because they are both encryptions of 1).

6. The simulator S receives from A the ciphertexts c̃0 and c̃1. S computes
x0 = Dsk1(c̃0) and x1 = Dsk2(c̃1) (or x0 = Dsk2(c̃0) and x1 = Dsk1(c̃1),
depending on which of c0, c1 is encrypted with pk1 and which with pk2),
and sends the pair (x0, x1) to the trusted party as P1’s input.

7. If at any stage in the simulation A does not respond, or responds with
an invalid message that cannot be processed, then S sends abort1 to the
trusted party for P1’s inputs. (Such behavior from A can only occur before
the last step and so before any input (x0, x1) has already been sent to the
trusted party.)

8. S outputs whatever A outputs.

2 This yields an expected polynomial-time simulation because these steps are repeated
until b′ = b. A strict polynomial-time simulation can be achieved by just halting after n
attempts. The probability that b′ ̸= b in all of these attempts can be shown to be negligible,
based on the hiding property of the encryption scheme.

5.1 Oblivious Transfer 117

Notice that S never sends cheat1 to the trusted party. Thus we actually
prove standard security in this corruption case. That is, we prove that{

idealOT,S(z),1((x0, x1, σ), n)
}

c≡
{
realπ,A(z),1((x0, x1, σ), n)

}
. (5.2)

By Proposition 2.4.3, this implies security for covert adversaries as well. In
order to prove Eq. (5.2), observe that the only difference between the view
of the adversary A in a real execution and in the simulation by S is due to
the fact that S does not generate c1b , c

2
b correctly. Thus, intuitively, Eq. (5.2)

follows from the security of the encryption scheme. That is, we begin by
showing that if the view of A in the real and ideal executions can be distin-
guished, then it is possible to break the security of the encryption scheme.
We begin by showing that the view of A when interacting with an honest P1

with input σ = 0 is indistinguishable from the view of A when interacting in
a simulation with S.

Let A′ be an adversary that attempts to distinguish encryptions under a
key pk.3 Adversary A′ receives a key pk, chooses a random bit γ ←R {0, 1}
and a random index ℓ←R {1, 2} and sets pk1−γℓ = pk. It then chooses the keys

pk1−γ3−ℓ , pk
γ
1 and pkγ2 by itself and sends A the keys (pk01, pk

0
2) and (pk11, pk

1
2).

When A replies with a bit b, adversary A′ acts as follows. If b = γ, A′ opens
the randomness used in generating (pkb1, pk

b
2) as the honest P2 would (A′ can

do this because it chose (pkγ1 , pk
γ
2) by itself and γ = b). If b ̸= γ, A′ cannot

open the randomness as an honest P2 would. Therefore, A′ just halts. If A
continues, then it sets pk1 = pk1−γ1 and pk2 = pk1−γ2 (and so pkℓ is the public
key pk that A′ is “attacking”). Now, A′ computes the ciphertexts c10, c

2
0, c

1
1, c

2
1

in the following way. A′ chooses α and β at random, as the honest P2 would.
Then, for a random ζ adversary A′ computes c1ζ = Epk1(α), c

2
ζ = Epk2(1 −

α), and c3−ℓ1−ζ = Epk3−ℓ
(1). However, A′ does not compute cℓ1−ζ = Epkℓ

(1).
Rather, it outputs a pair of plaintexts m0 = 0,m1 = 1 for the external
encryption game and receives back c = Epk(mb) = Epkℓ

(mb) (for b ←R

{0, 1}). Adversary A′ sets cℓ1−ζ = c (i.e., to equal the challenge ciphertext)
and continues playing the honest P2 until the end. In this simulation, A′ sets
the reordering so that c0 equals c3−ℓ1−ζ (that is, it is an encryption of 1).

The key point here is that if A′ does not halt and b = 0, then the simula-
tion by A′ is identical to a real execution between A and an honest P2 that
has input σ = 0 (because c0 = c3−ℓ1−ζ is an encryption of 1 and c1 = cℓ1−ζ is
an encryption of 0, as required). In contrast, if A′ does not halt and b = 1,
then the simulation by A′ is identical to the simulation carried out by S
(because in this case they are both encryptions of 1). Finally, note that A′
halts with probability exactly 1/2 in both cases (this is due to the fact that

3 The game that A′ plays is that it receives a key pk, outputs a pair of plaintexts m0,m1,
receives back a challenge ciphertext Epk(mb) for some b ∈ {0, 1}, and outputs a “guess”
bit b′. An encryption scheme is indistinguishable if the probability that A′ outputs b′ = b
is negligibly close to 1

2
.

118 5 Covert Adversaries

the distribution of the keys is identical for both choices of γ). Combining the
above together, we have that if it is possible to distinguish the view of A in
the simulation by S from a real execution with P2 that has input 0, then it
is possible to distinguish encryptions. Specifically, A′ can just run the dis-
tinguisher that exists for these views and output whatever the distinguisher
outputs.

The above shows that the view of A in the simulation is indistinguishable
from its view in a real execution with an honest P2 with input σ = 0. How-
ever, we actually have to show that when the honest P2 has input σ = 0, the
joint distribution of A and the honest P2’s outputs in a real execution are in-
distinguishable from the joint distribution of S and the honest P2’s outputs in
the ideal model. The point to notice here is that the output of the honest P2

in both the real and ideal models is the value obtained by decrypting c̃0 using
key pk3−ℓ. (In the real model this is what the protocol instructs the honest
party to output and in the ideal model this is the value that S sends to the
trusted party as P1’s input x0.) However, in this reduction A′ knows the asso-
ciated secret-key to pk3−ℓ, because it chose pk3−ℓ itself. Thus, A′ can append
the decryption of c̃0 to the view of A, thereby generating a joint distribution.
It follows that if A′ received an encryption of m0 = 0, then it generates the
joint distribution of the outputs in the real execution, and if it received an
encryption of m1 = 1, then it generates the joint distribution of the outputs
in the ideal execution. By the indistinguishability of the encryption scheme
we have that the real and ideal distributions are indistinguishable, complet-
ing the proof of Eq. (5.2) for the case where σ = 0. The case for σ = 1 follows
from an almost identical argument as above. Combining these two cases, we
have the output distribution generated by the simulator in the ideal model
is computationally indistinguishable from the output distribution of a real
execution.

It remains to show that S runs in expected polynomial-time. Note that S
rewinds if in the simulation it holds that b′ ̸= b. Now, in the case where the
ciphertexts c10, c

2
0, c

1
1, c

2
1 are generated as by the honest party (each pair con-

taining an encryption of 0 and an encryption of 1), the probability that b′ ̸= b
is exactly 1/2 because the value of b′ is information-theoretically hidden. In
contrast, in the simulation this is not the case because c1b , c

2
b are “correctly”

constructed, whereas c11−b, c
2
1−b are both encryptions of 1. Nevertheless, if

the probability that b′ ̸= b is non-negligibly far from 1/2, then this can be
used to distinguish an encryption of 0 from an encryption of 1 (the actual
reduction can be derived from the reduction already carried out above and is
thus omitted). It follows that the expected number of rewindings is at most
slightly greater than two, implying that the overall simulation runs in ex-
pected polynomial time. As we have mentioned in Footnote 2, the simulation
can be made to run in strict polynomial time by aborting if for n consecu-
tive trials it holds that b′ ̸= b. By the argument given above, such an abort
can only occur with negligible probability. This concludes the proof of this
corruption case, and thus of the theorem.

5.1 Oblivious Transfer 119

Discussion. We conclude this section with some important remarks and
discussion regarding the construction and proof:

The covert technique. The proof of Protocol 5.1.2 in the case where
P2 is corrupted relies heavily on the fact that the simulator can send cheat
and therefore does not need to complete a “standard” simulation. Take for
example the case whereA (controlling P2) only replies with one valid response
to the encryption generation challenge. In this case, P2 can learn both x0 and
x1 with probability 1/2. However, the simulator in the ideal model can never
learn both x0 and x1. Therefore, the simulator cannot generate the correct
distribution. However, by allowing the simulator to declare a cheat, it can
complete the simulation as required. This demonstrates why it is possible to
achieve higher efficiency for this definition of security. We remark that the
above protocol is not non-halting detection accurate (see Definition 2.4.2).
For example, a cheating P2 can send c10 = Epk1(α) and c20 = Epk1(α). Then, if
P1 chooses b′ = 1 (thus testing c11 and c21), the adversary succeeds in cheating
and learning both of P1’s inputs. However, if P1 chooses b′ = 0, P2 can just
abort at this point. This means that such an early abort must be considered
an attempt to cheat, and so P1 running with a fail-stop P2 must also output
corrupted2.

Malicious versus covert P1. We stress that we have actually proven some-
thing stronger. Specifically, we have shown that Protocol 5.1.2 is secure in
the presence of a covert P2 with ϵ-deterrent for e = 1/2 as stated. However,
we have also shown that Protocol 5.1.2 is (fully) secure with abort in the
presence of a malicious P1.

Efficiently recognizable public keys. We remark that in the case where
it is possible to efficiently recognize that a public key is in the range of the
key generator of the public-key encryption scheme, it is possible to skip the
key generation challenge step in the protocol (P1 can verify for itself if the
key is valid).

5.1.2 Extensions

String oblivious transfer. In Protocol 5.1.2, x0 and x1 are elements in the
group over which the homomorphic encryption scheme is defined. If this group
is large, then we can carry out string oblivious transfer. This is important
because later we will use Protocol 5.1.2 to exchange symmetric encryption
keys. However, if the group contains only 0 and 1, then this does not suffice.
In order to extend Protocol 5.1.2 to deal with string oblivious transfer, even
when the group has only two elements, we only need to change the last two
steps of the protocol. Specifically, instead of P1 computing a single encryption
for x0 and a single encryption for x1, it computes an encryption for each bit.
That is, denote the bits of x0 by x1

0, . . . , x
n
0 , and likewise for x1. Then, P1

computes c̃0 = x1
0 ·E c0, . . . , x

n
0 ·E c0 and c̃1 = x1

1 ·E c1, . . . , x
n
1 ·E c1.

120 5 Covert Adversaries

Note that P2 can still only obtain one of the strings because if σ = 0 then
c̃1 just contains encryptions to zeroes, and vice versa if σ = 1.

Batch oblivious transfer. We will use Protocol 5.1.2 in Yao’s protocol
for secure two-party computation. This means that we will run one oblivious
transfer for every bit of the input. In principle, these oblivious transfers can
be run in parallel, as long as the protocol being used remains secure under
parallel composition. The classical notion of parallel composition considers
the setting where the honest parties run each execution obliviously of the
others (this is often called “stateless composition”). We do not know how to
prove that our protocol composes in parallel in this sense. Nevertheless, we
can modify Protocol 5.1.2 so that it is possible to simultaneously run many
oblivious transfers with a cost that is less than that of running Protocol 5.1.2
the same number of times in parallel. We call this batch oblivious transfer
in order to distinguish it from “parallel oblivious transfer” (which consid-
ers stateless parallel composition, as described above). The batch oblivious
transfer functionality is defined as follows:

((x0
1, x

1
1), . . . , (x

0
n, x

1
n), (σ1, . . . , σn)) 7→ (λ, (xσ1

1 , . . . , xσn
n)).

Thus, we essentially have n oblivious transfers where in the ith such transfer,
party P1 has input (x0

i , x
1
i) and P2 has input σi.

The extension to Protocol 5.1.2 works as follows. First, the same public-
key pair (pk1, pk2) can be used in all executions. Therefore, Steps 1 and 2
remain unchanged. Then, Step 3 is carried out independently for all n bits
σ1, . . . , σn. That is, for every i, two pairs of ciphertexts encrypting 0 and 1
(in random order) are sent. The important change comes in Step 4. Here,
the same challenge bit b′ is used for every i. P1 then replies as it should,
opening the appropriate c1b′ and c2b′ ciphertexts for every i. The protocol then
concludes by P1 computing the c̃0 and c̃1 ciphertexts for every i, and P2

decrypting.
The proof of the above extension is almost identical to the proof of The-

orem 5.1.3. The main point is that since only a single challenge is used for
both the key generation challenge and encryption generation challenge, the
probability of achieving b′ = b (as needed for the simulation) and b = γ (as
needed for the reduction to the security of the encryption scheme) remains
1/2. Furthermore, the probability that a corrupted P2 will succeed in cheat-
ing remains the same because if there is any i for which the encryptions are
not correctly formed, then P2 will be caught with probability 1/2.

Higher values of ϵ. Finally, we show how it is possible to obtain higher
values of ϵ with only minor changes to Protocol 5.1.2. The basic idea is
to increase the probability of catching a corrupted P2 in the case where it
attempts to generate an invalid key pair or send ciphertexts in Step 3 that
do not encrypt the same value. Let k = poly(n) be an integer. Then, first
P2 generates k pairs of public keys (pk11, pk

1
2), . . . , (pk

k
1 , pk

k
2) instead of just

two pairs. P1 then asks P2 to reveal the randomness used in generating all

5.2 Secure Two-Party Computation 121

the pairs except for one (the unrevealed key pair is the one used in the
continuation of the protocol). Note that if a corrupted P2 generated even one
key pair incorrectly, then it is caught with probability 1− 1/k. Likewise, in
Step 3, P2 sends k pairs of ciphertexts where in each pair one ciphertext is
an encryption of 0 and the other is an encryption of 1. Then, P1 asks P2

to open all pairs of encryptions except for one pair. Clearly, P1 still learns
nothing about σ because the reordering is only sent on the ciphertext pair
that is not opened. Furthermore, if P2 generates even one pair of ciphertexts
so that the ciphertexts are not correctly formed, then it will be caught with
probability 1− 1/k. The rest of the protocol remains the same. We conclude
that the resulting protocol is secure in the presence of covert adversaries with
ϵ-deterrent where ϵ = 1−1/k. Note that this works as long as k is polynomial
in the security parameter and thus ϵ can be made to be very close to 1, if
desired. (Of course, this methodology cannot be used to make ϵ negligibly
close to 1, because then k has to be super-polynomial.)

Summary. We conclude with the following theorem, derived by combining
the extensions above:

Theorem 5.1.4 Assume that there exist semantically secure homomorphic
encryption schemes. Then, for any k = poly(n) there exists a protocol that
securely computes the batch string oblivious transfer functionality

((x0
1, x

1
1), . . . , (x

0
n, x

n
1), (σ1, . . . , σn)) 7→ (λ, (xσ1

1 , . . . , xσn
n))

in the presence of covert adversaries with ϵ-deterrent for ϵ = 1− 1
k .

Efficiency of the batch protocol. The protocol has four rounds of com-
munication, and involves generating 2k encryption keys and carrying out 2kn
encryption operations, 2n homomorphic multiplications and n decryptions.
Note that the amortized complexity of each oblivious transfer is 2k encryp-
tions, two scalar multiplications with the homomorphic encryption scheme
and one decryption. (The key generation which is probably the most ex-
pensive is run 2k times independently of n. Therefore, when many oblivious
transfers are run, this becomes insignificant.)

5.2 Secure Two-Party Computation

In this section, we show how to securely compute any two-party functionality
in the presence of covert adversaries. We present a protocol for the strong
explicit cheat formulation, with parameters that can be set to obtain a wide
range of values for the ϵ-deterrent. Our protocol is based on Yao’s protocol
for semi-honest adversaries; see Chapter 3.

122 5 Covert Adversaries

5.2.1 Overview of the Protocol

We begin by providing an intuitive explanation of what is needed to prevent
malicious adversaries from cheating in Yao’s protocol, without being detected.
Much of this discussion appeared in Chapter 4. Nevertheless, we repeat it here
because the focus is slightly different, and because we want the material in
this chapter to be independent of Chapter 4.

Intuitively, there are two main reasons why the original protocol of Yao is
not secure when the parties may be malicious. First, the circuit constructor P1

may send P2 a garbled circuit that computes a completely different function.
Second, the oblivious transfer protocol that is used when the parties can be
malicious must be secure for this case. The latter problem is solved here by
using the protocol guaranteed by Theorem 5.1.4. The first problem is solved
by having P1 send P2 a number of garbled circuits; denote this number by ℓ.
Then, P2 asks P1 to open all but one of the circuits (chosen at random) in
order to check that they are correctly constructed. This opening takes place
before P1 sends the keys corresponding to its input, so nothing is revealed by
opening the circuits. The protocol then proceeds similarly to the semi-honest
case. The main point here is that if the unopened circuit is correct, then
this will constitute a secure execution that can be simulated. However, if it
is not correct, then with probability 1− 1/ℓ party P1 will have been caught
cheating and so P2 will output corrupted1 (recall, ℓ denotes the number of
circuits sent). While the above intuition forms the basis for our protocol,
the actual construction of the appropriate simulator is somewhat delicate,
and requires a careful construction of the protocol. We note some of these
subtleties hereunder.

First, it is crucial that the oblivious transfers are run before the garbled
circuits are sent by P1 to P2. This is due to the fact that the simulator sends a
corrupted P2 a fake garbled circuit that evaluates to the exact output received
from the trusted party (and only this output), as described in Lemma 4.3.6.
However, in order for the simulator to receive the output from the trusted
party, it must first send it the input used by the corrupted P2. This is achieved
by first running the oblivious transfers, from which the simulator is able to
extract the corrupted P2’s input.

The second subtlety relates to an issue we believe may be a problem for
many other implementations of Yao that use cut-and-choose. The problem is
that the adversary can construct (at least in theory) a single garbled circuit
with two sets of keys to all the input wires, where one set of keys decrypts
the circuit to the specified one (computing the function f) and another set of
keys decrypts the circuit to an incorrect one (computing a different function
f ′). This is a problem because the adversary can supply “correct keys” to the
circuits that are opened and checked (which thus appear as circuits computing
f), and “incorrect keys” to the circuit that is computed (and thus the function
computed is f ′ and not f). Such a strategy cannot be carried out without risk
of detection for the keys that are associated with P2’s input because these

5.2 Secure Two-Party Computation 123

keys are obtained by P2 in the oblivious transfers before the garbled circuits
are even sent (thus if incorrect keys are sent for one of the circuits, P2 will
detect this if that circuit is opened). However, it is possible for a corrupt P1 to
carry out this strategy for the input wires associated with its own input. We
prevent this by having P1 commit to these keys and send the commitments
together with the garbled circuits. Then, instead of P1 just sending the keys
associated with its input, it sends the appropriate decommitments.

A third subtlety that arises is due to the following potential attack. Con-
sider a corrupted P1 that behaves exactly like an honest P1 except that in the
oblivious transfers, it inputs an invalid key in the place of the key associated
with 0 as the first bit of P2. The result is that if the first bit of P2’s input is
1, then the protocol succeeds and no problem arises. However, if the first bit
of P2’s input is 0, then the protocol will always fail and P2 will always de-
tect cheating. Thus, P1’s decision to cheat may depend on P2’s private input,
something that is impossible in the ideal model. In order to solve this problem,
we use a circuit that computes the function g(x, ỹ1, . . . , ỹm) = f(x,⊕m

i=1ỹ
i),

instead of a circuit that directly computes f . Then, upon input y, party P2

chooses random ỹ1, . . . , ỹm−1 and sets ỹm = (⊕m−1
i=1 ỹi) ⊕ y. This makes no

difference to the result because ⊕m
i=1ỹ

i = y and so g(x, ỹ1, . . . , ỹm) = f(x, y).
However, this modification makes every bit of P2’s input uniform when con-
sidering any proper subset of ỹ1, . . . , ỹm. This helps because as long as P1

does not provide invalid keys for all m shares of y, the probability of fail-
ure is independent of P2’s actual input (because any set of m − 1 shares is
independent of y). Since m − 1 invalid shares are detected with probability
1− 2−m+1 we have that P2 detects the cheating by P1 with this probability,
independently of its input value. This method is used in Chapter 4 for the
same purpose. However, there we must set m to equal the security parameter.

Intuitively, an adversary can cheat by providing an incorrect circuit or
by providing invalid keys for shares. However, it is then detected with the
probabilities described above. Below, we show that when using ℓ circuits and
splitting P2’s input into m shares, we obtain ϵ = (1− 1/ℓ)(1− 2−m+1). This
enables us to play around with the values of m and ℓ in order to optimize
efficiency versus ϵ-deterrent. For example, if we wish to obtain ϵ = 1/2 we
can use the following parameters:

1. Set ℓ = 2 and m = n: This yields ϵ = (1 − 1/2)(1 − 2−n+1) which is
negligibly close to 1/2. However, since in Yao’s protocol we need to run an
oblivious transfer for every one of P2’s input bits, this incurs a blowup of
the number of oblivious transfers (and thus exponentiations) by n. Thus,
this setting of parameters results in a considerable computational blowup.

2. Set ℓ = 3 and m = 3: This yields ϵ = (1 − 1/3)(1 − 1/4) = 1/2. The
computational cost incurred here is much less than before because we only
need three oblivious transfers for each of P2’s input bits. Furthermore, the
cost of sending three circuits is not much greater than two, and so the
overall complexity is much better.

124 5 Covert Adversaries

Before proceeding to the protocol, we provide one more example of param-
eters. In order to achieve ϵ = 9/10 it is possible to set ℓ = 25 and m = 5
(setting ℓ = m = 10 gives 0.898, which is very close). This gives a signifi-
cantly higher value of ϵ. We remark that such a setting of ϵ also assumes a
value of ϵ = 9/10 for the oblivious transfer protocol. As we have seen, this
involves a blowup of five times more computation than for oblivious transfer
with ϵ = 1/2.

5.2.2 The Protocol for Two-Party Computation

We are now ready to describe the actual protocol. As in Chapter 4, we present
a protocol where only P2 receives output. The modifications required for the
general case are described in Section 2.5.

PROTOCOL 5.2.1 (two-party computation of a function f):

• Inputs: Party P1 has input x and party P2 has input y, where |x| = |y|. In
addition, both parties have parameters ℓ and m, and a security parameter
n. For simplicity, we will assume that the lengths of the inputs are n.

• Auxiliary input: Both parties have the description of a circuit C for
inputs of length n that computes the function f . The input wires asso-
ciated with x are w1, . . . , wn and the input wires associated with y are
wn+1, . . . , w2n.

• The protocol:

1. Parties P1 and P2 define a new circuit C ′ that receives m + 1 inputs
x, ỹ1, . . . , ỹm each of length n, and computes the function f(x,⊕m

i=1ỹ
i).

Note that C ′ has n + mn input wires. Denote the input wires associ-
ated with x by w1, . . . , wn, and the input wires associated with ỹi by
wn+(i−1)m+1, . . . , wn+im, for i = 1, . . . , n.

2. Party P2 chooses m − 1 random strings ỹ1, . . . , ỹm−1 ←R {0, 1}n and
defines ỹm = (⊕m−1

i=1 ỹi) ⊕ y, where y is P2’s original input (note that

⊕m
i=1ỹ

i = y). The value ỹ
def
= ỹ1, . . . , ỹm serves as P2’s new input of

length mn to C ′. (The input wires associated with P2’s new input are
wn+1, . . . , wn+mn.)

3. For each i = 1, . . . ,mn and β = 0, 1, party P1 chooses ℓ encryption keys
by running G(1n), the key generator for the encryption scheme, ℓ times.
The jth key associated with a given i and β is denoted by kjwn+i,β

; note
that this is the key associated with the bit β for the input wire wn+i in
the jth circuit. The result is an ℓ-tuple, denoted by

[k1wn+i,β , . . . , k
ℓ
wn+i,β].

(This tuple constitutes the keys that are associated with the bit β for the
input wire wn+i in all ℓ circuits.)

5.2 Secure Two-Party Computation 125

4. P1 and P2 run mn executions of an oblivious transfer protocol, as fol-
lows. In the ith execution, party P1 inputs the pair(

[k1wn+i,0, . . . , k
ℓ
wn+i,0], [k

1
wn+i,1, . . . , k

ℓ
wn+i,1]

)
and party P2 inputs the bit ỹi (P2 receives keys [k1wn+i,ỹi , . . . , kℓwn+i,ỹi]

as output). The executions are run using a batch oblivious transfer func-
tionality, as in Theorem 5.1.4. If a party receives a corruptedi or aborti
message as output from the oblivious transfer, it outputs it and halts.

5. Party P1 constructs ℓ garbled circuits GC1, . . . , GCℓ using independent
randomness (the circuits are garbled versions of C ′ described above).
The keys for the input wires wn+1, . . . , wn+mn in the garbled circuits
are taken from above (i.e., in GCj the keys associated with wn+i are

kjwn+i,0
and kjwn+i,1

). The keys for the inputs wires w1, . . . , wn are cho-
sen randomly, and are denoted in the same way.

P1 sends the ℓ garbled circuits to P2.
6. P1 commits to the keys associated with its inputs. That is, for every

i = 1, . . . , n, β = 0, 1 and j = 1, . . . , ℓ, party P1 computes

cjwi,β
= com(kjwi,β

; rji,β)

where com is a perfectly-binding commitment scheme, com(x; r) denotes
a commitment to x using randomness r, and rji,β is a random string of
sufficient length to commit to a key of length n.

P1 sends all of the above commitments. The commitments are sent as
ℓ vectors of pairs (one vector for each circuit); in the jth vector the ith
pair is {cjwi,0

, cjwi,1
} in a random order (the order is randomly chosen

independently for each pair).
7. Party P2 chooses a random index γ ←R {1, . . . , ℓ} and sends γ to P1.
8. P1 sends P2 all of the keys for the input wires in all garbled circuits ex-

cept for GCγ (this enables a complete decryption of the garbled circuit),
together with the associated mappings and the decommitment values.
(I.e., for every i = 1, . . . , n + mn and j ̸= γ, party P1 sends the keys
and mappings (kjwi,0

, 0), (kjwi,1
, 1). In addition, for every i = 1, . . . , n

and j ̸= γ it sends the decommitments rji,0, r
j
i,1.)

9. P2 checks that everything that it received is in order. That is, it checks
– that the keys it received for all input wires in circuits GCj (j ̸= γ)

indeed decrypt the circuits (when using the received mappings), and
the decrypted circuits are all C ′;

– that the decommitment values correctly open all the commitments
cjwi,β

that were received, and these decommitments reveal the keys

kjwi,β
that were sent for P1’s wires;

– that the keys received in the oblivious transfers earlier match the
appropriate keys that it received in the opening (i.e., if it received

126 5 Covert Adversaries

[k1i , . . . , k
ℓ
i] in the ith oblivious transfer, then it checks that kji from

the oblivious transfer equals kjwn+i,ỹi from the opening).

If all the checks pass, it proceeds to the next step. If not, it outputs
corrupted1 and halts. In addition, if P2 does not receive this message at
all, it outputs corrupted1.

10. P1 sends decommitments to the input keys associated with its input for
the unopened circuit GCγ . That is, for i = 1, . . . , n, party P1 sends P2

the key kγwi,xi
and decommitment rγi,xi

, where xi is the ith bit of P1’s
input.

11. P2 checks that the values received are valid decommitments to the com-
mitments received above. If not, it outputs abort1. If so, it uses the keys
to compute C ′(x, ỹ) = C ′(x, ỹ1, . . . , ỹm) = C(x, y), and outputs the re-
sult. If the keys are not correct (and so it is not possible to compute the
circuit), or if P2 does not receive this message at all, it outputs abort1.

Note that steps 8–10 are actually a single step of P1 sending a message
to P2, followed by P2 carrying out a computation. If during the execution,
any party fails to receive a message or receives one that is ill-formed, it
outputs aborti (where Pi is the party that failed to send the message). This
holds unless the party is explicitly instructed above to output corruptedi
instead (as in Step 9).

For reference throughout the proof, we provide a high-level diagram of the
protocol in Figure 5.1.

We have motivated the protocol construction above and thus proceed di-
rectly to prove its security. Note that we assume that the oblivious transfer
protocol is secure with the same ϵ as above (of course, one can also use an
oblivious transfer protocol that is secure in the presence of malicious adver-
saries, because this is secure in the presence of covert adversaries for any ϵ).

Theorem 5.2.2 Let ℓ and m be parameters in the protocol that are both
upper-bound by poly(n), and set ϵ = (1−1/ℓ)(1−2−m+1). Let f be any proba-
bilistic polynomial-time function. Assume that the encryption scheme used to
generate the garbled circuits has indistinguishable encryptions under chosen-
plaintext attacks (and has an elusive and efficiently verifiable range), and that
the oblivious transfer protocol used is secure in the presence of covert adver-
saries with ϵ-deterrent according to Definition 2.4.1. Then, Protocol 5.2.1
securely computes f in the presence of covert adversaries with ϵ-deterrent
according to Definition 2.4.1.

Proof. Our analysis of the security of the protocol is in the (OT, ϵ)-hybrid
model, where the parties are assumed to have access to a trusted party com-
puting the oblivious transfer functionality following the ideal model of 2.4.1;
see Section 2.7. Thus the simulator that we describe will play the trusted
party in the oblivious transfer when simulating for the adversary. We sep-
arately consider the case where P2 is corrupted and the case where P1 is
corrupted.

5.2 Secure Two-Party Computation 127

P1(x) P2(y)

Define C′ Define C′

P1’s wires: w1, . . . , wn P2’s wires:
wn+1, . . . , wn+mn

Choose keys for wires

Input: keys for (n+ i)th
wire in all circuits

→ OBLIVIOUS TRANSFER → Input: ith input bit
Output: keys for wire

Garbled circuits GC1, . . . , GCℓ-
Commitments cjwi,β

to keys kjwi,β-

� γ
Choose γ ←R {1, . . . , ℓ}

All keys for circuits GCj , j ̸= γ
Decommitments to these keys

-
Check:

(1) Circuit is C′

(2) Key decommitments
(3) Consistency of keys

with those from OT

If no: output corrupted1
If yes: proceed

Keys for GCγ for P1’s input

with assoc. decommitments
-

If decommits correct
and circuit decrypts,
compute circuit and

output result

Fig. 5.1 A high-level diagram of the protocol

Party P2 is corrupted. Intuitively, the security in this case relies on the
fact that P2 can only learn a single set of keys in the oblivious transfers
and thus can decrypt the garbled circuit to only a single value as required.
Formally, let A be a probabilistic polynomial-time adversary controlling P2.
The simulator S fixes A’s random tape to a uniformly distributed tape and
works as follows:

1. S chooses ℓ sets of mn random keys as P1 would.
2. S plays the trusted party for the batch oblivious transfer with A as P2. S

receives the input that A sends to the trusted party (as its input as P2 to
the oblivious transfers):

a. If the input is abort2 or corrupted2, S sends abort2 or corrupted2 (re-
spectively) to the trusted party computing f , simulates P1 aborting
and halts (outputting whatever A outputs).

128 5 Covert Adversaries

b. If the input is cheat2, S sends cheat2 to the trusted party. If it receives
back corrupted2, it hands A the message corrupted2 as if it received it
from the trusted party, simulates P1 aborting and halts (outputting
whatever A outputs). If it receives back undetected (and thus P1’s in-
put x as well), then S works as follows. First, it hands A the string
undetected together with the nm pairs of vectors of random keys that it
chose (note that A expects to receive the inputs of P1 to the oblivious
transfers in the case of undetected). Next, S uses the input x of P1 that
it received in order to perfectly emulate P1 in the rest of the execution.
That is, it runs P1’s honest strategy with input x while interacting
with A playing P2 for the rest of the execution and outputs whatever
A outputs. (Note that since P1 receives no output, S does not send any
output value for P1 to the trusted party.) The simulation ends here in
this case.

c. If the input is a series of bits ỹ1, . . . , ỹmn, then S hands A the keys
from above that are “chosen” by the ỹi bits, and proceeds with the
simulation below.

3. S defines y = ⊕m−1
i=0 (ỹi·n+1, . . . , ỹi·n+n) and sends y to the trusted party

computing f . S receives back some output τ .
4. S chooses a random value ζ and computes the garbled circuits GCj for

j ̸= ζ correctly (using the appropriate input keys from above as P1 would).
However, for the garbled circuit GCζ , the simulator S does not use the

true circuit for computing f but rather a circuit G̃C that always evaluates
to τ (the value it received from the trusted party), using Lemma 4.3.6.
S uses the appropriate input keys from above also in generating GCζ . S
also computes commitments to the keys associated with P1’s input in an
honest way.

5. S sends GC1, . . . , GCℓ and the commitments to A and receives back an
index γ.

6. If γ ̸= ζ then S rewinds A and returns to Step 4 above (using fresh
randomness).

Otherwise, if γ = ζ, S opens all the commitments and garbled circuits
GCj for j ̸= γ, as the honest P1 would, and proceeds to the next step.

7. S hands A arbitrary keys associated with the input wires of P1. That is,
for i = 1, . . . , n, S hands A an arbitrary one of the two keys associated
with the input wire wi in GCγ (one key per wire), together with its correct
decommitment.

8. If at any stage, S does not receive a response from A, it sends abort2 to the
trusted party (resulting in P1 outputting abort2). If the protocol proceeds
successfully to the end, S sends continue to the trusted party and outputs
whatever A outputs.

5.2 Secure Two-Party Computation 129

Denoting Protocol 5.2.1 as π and I = {2} (i.e., party P2 is corrupted), we
prove that:{

idealscϵ
f,S(z),2((x, y), n)

}
c≡
{
hybridOT,ϵ

π,A(z),2((x, y), n)
}
. (5.3)

In order to prove (5.3) we separately consider the cases of abort (including
a “corrupted” input), cheat or neither. If A sends abort2 or corrupted2 as the
oblivious transfer input, then S sends abort2 or corrupted2 (respectively) to
the trusted party computing f . In both cases the honest P1 outputs the same
(abort2 or corrupted2) and the view of A is identical. Thus, the ideal and
hybrid output distributions are identical. The exact same argument is true
if A sends cheat2 and the reply to S from the trusted party is corrupted2. In
contrast, if A sends cheat2 and S receives back the reply undetected, then the
execution does not halt immediately. Rather, S plays the honest P1 with its
input x (it can do this because P1 does not use its input before this point).
Since S follows the exact same strategy as P1 and P1 receives no output, it is
clear that once again the output distributions are identical. We remark that
the probability of the trusted party answering corrupted2 or undetected is the
same in the hybrid and ideal executions (i.e., ϵ), and therefore the output
distributions in the cases of abort, corrupted or cheat are identical. We denote
the event that A sends an abort, corrupted or cheat message in the oblivious
transfers by badOT. Thus, we have shown that{

idealscϵ
f,S(z),2((x, y), n) | badOT

}
≡

{
hybridOT,ϵ

π,A(z),2((x, y), n) | badOT

}
.

We now show that the ideal and hybrid distributions are computation-
ally indistinguishable in the case where A sends valid input in the oblivious
transfer phase (i.e., in the event badOT). In order to show this, we consider a
modified simulator S ′ that is also given the honest party P1’s real input x.
Simulator S ′ works exactly as S does, except that it constructs GCζ honestly,

and not as G̃C from Lemma 4.3.6. Furthermore, in Step 7 it sends the keys
associated with P1’s input x and not arbitrary keys. It is straightforward to
verify that the distribution generated by S ′ is identical to the output distri-
bution of a real execution of the protocol between A and an honest P1. This
is due to the fact that all ℓ circuits received by A are honestly constructed
and the keys that it receives from S ′ are associated with P1’s real input. The
only difference is the rewinding. However, since ζ is chosen uniformly, this
has no effect on the output distribution. Thus:{
idealscϵ

f,S′(z,x),2((x, y), n) | badOT

}
≡

{
hybridOT

π,A(z),2((x, y), n) | badOT

}
.

130 5 Covert Adversaries

Next we prove that conditioned on the event that badOT does not occur, the
distributions generated by S and S ′ are computationally indistinguishable.
That is,{
idealscϵ

f,S(z),2((x, y), n) | badOT

}
c≡
{
idealscϵ

f,S′(z,x),2((x, y), n) | badOT

}
.

In order to see this, notice that the only difference between S and S ′ is
in the construction of the garbled circuit GCζ . By Lemma 4.3.6 it follows
immediately that these distributions are computationally indistinguishable.
(Note that we do not need to consider the joint distribution of A’s view
and P1’s output because P1 has no output from Protocol 5.2.1.) This yields
the above equation. In order to complete the proof of (5.3), note that the
probability that the event badOT happens is identical in the ideal and hybrid
executions. This holds because the oblivious transfer is the first step of the
protocol and A’s view in this step with S is identical to its view in a protocol
execution with a trusted party computing the oblivious transfer functionality.
Combining this fact with the above equations we derive (5.3).

The simulator S described above runs in expected polynomial time. In
order to see this, note that by Lemma 4.3.6, a fake garbled circuit is indis-
tinguishable from a real one. Therefore, the probability that γ = ζ is at most
negligibly far from 1/ℓ (otherwise, this fact alone can be used to distinguish
a fake garbled circuit from a real one). It follows that the expected number
of attempts by S is close to ℓ, and so its expected running time is polyno-
mial (by the assumption on ℓ). By our definition, S needs to run in strict
polynomial time. However, this is easily achieved by having S halt if it fails
after nℓ rewinding attempts. Following the same argument as above, such a
failure can occur with at most negligible probability.

We conclude that S meets the requirements of Definition 2.4.1. (Note that
S only sends cheat2 due to the oblivious transfer. Thus, if a “fully secure”
oblivious transfer protocol were to be used, the protocol would meet the
standard definition of security for malicious adversaries for the case where P2

is corrupted.)

Party P1 is corrupted. The proof of security in this corruption case is
considerably more difficult. Intuitively, security relies on the fact that if P1

does not construct the circuits correctly or does not provide the same keys
in the oblivious transfers and circuit openings, then it will be caught with
probability at least ϵ. In contrast, if it does construct the circuits correctly
and provide the same keys, then its behavior is effectively the same as that of
an honest party and so security is preserved. Formally, let A be an adversary
controlling P1. The simulator S works as follows:

1. S invokes A and plays the trusted party for the oblivious transfers with A
as P1. S receives the input that A sends to the trusted party (as its input
to the oblivious transfers):

5.2 Secure Two-Party Computation 131

a. If the input is abort1 or corrupted1, then S sends abort1 or corrupted1
(respectively) to the trusted party computing f , simulates P2 aborting
and halts (outputting whatever A outputs).

b. If the input is cheat1, then S sends cheat1 to the trusted party. If it
receives back corrupted1, then it hands A the message corrupted1 as if
it received it from the trusted party, simulates P2 aborting and halts
(outputting whatever A outputs). If it receives back undetected (and
thus P2’s input y as well), then S works as follows. First, it hands A
the string undetected together with the input string ỹ that an honest
P2 upon input y would have used in the oblivious transfers (note that
A expects to receive P2’s input to the oblivious transfers in the case
of undetected). We remark that S can compute ỹ by simply following
the instructions of an honest P2 with input y from the start (nothing
yet has depended on P2’s input so there is no problem of consistency).
Next, S uses the derived input ỹ that it computed above in order to
perfectly emulate P2 in the rest of the execution. That is, it continues
P2’s honest strategy with input ỹ while interacting with A playing P1

for the rest of the execution. Let τ be the output for P2 that it receives.
S sends τ to the trusted party (for P2’s output) and outputs whatever
A outputs. The simulation ends here in this case.

c. If the input is a series of mn pairs of ℓ-tuples of keys(
[k1wn+i,0, . . . , k

ℓ
wn+i,0], [k

1
wn+i,1, . . . , k

ℓ
wn+i,1]

)
for i = 1, . . . ,mn, then S proceeds below.

2. S receives from A a message consisting of ℓ garbled circuits GC1, . . . , GCℓ

and a series of commitments.
3. For j = 1, . . . , ℓ, simulator S sends A the message γ = j, receives its reply

and rewinds A back to the point before A receives γ.
4. S continues the simulation differently, depending on the validity of the

circuit openings. In order to describe the cases, we introduce some termi-
nology.

Legitimate circuit: We say that a garbled circuit GCj is legitimate if
there exists a value γ ̸= j such that when S sends A the message γ
in Step 3 above, A replies with decommitments that open GCj to the
(correct) auxiliary input circuit C ′. Note that if a circuit is legitimate
then whenever A provides valid decommitments in Step 3, the circuit is
decrypted to C ′. Furthermore, if a circuit is illegitimate then for every
γ ̸= j in which A provides valid decommitments, the resulting opened
circuit is not C ′.

Inconsistent key: This notion relates to the question of whether the
keys provided by P1 in the oblivious transfers are the same as those
committed to and thus revealed in a circuit opening. We say that a
(committed) key kjwi,β

received in an oblivious transfer is inconsistent

132 5 Covert Adversaries

if it is different from the analogous key committed to by P1. We stress
that the keys obtained in the oblivious transfers (and of course the
committed keys) are fixed before this point of the simulation and thus
this event is well defined.

Inconsistent wire: A wire wi is inconsistent if there exists a circuit
GCj such that either kjwi,0

or kjwi,1
is an inconsistent key.

Totally inconsistent input: An original input bit yi is totally incon-
sistent if all of the wires associated with the shares of yi are inconsistent
(recall that yi is split over m input wires). Note that the different incon-
sistent wires need not be inconsistent in the same circuit, nor need they
be inconsistent with respect to the same value (0 or 1). Note that the
determination about whether a wire is inconsistent is independent of
the value γ sent by S because the oblivious transfers and commitments
to keys take place before S sends γ in Step 3 above.

Before proceeding to describe how S works, we remark that our strategy
below is to have S use the different possibilities regarding the legitimacy
of the circuit and consistency of keys to cause the honest party in an ideal
execution to output corrupted1 with the same probability with which the
honest P2 catches A cheating in a real execution. Furthermore, S does
this while ensuring that γ is uniformly distributed and the bits chosen as
shares of each yi are also uniformly distributed. In this light, we describe
the expected probabilities of catching A in three cases:

• There exists an illegitimate circuit GCj0 : in this case P2 certainly
catches A cheating unless γ = j0. Thus, P2 catches A with probability
at least 1 − 1/ℓ. We stress that P2 may catch A with higher probabil-
ity depending on whether or not there are other illegitimate circuits of
inconsistent inputs.

• There exists a totally inconsistent wire: if the inconsistent values of the
wire belong to different circuits then P2 will always catch A. However,
if they belong to one circuit GCj0 then A will be caught if γ ̸= j0, or if
γ = j0 and the keys chosen in the oblivious transfer are all consistent
(this latter event happens with probability at most 2−m+1 becausem−1
bits of the sharing are chosen randomly). Thus, P2 catches A with
probability at least (1− ℓ−1)(1− 2m+1).

• None of the above occurs but there are inconsistent keys: in this case,
P2 catches A if the inconsistent keys are those chosen and otherwise
does not.

We are now ready to proceed. S works according to the follows cases:

a. Case 1 – at least one circuit is illegitimate: Let GCj0 be the first illegit-
imate circuit. Then, S sends w1 = cheat1 to the trusted party. By the
definition of the ideal model, with probability ϵ = (1− 1/ℓ)(1− 2−m+1)
it receives the message corrupted1, and with probability 1− ϵ it receives
the message undetected together with P2’s input y:

5.2 Secure Two-Party Computation 133

i. If S receives the message corrupted1 from the trusted party, then it
chooses γ ̸= j0 at random and sends γ to A. Then, S receives back
A’s opening for the circuits, including the illegitimate circuit GCj0 ,
and simulates P2 aborting due to detected cheating. S then outputs
whatever A outputs and halts.

ii. If S receives the message undetected from the trusted party (together

with P2’s input y), then with probability p = ℓ−1

1−ϵ it sets γ = j0, and
with probability 1 − p it chooses γ ̸= j0 at random. It then sends
γ to A, and continues to the end of the execution emulating the
honest P2 with the input y it received from the trusted party. (When
computing the circuit, S takes the keys from the oblivious transfer
that P2 would have received when using input y and when acting as
the honest P2 to define the string ỹ.) Let τ be the output that S
received when playing P2 in this execution. S sends τ to the trusted
party (to be the output of P2) and outputs whatever A outputs. Note
that if the output of P2 in this emulated execution would have been
corrupted1 then S sends τ = corrupted1 to the trusted party.4

We will show below that the above probabilities result in γ being
uniformly distributed in {1, . . . , ℓ}.

b. Case 2 – All circuits are legitimate but there is a totally inconsistent
input: Let yi be the first totally inconsistent input and, for brevity,
assume that the inconsistent keys are all for the 0 value on the wires
(i.e., there are inconsistent keys kj1wn+(i−1)m+1,0

, . . . , kjmwn+im,0 for some

j1, . . . , jm ∈ {1, . . . , ℓ}). In this case, S sends w1 = cheat1 to the trusted
party. With probability ϵ it receives the message corrupted1, and with
probability 1− ϵ it receives the message undetected together with P2’s
input y:
i. If S receives the message corrupted1 from the trusted party, then it

chooses random values for the bits on the wires wn+(i−1)m+1, . . . ,
wn+im−1, subject to the constraints that not all are 1; i.e., at least
one of these wires gets a value with an inconsistent key.5 Let Gj0

be the first circuit for which there exists a wire with value 0 that
obtains an inconsistent key. S chooses γ ̸= j0 at random and sends
it to A. Among other things, S receives back A’s opening of GCj0 ,
and simulates P2’s aborting due to detected cheating. (Note that the
probability that a real P2 will make these two choices – choose the

4 We remark that P2 may output corrupted1 with probability that is higher than ϵ (e.g.,

if more than one circuit is illegitimate or if inconsistent keys are presented as well). This
possibility is dealt with by having S play P2 and force a corrupted1 output if this would
have occurred in the execution.
5 Recall that the input wires associated with P2’s input bit yi are
wn+(i−1)m+1, . . . , wn+im. Thus, the simulator here fixes the values on all the wires
except the last (recall also that the first m − 1 values plus P2’s true input bit fully
determine the value for the last wire wn+im).

134 5 Covert Adversaries

values for the first m−1 wires so that not all are 1, and choose γ ̸= j0
– is exactly ϵ.) S then outputs whatever A outputs and halts.

ii. If S receives the message undetected (and thus the real input y of P2)
from the trusted party, it first determines the values for the shares
of yi and for the value γ, as follows:

• With probability p = 2−m+1

1−ϵ , for all t = 1, . . . ,m − 1 it sets
the value on the wire wn+(i−1)m+t to equal 1 (corresponding to
not choosing the inconsistent keys), and the value on the wire
wn+im to equal the XOR of yi with the values set on the wires
wn+(i−1)m+1, . . . , wn+(i−1)m+m−1. The value γ is chosen at ran-
dom (out of 1, . . . , ℓ).

• With probability 1 − p, for all t = 1, . . . ,m − 1 it sets the
value on the wire wn+(i−1)m+t to a random value, subject to
the constraint that not all are 1 (i.e., at least one of the shares
has an inconsistent key), and it sets the value on the wire
wn+im to equal the XOR of yi with the values set on the wires
wn+(i−1)m+1, . . . , wn+(i−1)m+m−1. Let Gj0 be the first circuit for
which there exists a wire with value 0 that obtains an inconsistent
key. Then S sets γ = j0.

The values for shares of all other input bits are chosen at random
(subject to the constraint that their XOR is the input value obtained
from the trusted party, as an honest P2 would choose). S now sends
γ to A, and completes the execution emulating an honest P2 using
these shares and γ. It outputs whatever A would output, and sets
P2’s output to whatever P2 would have received in the executions,
including corrupted1, if this would be the output (this is as described
at the end of Step 4(a)ii above).

c. Case 3 – All circuits are legitimate and there is no totally inconsistent
input: For each inconsistent wire (i.e., a wire for which there exists an
inconsistent key), if there are any, S chooses a random value, and checks
whether the value it chose corresponds to an inconsistent key. There are
two cases:
i. Case 3a – S chose bits with inconsistent keys: In this case, S sends

w1 = cheat1 to the trusted party. With probability ϵ it receives the
message corrupted1, and with probability 1−ϵ it receives the message
undetected together with P2’s input y. Let wi0 be the first of the wires
for which the bit chosen has an inconsistent key, and let GCj0 be the
first circuit in which the key is inconsistent:
A. If S receives the message corrupted1 from the trusted party, then

it chooses γ ̸= j0 at random and sends it to A. S then simu-
lates P2 aborting due to detected cheating, outputs whatever A
outputs and halts.

B. If S receives undetected together with y = (y1, . . . , yn) from the
trusted party, then first it chooses bits for the (consistent) shares
at random, subject to the constraint that for any input bit yi,

5.2 Secure Two-Party Computation 135

the XOR of all its shares equals the value of this bit, as provided
by the trusted party. In addition:

• With probability p = ℓ−1

1−ϵ , simulator S sets γ = j0.
• With probability 1−p, simulator S chooses γ ̸= j0 at random.
In both cases, S sends γ to A and completes the execution em-
ulating an honest P2 using the above choice of shares, and out-
putting the values as explained in Step 4(a)ii above (in particular,
if the output of the emulated P2 is corrupted1, then S causes this
to be the output of P2 in the ideal model).

ii. Case 3b – S chose only bits with consistent keys: S reaches this point
of the simulation if all garbled circuits are legitimate and if either all
keys are consistent or it is simulating the case where no inconsistent
keys were chosen. Thus, intuitively, the circuit and keys received by
S from A are the same as from an honest P1. The simulator S begins
by choosing a random γ and sending it to A. Then, S receives the
opening of the other circuits, as before. In addition, S receives from
A the set of keys and decommitments for the wires w1, . . . , wn for
the unopened circuit GCγ , in order to evaluate it. If anything in this
process is invalid (i.e., any of the circuits is not correctly decrypted,
or the decommitments are invalid, or the keys cannot be used in
the circuit), then S sends abort1 or corrupted1 to the trusted party
causing P2 to output abort1 or corrupted1, respectively (the choice
of whether to send abort1 or corrupted1 is according to the protocol
description and what causes P2 to output abort1 and what causes it to
output corrupted1). Otherwise, S uses the opening of the circuit GCγ

obtained above, together with the keys obtained in order to derive the
input x′ used by A. Specifically, in Step 3, the simulator S receives
the opening of all circuits and this reveals the association between
the keys on the input wires and the input values. Thus, when A sends
the set of keys associated with its input in circuit GCγ , simulator S
can determine the exact input x′ that is defined by these keys. S
sends the trusted party x′ (and continue) and outputs whatever A
outputs.

This concludes the description of S. For reference throughout the analy-
sis below, we present a high-level outline and summary of the simulator in
Figures 5.2 and 5.3. We present it in the form of a “protocol” between the
simulator S and the real adversary A.

Denote by badOT the event that A sends abort1, corrupted1 or cheat1 in the
oblivious transfers. The analysis of the event badOT is identical to the case
where P2 is corrupted and so denoting π as Protocol 5.2.1 and I = {1} (i.e.,
party P1 is corrupted), we have that{

idealscϵ
f,S(z),1((x, y), n) | badOT

}
≡

{
hybridOT

π,A(z),1((x, y), n) | badOT

}
.

136 5 Covert Adversaries

Adversary A Simulator S

→ IDEAL OT → Obtain all keys, or
corrupted, cheat, abort

Garbled circuits GC1, . . . , GCℓ-
Commitments cjwi,β

to keys kjwi,β-

� γ
For γ = 1, . . . , ℓ:

Open GCj , j ̸= γ, and commitments-
end for

� γ Compute γ and output based
on cases in Figure 5.3 below

Fig. 5.2 A high-level diagram of the simulator (P1 corrupted)

Case 1 – at least one illegitimate circuit: Send cheat1 to trusted party. Then:

1. If receive corrupted1: set γ ̸= j0 at random.

2. If receive undetected: with probability p = ℓ−1

1−ϵ
set γ = j0; with probability 1 − p

set γ ̸= j0 at random; complete execution using real y.

Case 2 – there exists a totally inconsistent input: Send cheat1 to trusted party.

1. If receive corrupted1: choose values for inconsistent input so at least one inconsistent
key chosen. Set γ ̸= j0 at random.

2. If receive undetected: with probability p = 2−m+1

1−ϵ
choose values so no inconsistent

key chosen and choose γ ←R {1, . . . , ℓ}; with probability 1− p choose values so at
least one inconsistent key chosen and set γ = j0.

Complete execution using real y.

Case 3 – all other cases: Choose random values for inconsistent wires (if they

exist).

1. If a bit with an inconsistent key chosen: send cheat1. If receive corrupted1, set
γ ̸= j0 at random. If receive undetected, choose rest of values under constraint that

are consistent with real input of P2. With probability p = ℓ−1

1−ϵ
set γ = j0; with

probability 1− p choose γ ̸= j0 at random.
2. If no inconsistent keys chosen: derive input from keys and openings sent by A. Send

it to trusted party and conclude simulation (checking for abort or corrupted as in
protocol specification).

Fig. 5.3 Cases for the simulator S (P1 corrupted)

It remains to analyze the case where badOT (i.e., the oblivious transfer is not
aborted). We will prove the case following the same case analysis as in the
description of the simulator. Before doing so, notice that the only messages
that A receives in a protocol execution are in the oblivious transfers and the
challenge value γ. Thus, when analyzing Protocol 5.2.1 in a hybrid model

5.2 Secure Two-Party Computation 137

with a trusted party computing the oblivious transfer functionality, its view
consists only of the value γ. Thus, in order to show that A’s view in the
simulation is indistinguishable from its view in a real execution, it suffices
to show that the value γ that S hands A is (almost) uniformly distributed
in {1, . . . , ℓ}. We stress that this is not the case when considering the joint
distribution including P2’s output (because cheating by A can cause P2 to
output an incorrect value). The focus of the proof below is thus to show that
the distribution over the challenge value γ sent by S during the simulation is
uniform, and that the joint distribution over A’s view and the output of P2

in the simulation is statistically close to a real execution.

1. Case 1 – at least one circuit is illegitimate: We first show that the value
γ sent by S in the simulation is uniformly distributed over {1, . . . , ℓ},
just like the value sent by P2 in a real execution. In order to see this,
we distinguish between the case where S receives corrupted1 and the case
where it receives undetected. We first prove that γ = j0 with probability
1/ℓ (recall that GCj0 is the first illegitimate circuit):

Pr[γ = j0] = Pr[γ = j0 | corrupted1] · Pr[corrupted1]
+ Pr[γ = j0 | undetected] · Pr[undetected]

= 0 · Pr[corrupted1] +
ℓ−1

1− ϵ
· Pr[undetected]

=
1

ℓ
· 1

1− ϵ
· (1− ϵ) =

1

ℓ

where the second equality is by the simulator’s code, and the third follows
from the fact that Pr[undetected] = 1 − ϵ, by definition. We now proceed
to prove that for every j ̸= j0 it also holds that Pr[γ = j] = 1/ℓ. For every
j = 1, . . . , ℓ with j ̸= j0:

Pr[γ = j] = Pr[γ = j | corrupted1] · Pr[corrupted1]
+ Pr[γ = j | undetected] · Pr[undetected]

= Pr[γ = j | corrupted1] · ϵ+ Pr[γ = j | undetected] · (1− ϵ)

=

(
1

ℓ− 1

)
· ϵ+

((
1− 1

ℓ(1− ϵ)

)
· 1

ℓ− 1

)
· (1− ϵ)

=
1

ℓ− 1
·
(
ϵ+

(
1− 1

ℓ(1− ϵ)

)
· (1− ϵ)

)
=

1

ℓ− 1
·
(
ϵ+ (1− ϵ)− 1− ϵ

ℓ(1− ϵ)

)
=

1

ℓ− 1
·
(
1− 1

ℓ

)
=

1

ℓ

where, once again, the third equality is by the code of the simulator. (Recall

that when undetected is received, then with probability 1−p for p = ℓ−1

(1−ϵ)

138 5 Covert Adversaries

the value γ is uniformly distributed under the constraint that it does not
equal j0. Thus, when undetected occurs, the probability that γ equals a
given j ̸= j0 is 1

ℓ−1 times 1− p.)

We now proceed to show that the joint distribution of A’s view and P2’s
output in a real execution (or more exactly, a hybrid execution where the
oblivious transfers are computed by a trusted party) is identical to the
joint distribution of S and P2’s output in an ideal execution. We show
this separately for the case where γ ̸= j0 and the case where γ = j0. Now,
when a real P2 chooses γ ̸= j0, then it always outputs corrupted1. Likewise,
in an ideal execution where the trusted party sends corrupted1 to P2, the
simulator S sets γ ̸= j0. Thus, when γ ̸= j0, the honest party outputs
corrupted1 in both the real and ideal executions. Next consider the case
where γ = j0. In the simulation by S, this only occurs when S receives back
undetected, in which case S perfectly emulates a real execution because it
is given the honest party’s real input y. Thus P2’s output is distributed
identically in both the real and ideal executions when γ = j0. (Note that
P2 may output corrupted1 in this case as well. However, what is important
is that this will happen with exactly the same probability in the real
and ideal executions.) Finally recall from above that γ as chosen by S is
uniformly distributed, and thus the two cases (of γ ̸= j0 and γ = j0) occur
with the same probability in the real and ideal executions. We therefore
conclude that the overall distributions are identical. This completes this
case.

2. Case 2 – All circuits are legitimate but there is a totally inconsistent input:
We analyze this case in a way analogous to that above. Let ‘all=1’ denote
the case where in a real execution all of them−1 first wires associated with
the totally inconsistent input are given value 1 (and so the inconsistent
keys determined for those wires are not revealed because these are all 0).
Since the values on these wires are chosen by P2 uniformly, we have that
Pr[‘all=1’] = 2−m+1. Noting also that γ is chosen by P2 independently of
the values on the wires, we have that in a real execution

Pr[γ ̸= j0 & ¬‘all=1’] =

(
1− 1

ℓ

)(
1− 1

2m−1

)
= ϵ

where the second equality is by the definition of ϵ (recall that j0 is the index
of the first circuit for which an inconsistent key is chosen by S). Now, the
trusted party sends corrupted1 with probability exactly ϵ. Furthermore, in
this case, S generates a transcript for which the event γ ̸= j0 & ¬‘all=1’
holds (see item (i) of case (2) of the simulator), and such an event in a
real execution results in P2 certainly outputting corrupted1. We thus have
that the corrupted1 event in the ideal model is mapped with probability
exactly ϵ to a sub-distribution over the real transcripts in which P2 outputs
corrupted1.

5.2 Secure Two-Party Computation 139

Next we analyze the case where not all values on the wires are 1, but γ = j0.
In a real execution, we have that this event occurs with the following
probability:

Pr[γ = j0 & ¬‘all=1’] =
1

ℓ
·
(
1− 2−m+1

)
.

By the description of S, this occurs in the simulation with probability
(1− ϵ)(1− p) where p = 2−m+1/(1− ϵ); see the second bullet of Case (2),
subitem (ii), and observe that γ is always set to j0 in this case. Now,

(1− ϵ)(1− p) = (1− ϵ) ·
(
1− 2−m+1

1− ϵ

)
= 1− ϵ− 2−m+1

= 1−
(
1− 2−m+1

) (
1− ℓ−1

)
− 2−m+1

= 1−
(
1− 1

ℓ
− 2−m+1 +

2−m+1

ℓ

)
− 2−m+1

=
1

ℓ
− 2−m+1

ℓ

=
1

ℓ
·
(
1− 2−m+1

)
.

Thus, the probability of this event in the simulation by S is exactly the
same as in a real execution. Furthermore, the transcript generated by S
in this case (and the output of P2) is identical to that in a real execution,
because S runs an emulation using P2’s real input.

Thus far, we have analyzed the output distributions in the events
(γ ̸= j0 & ¬‘all=1’) and (γ = j0 & ¬‘all=1’), and so have covered the
case ¬‘all=1’. It remains for us to analyze the event ‘all=1’. That is, it
remains to consider the case where all m− 1 wires do equal 1; this case is
covered by the simulation in the first bullet of Case (2), subitem (ii). In a
real execution, this case occurs with probability 2−m+1. Likewise, in the
simulation, S reaches subitem (ii) with probability 1−ϵ and then proceeds
to the first bullet with probability p = 2−m+1/(1− ϵ). Therefore, this case
appears with overall probability 2−m+1 exactly as in a real execution. Fur-
thermore, as above, the simulation by S is perfect because it emulates the
execution using P2’s real input.

We have shown that for the events (γ ̸= j0 & ¬‘all=1’), (γ = j0 & ¬‘all=1’),
and ‘all=1’, the joint output distribution generated by S is identical to that
in a real execution. Furthermore, we have shown that these events occur
with the same probability in the real and ideal executions. Since these
events cover all possibilities, we conclude that the simulation by S in this
case is perfect. (By perfect, we mean that when all circuits are legitimate
but there is a totally inconsistent input, the joint output distribution of S
and P2 in an ideal execution is identical to the joint output distribution

140 5 Covert Adversaries

of A and P2 in a hybrid execution of the protocol where a trusted party
is used for the oblivious transfers.)

3. Case 3 – all circuits are legitimate and there is no totally inconsistent
input: We have the following subcases:

a. Case 3a – S chose values with inconsistent keys: First observe that S
chooses values with inconsistent keys with exactly the same probabil-
ity as P2 in a real execution. This holds because there are no totally
inconsistent values and thus the choice of values on the wires with in-
consistent keys is uniform. (Note that P2’s strategy for choosing values
is equivalent to choosing any subset of m−1 values uniformly and then
choosing the last value so that the XOR equals the associated input
bit. Since there is at least one wire where both keys are consistent, we
can look at this wire as being the one that determines the actual un-
known input bit of P2, and all others are chosen uniformly by S and P2.
Thus, the probability that S chooses an inconsistent key is the same as
P2.) We therefore fix the choice of values for the wires and proceed to
analyze the transcripts generated by the simulator, conditioned on this
choice of keys.

In a real execution in which P2 chose inconsistent keys, it outputs
corrupted1 if the circuit in which the inconsistent keys were chosen is
opened (it may also output corrupted1 if the circuit is not opened but
this is not relevant here). Now, if the trusted party sends corrupted1,
then the simulator ensures that the circuit in which the inconsistent
keys were chosen is opened (it does this by choosing γ uniformly under
the constraint that γ ̸= j0 where Gj0 is the first circuit with an inconsis-
tent key; see subitem (A) of subitem (i) in Case 3a). In contrast, if the
trusted party sends undetected, then S runs a perfect emulation using
P2’s real input; the two subcases (with probability p and 1− p) are to
ensure that γ is chosen uniformly. Thus, it remains to show that in this
case, for every j = 1, . . . , ℓ we have Pr[γ = j] = 1/ℓ. As above, we sep-
arately analyze the probability for j = j0 and j ̸= j0. The computation
is almost the same as in Case 1 above and we are therefore brief:

Pr[γ = j0] = Pr[γ = j0 | corrupted1] · ϵ+ Pr[γ = j0 | undetected] · (1− ϵ)

= 0 · ϵ+ ℓ−1

1− ϵ
· (1− ϵ) =

1

ℓ
.

In addition, for all j ̸= j0,

Pr[γ = j] = Pr[γ = j | corrupted1] · ϵ+ Pr[γ = j | undetected] · (1− ϵ)

=

(
1

ℓ− 1

)
· ϵ+

((
1− 1

ℓ(1− ϵ)

)
· 1

ℓ− 1

)
· (1− ϵ) =

1

ℓ
.

Thus, in this case, S chooses γ uniformly in {1, . . . , ℓ}. Furthermore, the
transcript in each subcase is exactly as in a real execution, as required.

5.2 Secure Two-Party Computation 141

b. Case 3b – S chose only values with consistent keys: As above, the prob-
ability that S chose only values with consistent keys is identical to the
probability that a real P2 chooses only values with consistent keys. Now,
in such a case, all circuits are legitimate, and in addition, all keys that
are retrieved by P2 are consistent (this includes the keys for the opened
circuits and for the circuit that is computed). This means that the com-
putation of the circuit using the keys retrieved by P2 is identical to the
computation of an honestly generated circuit. (Note that P2 may abort
or output corrupted1 in this case. However, here we are interested in the
result of the computation of the circuit Gγ , if it is computed by P2.) We
also note that the keys provided by P1 that are associated with its own
input are provided via decommitments. Thus, P1 can either not provide
valid decommitments, or must provide decommitments that yield keys
that result in the circuit being decrypted correctly. This also means
that the associations made by S between the input keys of P1 and the
string x′ that it sends to the trusted party are correct. We conclude that
in this case, the joint output of A and the real P2 in a real execution
is identical to the joint output of S and P2 in an ideal execution, as
required.

This completes the proof of security in (OT, ϵ)-hybrid model. Applying The-
orem 2.7.2 (sequential composition), we have that Protocol 5.2.1 is secure in
the real model when using a real oblivious transfer protocol that is secure in
the presence of covert adversaries with ϵ-deterrent.

5.2.3 Non-halting Detection Accuracy

It is possible to modify Protocol 5.2.1 so that it achieves non-halting detection
accuracy ; see Definition 2.4.2. Before describing how we do this, note that the
reason that we need to recognize a halting-abort as cheating in Protocol 5.2.1
is that if P1 generates one faulty circuit, then it can always just refuse to
continue (i.e., abort) in the case where P2 asks it to open the faulty circuit.
This means that if aborting is not considered cheating, then a corrupted P1

can form a strategy whereby it is never detected cheating, but succeeds in
actually cheating with probability 1/ℓ. In order to solve this problem, we
construct a method whereby P1 does not know whether or not it will be
caught. We do so by having P2 receive the circuit openings via a fully secure
1-out-of-ℓ oblivious transfer protocol, rather than having P1 send it explicitly.
This forces P1 to either abort before learning anything, or to risk being caught
with probability 1− 1/ℓ. In order to describe this in more detail, we restate
the circuit opening stage of Protocol 5.2.1 as follows:

1. Party P1 sends ℓ garbled circuits GC1, . . . , GCℓ to party P2.
2. P2 sends a random challenge γ ←R {1, . . . , ℓ}.

142 5 Covert Adversaries

3. P1 opens GCj for all j ̸= γ by sending decommitments, keys and so on. In
addition, it sends the keys associated with its own input in GCγ .

4. P2 checks the circuits GCj for j ̸= γ and computes GCγ (using the keys
from P1 in the previous step and the keys it obtained earlier in the oblivious
transfers). P2’s output is defined to be the output of GCγ .

Notice that P2 only outputs corrupted1 if the checks from the circuit that is
opened do not pass. As we have mentioned, there is no logical reason why an
adversarial P1 would ever actually reply with an invalid opening; rather, it
would just abort. Consider now the following modification:

1. Party P1 sends ℓ garbled circuits GC1, . . . , GCℓ to party P2.
2. P1 and P2 participate in a (fully secure) 1-out-of-ℓ oblivious transfer with

the following inputs:

a. P1 defines its inputs (x, . . . , xℓ) as follows. Input xi consists of the open-
ing of circuits GCj for j ̸= i together with the keys associated with its
own input in GCi.

b. P2’s input is a random value γ ←R {1, . . . , ℓ}.

3. P2 receives an opening of ℓ − 1 circuits together with the keys needed to
compute the unopened circuit and proceeds as above.

Notice that this modified protocol is essentially equivalent to Protocol 5.2.1
and thus its proof of security is very similar. However, in this case, an adver-
sarial P1 that constructs one faulty circuit must decide before the oblivious
transfer if it wishes to abort (in which case there is no successful cheating)
or if it wishes to proceed (in which case P2 will receive an explicitly invalid
opening). Note that due to the security of the oblivious transfer, P1 cannot
know what value γ party P2 inputs, and so cannot avoid being detected.

The price of this modification is that of one fully secure 1-out-of-ℓ oblivious
transfer and the replacement of all of the original oblivious transfer protocols
with fully secure ones. (Of course, we could use oblivious transfer protocols
that are secure in the presence of covert adversaries with non-halting detec-
tion accuracy, but we do not know how to construct such a protocol more
efficiently than a fully secure one.) A highly efficient oblivious transfer pro-
tocol with a constant number of exponentiations per execution is presented
in Chapter 7. Using this protocol, we achieve non-halting detection accuracy
at a similar cost. As we have mentioned, this is a significant advantage. (We
remark that one should not be concerned with the lengths of x1, . . . , xℓ in
P1’s input to the oblivious transfer. This is because P1 can send them en-
crypted ahead of time with independent symmetric keys k1, . . . , kℓ. Then the
oblivious transfer takes place only on the keys.)

5.3 Efficiency of the Protocol 143

5.3 Efficiency of the Protocol

We analyze the efficiency of Protocol 5.2.1, as in previous chapters:

• Number of rounds: The number of rounds equals six in the oblivious
transfer plus an additional three rounds for the rest of the protocol. How-
ever, the last message of the oblivious transfer can be sent together with
the first message for the rest of the protocol. Thus, overall there are eight
rounds of communication.

• Asymmetric computations: Party P2 expands its input of length n
to mn, and so mn oblivious transfers are run. The oblivious transfer pre-
sented in this chapter is actually not more efficient than those presented in
Chapter 7 (we present it for didactic reasons). Thus, we refer to Chapter 7
for exact costs (in short, the cost is O(1) exponentiations per oblivious
transfer).

• Symmetric computations: The cost here is ℓ times that of the semi-
honest protocol in Chapter 3. Thus, we have 12·|C|·ℓ symmetric operations.

• Bandwidth: The cost here again is approximately ℓ times that of the
semi-honest protocol.

We conclude that the cost of achieving security in the presence of covert ad-
versaries is approximately ℓ times the bandwidth and symmetric computation
of the semi-honest case, and m times the number of asymmetric computa-
tions. For ϵ = 1/2, it suffices to take ℓ = m = 3 and so we have that the cost
is just three times that of the semi-honest case. This is significantly more
efficient than the malicious case.

Part III

Specific Constructions

In this final section, we present efficient protocols for problems of specific
interest. In Chapters 6 and 7, we study Σ-protocols and oblivious transfer;
these are basic building blocks that are used widely when constructing pro-
tocols. Then, in Chapters 8 and 9, we present examples of efficient secure
protocols that are useful in their own right.

Chapter 6

Sigma Protocols and Efficient
Zero-Knowledge1

A zero-knowledge proof is an interactive proof with the additional property
that the verifier learns nothing beyond the correctness of the statement being
proved. The theory of zero-knowledge proofs is beautiful and rich, and is a cor-
nerstone of the foundations of cryptography. In the context of cryptographic
protocols, zero-knowledge proofs can be used to enforce “good behavior” by
having parties prove that they indeed followed the protocol correctly. These
proofs must reveal nothing about the parties’ private inputs, and as such must
be zero knowledge. Zero-knowledge proofs are often considered an expensive
(and somewhat naive) way of enforcing honest behavior, and those who view
them in this way consider them to be not very useful when constructing ef-
ficient protocols. Although this is true for arbitrary zero-knowledge proofs
of NP statements, there are many languages of interest for which there are
extraordinarily efficient zero-knowledge proofs. Indeed, in many cases an ef-
ficient zero-knowledge proof is the best way to ensure that malicious parties
do not cheat. We will see some good examples of this in Chapter 7 where ef-
ficient zero-knowledge proofs are used to achieve oblivious transfer with very
low cost.

In this chapter, we assume familiarity with the notions of zero-knowledge
and honest verifier zero-knowledge, and refer readers to [30, Chapter 4] for
the necessary theoretical background, and for definitions and examples. As
everywhere else in this book, here we are interested in achieving efficiency.

6.1 An Example

We begin by motivating the notion of a Σ-protocol through an example.
Let p be a prime, q a prime divisor of p − 1, and g an element of order q
in Z∗p. Suppose that a prover P has chosen a random w ←R Zq and has
published h = gw mod p. A verifier V who receives (p, q, g, h) can efficiently

1 Much of this chapter is based on a survey paper by Ivan Damg̊ard [20]. We thank him
for graciously allowing us to use his text.

147C. Hazay, Y. Lindell, Efficient Secure Two-Party Protocols,
Information Security and Cryptography, DOI 10.1007/978-3-642-14303-8_6,
© Springer-Verlag Berlin Heidelberg 2010

148 6 Sigma Protocols and Efficient Zero-Knowledge

verify that p, q are prime, and that g, h both have order q. Since there is only
one subgroup of order q in Z∗p , this automatically means that h ∈ ⟨g⟩ and
thus there always exists a value w such that h = gw (this holds because in a
group of prime order all elements apart from the identity are generators and
so g is a generator). However, this does not necessarily mean that P knows
w.

Protocol 6.1.1 by Schnorr provides a very efficient way for P to convince
V that it knows the unique value w ∈ Zq such that h = gw mod p:

PROTOCOL 6.1.1 (Schnorr’s Protocol for Discrete Log)

• Common input: The prover P and verifier V both have (p, q, g, h).

• Private input: P has a value w ∈ Zq such that h = gw mod p.
• The protocol:

1. The prover P chooses a random r ←R Zq and sends a = gr mod p to V .
2. V chooses a random challenge e ←R {0, 1}t and sends it to P , where t is

fixed and it holds that 2t < q.

3. P sends z = r + ew mod q to V , which checks that gz = ahe mod p, that
p, q are prime and that g, h have order q, and accepts if and only if this is
the case.

Intuitively, this is a proof of knowledge because if some P ∗, having sent
a, can answer two different challenges e, e′ correctly, then this means that
it could produce z, z′ such that gz = ahe mod p and also gz

′
= ahe′ mod p.

Dividing one equation by the other, we have that gz−z
′
= he−e′ mod p. Now,

by the assumption, e − e′ ̸= 0 mod q (otherwise e and e′ are not different
challenges), and so it has a multiplicative inverse modulo q. Since g, h have

order q, by raising both sides to this power, we get h = g(z−z
′)(e−e′)−1

mod p,
and so w = (z − z′)(e− e′)−1 mod q. Observing that z, z′, e, e′ are all known
to the prover, we have that the prover itself can compute w and thus knows
the required value (except with probability 2−t, which is the probability of
answering correctly with a random guess). Thus, Protocol 6.1.1 is a proof of
knowledge; we prove this formally below in Section 6.3.

In contrast, Protocol 6.1.1 is not known to be zero-knowledge. In order to
see this, observe that in order for the problem of finding w to be non-trivial
in the first place, q must be (exponentially) large. Furthermore, to achieve
negligible error in a single run of the protocol, 2t must be exponentially
large too. In this case, standard rewinding techniques for zero-knowledge
simulation will fail because it becomes too hard for a simulator to guess the
value of e in advance. It is therefore not known if there exists some efficient
malicious strategy that the verifier may follow which, perhaps after many
executions of the protocol, enables it to obtain w (or learn more than is
possible from (p, q, g, h) alone).

On the positive side, the protocol is honest verifier zero-knowledge. To
simulate the view of an honest verifier V , simply choose a random z ←R Zq

6.2 Definitions and Properties 149

and e ←R {0, 1}t, compute a = gzh−e mod p, and output (a, e, z). It is
immediate that (a, e, z) has exactly the same probability distribution as a
real conversation between the honest prover and the honest verifier. It is even
possible to take any given value e and then produce a conversation where e
occurs as the challenge: just choose z at random and compute the a that
matches. In other words, the simulator does not have to insist on choosing e
itself; it can take an e value as input. As we will see, this property turns out
to be very useful.

One might argue that honest verifier zero-knowledge is not a very useful
property, since it does not make sense in practice to assume that the verifier is
honest. However, as we will see, protocols with this weaker property can often
be used as building blocks in constructions that are indeed secure against
active cheating, and are almost as efficient as the original protocol.

A final practical note: in a real-life scenario, it will often be the case where
p and q are fixed for a long period, and so V can check primality once and
for all, and will not have to do it in every execution of the protocol.

Working in general groups. From here on, we will consider general groups
for proofs such as those above. The translation of Protocol 6.1.1 to this general
language is as follows. The common input to the parties is a tuple (G, q, g, h)
where G denotes a concise representation of a finite group of prime order q,
and g and h are generators of G. The proof then remains identical, with all
operations now being in the group G, and not necessarily operations modp.
In addition, the checks by V in the last step regarding the group are different.
Specifically, V must be able to efficiently verify that G is indeed a group of
prime order q, and that g, h ∈ G (note that in the concrete example above, V
checks membership in G by checking that the element in question is of order
q).

6.2 Definitions and Properties

Based on the Schnorr example, we will now define some abstract properties
for a protocol that capture the essential properties of the example. It turns
out that this abstraction holds for a wide class of protocols that are extremely
useful when constructing efficient secure protocols.

Let R be a binary relation. That is, R ⊂ {0, 1}∗ × {0, 1}∗, where the only
restriction is that if (x,w) ∈ R, then the length of w is at most p(|x|), for
some polynomial p(). For some (x,w) ∈ R, we may think of x as an instance
of some computational problem, and w as the solution to that instance. We
call w a witness for x.

For example, we could define a relation RDL for the discrete log problem
by

RDL = {((G, q, g, h), w) | h = gw},

150 6 Sigma Protocols and Efficient Zero-Knowledge

where it is to be understood that G is of order q with generator g, that q is
prime and that w ∈ Zq. In this case, R contains the entire set of discrete log
problems of the type we considered above, together with their solutions.

We will be concerned with protocols of the form of Protocol 6.2.1.

PROTOCOL 6.2.1 (Protocol Template for Relation R)

• Common input: The prover P and verifier V both have x.
• Private input: P has a value w such that (x,w) ∈ R.
• The protocol template:

1. P sends V a message a.
2. V sends P a random t-bit string e.

3. P sends a reply z, and V decides to accept or reject based solely on the data
it has seen; i.e., based only on the values (x, a, e, z).

Furthermore, we will assume throughout that both P and V are proba-
bilistic polynomial time machines, and so P ’s only advantage over V is that
it knows the witness w. We say that a transcript (a, e, z) is an accepting
transcript for x if the protocol instructs V to accept based on the values
(x, a, e, z). We now formally define the notion of a Σ-protocol (the name
Σ-protocol comes from the form of the letter Σ that depicts a three-move
interaction).

Definition 6.2.2 A protocol π is a Σ-protocol for relation R if it is a three-
round public-coin protocol of the form in Protocol 6.2.1 and the following
requirements hold:

• Completeness: If P and V follow the protocol on input x and private
input w to P where (x,w) ∈ R, then V always accepts.

• Special soundness: There exists a polynomial-time algorithm A that
given any x and any pair of accepting transcripts (a, e, z), (a, e′, z′) for
x, where e ̸= e′, outputs w such that (x,w) ∈ R.

• Special honest verifier zero knowledge: There exists a probabilistic
polynomial-time simulator M , which on input x and e outputs a transcript
of the form (a, e, z) with the same probability distribution as transcripts
between the honest P and V on common input x. Formally, for every x
and w such that (x,w) ∈ R and every e ∈ {0, 1}t it holds that{

M(x, e)
}
≡

{
⟨P (x,w), V (x, e)⟩

}
where M(x, e) denotes the output of simulator M upon input x and e, and
⟨P (x,w), V (x, e)⟩ denotes the output transcript of an execution between P
and V , where P has input (x,w), V has input x, and V ’s random tape
(determining its query) equals e.

The value t is called the challenge length.

6.2 Definitions and Properties 151

It should be clear that Protocol 6.1.1 is a Σ-protocol. However, this pro-
tocol is not the exception to the rule. Rather, there are many such examples.
This makes the general study of Σ-protocols important.

Until now, we have considered proofs of knowledge, and not proofs of
membership. Observe that in the case of the discrete log there always exists
a w for which h = gw; the question is just whether or not P knows w.
However, Σ-protocols often also arise in the setting of proofs of membership.
Define LR to be the set of inputs x for which there exists a w such that
(x,w) ∈ LR. Then the special soundness property implies that a Σ-protocol
for R is always an interactive proof system for LR with error probability 2−t.
This is due to the fact that if the special soundness algorithm A must be able
to output w given any two accepting transcripts, then there must only be a
single accepting transcript whenever x /∈ LR. Formally,

Proposition 6.2.3 Let π be a Σ-protocol for a relation R with challenge
length t. Then, π is an interactive proof of membership for LR with soundness
error 2−t.

Proof. Let x /∈ LR. We show that no P ∗ can convince V to accept with
probability greater than 2−t, even if P ∗ is computationally unbounded. As-
sume by contradiction that P ∗ can convince V with probability greater than
2−t. This implies that there exists a first message a from P ∗ and at least
two queries e, e′ from V that result in accepting transcripts. This is the case
because if for every a there exists at most one query e that results in an
accepting transcript, then P ∗ would convince V with probability at most
2−t; i.e., P ∗ would convince V only if V chose the single query e that P ∗

can answer, and since e ←R {0, 1}t this happens with probability only 2−t.
Observe now that the special soundness property requires that A output a
witness w such that (x,w) ∈ R (implying that x ∈ LR) when given any pair
of accepting transcripts (a, e, z), (a, e′, z′) with e ̸= e′. Thus, we conclude that
whenever P ∗ can convince V with probability greater than 2−t it holds that
x ∈ LR, in contradiction to the assumption.

Before proceeding, we give another example of a useful Σ-protocol that is
also a proof of membership (i.e., unlike the case of the discrete log, here the
fact that the input is in the language is non-trivial to verify). Specifically,
we consider the case of proving that a tuple (G, q, g, h, u, v) is of the Diffie-
Hellman form, that is, that there exists a w such that u = gw and v = hw. By
the decisional Diffie-Hellman assumption, the case where u = gw and v = hw

for some w is computationally indistinguishable from the case where u = gw

and h = gw
′
for w ̸= w′. Thus, a proof of this fact is non-trivial. We remark

that proofs of this type come up in many settings. For just one example,
this exact proof is utilized by Protocol 7.4.1 for securely computing oblivious
transfer in the malicious setting; see Section 7.4. Formally, Protocol 6.2.4
below is a proof system for the relation

RDH =
{
((G, q, g, h, u, v), w) | g, h ∈ G & u = gw & v = hw

}
.

152 6 Sigma Protocols and Efficient Zero-Knowledge

PROTOCOL 6.2.4 (Σ Protocol for Diffie-Hellman Tuples)

• Common input: The prover P and verifier V both have (G, q, g, h, u, v).

• Private input: P has a value w such that u = gw and v = hw.
• The protocol:

1. The prover P chooses a random r ←R Zq and computes a = gr and b = hr.
It then sends (a, b) to V .

2. V chooses a random challenge e←R {0, 1}t where 2t < q and sends it to P .

3. P sends z = r + ew mod q to V , which checks that gz = aue and hz = bve,
that G is a group of order q with generators g and h, and that u, v ∈ G, and
accepts if and only if this is the case.

Claim 6.2.5 Protocol 6.2.4 is a Σ-protocol for the relation RDH.

Proof. In order to see that completeness holds, observe that when P runs
the protocol honestly we have

gz = gr+ew = gr · gwe = gr · (gw)e = a · ue

where the last equality is due to the fact that a = gr and u = gw. A
similar calculation shows that hz = bve. Regarding special soundness, let
((a, b), e, z) and ((a, b), e′, z′) be two accepting transcripts. We have that
gz = aue and gz

′
= aue′ , as well as hz = bve and hz′

= bve
′
. Dividing

both pairs of equations we have that gz−z
′
= ue−e′ and hz−z′

= ve−e
′
. Con-

tinuing as in Schnorr’s protocol, we conclude that u = g(z−z
′)/(e−e′) and

v = h(z−z′)/(e−e′). The machine A can therefore set w = z−z′

e−e′ and it holds
that ((G, q, g, h, u, v), w) ∈ RDH, as required.

It remains to demonstrate special honest verifier zero knowledge. However,
this is also almost identical to the simulator in Protocol 6.1.1, and is therefore
omitted.

Properties of Σ-protocols. We conclude this section with two important,
yet easily verified properties of Σ-protocols. We first consider parallel repe-
tition, where the parties run the same protocol multiple times with the same
input, and V accepts if and only if it accepts in all repetitions. We stress
that the parties use independent randomness for generating their messages
in every execution.

Lemma 6.2.6 The properties of Σ-protocols are invariant under parallel
repetition. That is, the parallel repetition ℓ times of a Σ-protocol for R with
challenge length t yields a new Σ-protocol for R with challenge length ℓ · t.

Combining this with Proposition 6.2.3 we have that parallel repetition
reduces the error exponentially fast. It is worthwhile noting that if there are
two accepting transcripts of the parallel protocol then this actually means
that there are ℓ pairs of accepting transcripts. For this reason, the soundness
error is reduced to 2−ℓ·t as expected.

6.3 Proofs of Knowledge 153

Next we show that the challenge can be set to any arbitrary length.

Lemma 6.2.7 If there exists a Σ-protocol π for R with challenge length t,
then there exists a Σ-protocol π′ for R with challenge length t′, for any t′.

Proof. Let t be the challenge length for the given protocol π. Then a Σ-
protocol with challenge length t′ shorter than t can be constructed as follows.
P sends the first message a as in π. V then sends a random t′-bit string e.
Finally, P appends t− t′ 0s to e, calls the result e′, and computes the answer
z to e′ as in π. The verifier V checks z as in π as if the challenge were
e′. Special soundness trivially still holds. In addition, special zero-knowledge
holds because the simulator M is required to work for every challenge e,
including those the conclude with t− t′ 0s.

Regarding longer challenge lengths t′ > t; this can be achieved by first
running π in parallel j times, for j such that jt ≥ t′ (as in Lemma 6.2.6),
and then adjusting jt down to t′ as above in the case where jt > t′.

6.3 Proofs of Knowledge

In this section we prove that any Σ-protocol with challenge length t is a
proof of knowledge with knowledge error 2−t. We begin by reviewing the
notion of a proof of knowledge, as defined in [7]. It should be noted that
it is not at all straightforward to define this notion. Specifically, what does
it mean for a machine to “know” or “not know” something? The aim of a
proof of knowledge is to enable a prover to convince a verifier that it knows
a witness for some statement. Thus, it must be the case that only a machine
that “knows” a witness should be able to convince the verifier. The definition
below formalizes this by essentially saying that a machine knows a witness if
it can be used to efficiently compute it. Stated differently, if a witness can be
efficiently computed given access to P ∗, then this means that P ∗ knows the
witness. Indeed, P ∗ can run the efficient computation on itself and thereby
explicitly obtain the witness. We refer to [30, Chapter 4] for more discussion,
and proceed directly to the definition. (Note that the definition here is as in [7]
and differs from that presented in [30]. Specifically, we consider probabilistic
provers as in [7] and not only deterministic ones as considered in [30]. See [8]
for a discussion regarding the difference between these definitions.)

154 6 Sigma Protocols and Efficient Zero-Knowledge

Definition 6.3.1 Let κ : {0, 1}∗ → [0, 1] be a function. A protocol (P, V) is
a proof of knowledge for the relation R with knowledge error κ if the following
properties are satisfied:

Completeness: If P and V follow the protocol on input x and private
input w to P where (x,w) ∈ R, then V always accepts.

Knowledge soundness (or validity): There exists a constant c > 0 and
a probabilistic oracle machine K, called the knowledge extractor, such that
for every interactive prover function P ∗ and every x ∈ LR, the machine K
satisfies the following condition. Let ϵ(x) be the probability that V accepts
on input x after interacting with P ∗. If ϵ(x) > κ(x), then upon input x and
oracle access to P ∗, the machine K outputs a string w such that (x,w) ∈ R
within an expected number of steps bounded by

|x|c

ϵ(x)− κ(x)
.

One can think of the error κ as the probability that one can convince the
verifier without knowing a valid w, and the ability to convince the verifier with
higher probability means that the prover knows w. Furthermore, the higher
the probability that P ∗ convinces V , the more efficient it is to compute w.

As we have mentioned, we prove here that any Σ-protocol with challenge
length t is a proof of knowledge with knowledge error 2−t. Intuitively Σ-
protocols are proofs of knowledge because this is essentially what the special
soundness property states. Specifically, as we have seen, if P can convince
V with probability greater than 2−t then there must be two accepting tran-
scripts, in which case it is possible to apply the extraction machine guaran-
teed to exist by special soundness. The proof that this indeed holds is however
more involved because the witness extractor K has to first find two accept-
ing transcripts for such a prover, whereas the special soundness machine only
needs to work when somehow magically given such a pair of transcripts. We
now prove this theorem.

Theorem 6.3.2 Let π be a Σ-protocol for a relation R with challenge
length t. Then π is a proof of knowledge with knowledge error 2−t.

Proof. Completeness (or non-triviality) is clear by definition. We know
prove the validity property; i.e., the existence of an extractor K as described
above. Let H be the 0/1-matrix with a row for each possible set of random
choices ρ by P ∗, and one column for each possible challenge value e. An
entry Hρ,e equals 1 if V accepts with this random choice and challenge, and 0
otherwise. Using P ∗ as a black box while setting its internal random coins to
be random and choosing a random challenge, we can probe a random entry in
H. Furthermore, by rewinding P ∗ and reusing the same internal random coins
as before, we can probe a random entry in the same row. In this light, our
goal is to find two 1s in the same row. Using special soundness the resulting

6.3 Proofs of Knowledge 155

two transcripts provide us with sufficient information to efficiently compute
a witness w for x.

Let P ∗ be a prover that convinces V upon input x with probability ϵ(x),
and assume that ϵ(x) > 2−t. This implies that ϵ := ϵ(x) equals the fraction of
1-entries in H. However, it is important to note that this gives no guarantees
about the distribution of 1s in a given row. For instance, there may be some
rows with many 1s and others with few 1s (a row with a single 1 cannot be
used to find w because it does not give two accepting transcripts). Despite
the above, we can make the following observation about the distribution of
1s in H. Define a row to be heavy if it contains a fraction of at least ϵ/2 ones
(there are 2t entries in a row, and so this means that there are ϵ · 2t−1 1s
in a heavy row). By a simple counting argument, it holds that more than
half of the 1s are located in heavy rows. In order to see this, let H ′ be the
sub-matrix of H consisting of all rows that are not heavy, and denote by h′

the total number of entries in H ′, and by h the total number of entries in H.
By the assumption, the number of 1s in H is h · ϵ, and the number of 1s in
H ′ is smaller than h′ · ϵ/2. This implies that the number of 1s in heavy rows
is greater than

h · ϵ− h′ · ϵ
2
≥ h · ϵ− h · ϵ

2
=

h · ϵ
2

,

demonstrating that half of the 1s are indeed in heavy rows.
We first show how the extractor works under the assumption that

ϵ ≥ 2−t+2,

so that a heavy row contains at least two 1s (recall that a heavy row has at
least ϵ/2 1s, and so if ϵ is at least 2−t+2, there are at least 2−t+2/2 · 2t = 2 1s
in each such row). In this case, we will show that we can find two 1s in the
same row in expected time O(1/ϵ). This will be more than sufficient since
1/ϵ is less than required by the definition, namely 1/(ϵ− 2−t).

Our approach will be to first repeatedly probe H at random, until we find
a 1 entry, a “first hit”. This happens after an expected number of 1/ϵ tries,
because the fraction of 1s in H is exactly ϵ. By the observation above, with
probability greater than 1/2, the first hit lies in a heavy row. Now, if it does
(but note that we cannot check if it does), and if we continue probing at
random along this row, the probability of finding another 1 in one attempt
equals

ϵ/2 · 2t − 1

2t

because there are ϵ
2 · 2

t 1s in this row (by the assumption that it is heavy)
and we need to find a different 1. This implies that the expected number T
of tries to find the second hit satisfies

T =
2t

ϵ/2 · 2t − 1
=

2t

ϵ/2 · (2t − 2/ϵ)
=

2

ϵ
· 2t

2t − 2/ϵ
≤ 2

ϵ
· 2t

2t − 2t−1
=

4

ϵ

156 6 Sigma Protocols and Efficient Zero-Knowledge

tries, where the inequality follows from the assumption that ϵ ≥ 2−t+2 above.
We therefore conclude that if the extractor’s first hit was in a heavy row,

then it finds two different accepting transcripts, as required for obtaining the
witness, within an expected O(1/ϵ) tries. However, it may not be the case
that the extractor’s first hit was in a heavy row, and in such a case, we may
spend too much time finding another 1 (if it exists at all). To remedy this, we
include an “emergency break”, resulting in the following algorithm (which is
still not the final extractor, as we will see below):

1. As above, probe random entries in H until the first 1 is found (the first
hit). The row in which this is found is called the current row.

2. Next, start the following two processes in parallel, and stop when either
one stops:

• Process Pr1: Probe random entries in the current row, until another
1 entry is found (the second hit).

• Process Pr2: Repeatedly flip a coin that comes out heads with prob-
ability ϵ/d, for some constant d (we show how to choose d below) until
you get heads. This can be achieved by probing a random entry in H
and choosing a random number out of 1, 2, ..., d. Then, output heads if
both the entry in H is a 1 and the number chosen is 1.

We now analyze the expected running time of the above algorithm and its
probability of success. Regarding the running time, observe that whenever
one of the processes stops the entire algorithm halts. Thus, it suffices to
analyze the expected running time of Pr2 and this provides an upper bound
on the expected running time of the entire algorithm. Now, since Pr2 halts
when the first heads appears, we have that its expected running time is d/e,
which for a constant d equals O(1/ϵ) as required. We now show that for an
appropriate choice of the constant d, the algorithm succeeds in extracting
a witness with probability at least 1/8. Observe that the algorithm only
succeeds in extracting a witness if Pr1 finishes first. Therefore, we have to
choose d so that Pr1 has enough time to finish before Pr2, if indeed the first
hit is in a heavy row.

The probability that Pr2 finishes after exactly k attempts is ϵ/d · (1 −
ϵ/d)k−1. Using the crude estimate (1− ϵ/d)k−1 ≤ 1, we have that the proba-
bility that Pr2 finishes within k attempts is less than or equal to kϵ/d. Thus,
by setting k = 8/ϵ and d = 16 we have that the probability that Pr2 finishes
within 8/ϵ attempts is less than or equal to

kϵ

d
=

8
ϵ · ϵ
16

=
1

2
.

We conclude that setting d = 16, it holds that Pr2 finishes after more than
8/ϵ tries with probability at least 1/2.

We are now ready to show that the algorithm succeeds in extracting a
witness with probability at least 1/8. In order to see this, first recall that

6.3 Proofs of Knowledge 157

if the first hit is in a heavy row, then the expected number of steps of Pr1
is at most T = ϵ/4 and so by Markov’s inequality, the probability that Pr1
takes 2T ≤ 8/ϵ or more steps is upper-bounded by 1/2. Stated differently, if
the first hit is in a heavy row then with probability at least 1/2 process Pr1
concludes in less than 8/ϵ steps. Since the random variables determining the
stopping condition of Pr1 and Pr2 are independent, we have that if the first
hit is in a heavy row then Pr1 finishes before Pr2 with probability at least
1/2·1/2 = 1/4. Next, recall that the first hit is in a heavy row with probability
at least 1/2. We have that the probability that the algorithm succeeds equals
at least the probability that the first hit is a heavy row times the probability
that Pr1 finishes before Pr2, conditioned on the first hit being a heavy row.
Thus, the algorithm succeeds with probability 1/2 · 1/4 = 1/8, as required.

We now describe the actual knowledge extractor (however, still only for the
case where ϵ ≥ 2−t+2). The knowledge extractor K works by repeating the
above algorithm until it succeeds. Since the expected number of repetitions
is constant (at most eight), we have that K succeeds in finding a witness in
an expected number of steps that is bound by O(1/ϵ), as desired.

It still remains to consider the case where 2−t < ϵ < 2−t+2; recall that
above we assumed that ϵ ≥ 2−t+2 but the extractor K must work whenever
ϵ ≥ 2−t. We treat this case by a separate algorithm, using the fact that
when ϵ is so small, we actually have enough time to probe an entire row. The
knowledge extractor K runs this algorithm in parallel with the above one.

Define δ to be such that ϵ = (1 + δ)2−t. Note that for the values of ϵ that
we consider here it holds that 0 < δ < 3. Let R be the number of rows in
H. Then we have that the number of 1s in H is at least (1 + δ) · R, where
the total number of entries in H equals R · 2t. Since there are only R rows,
it follows that at most R−1 of the (1 + δ)R ones can be alone in a row, and
thus at least δR of them must be in rows with at least two 1s. We call such
a row semi-heavy. The algorithm here works as follows:

1. Probe random entries until a 1 is found; call this row the current row.
2. Search the entire current row for another 1 entry. If no such entry is found,

then go back to Step 1.

It is clear that the algorithm successfully finds a witness. However, the ques-
tion is whether it does so in time O(1/ϵ− 2−t). In order to analyze this, note
that the fraction of 1s in semi-heavy rows is δ/(1 + δ) among all 1s (because
the fraction of 1s overall is (1+ δ) and a δ fraction of these are in semi-heavy
rows). In addition, the fraction of 1s in semi-heavy rows is at least δ/2t among
all entries.

Now, the expected number of probes to find a 1 is

1

ϵ
=

2t

(1 + δ)
. (6.1)

Furthermore, by the fact that the fraction of 1s in semi-heavy rows among
all entries is δ/2t, the expected number of probes to find a 1 in a semi-

158 6 Sigma Protocols and Efficient Zero-Knowledge

heavy row is 2t/δ. We therefore expect to find a 1 in a semi-heavy row after
finding (1+ δ)/δ 1s. This implies that the expected number of times that the
algorithm carries out Steps 1 and 2 equals (1+ δ)/δ. In each such repetition,
the expected number of probes in Step 1 equals 2t/(1 + δ); see (6.1). Then,
once a 1 is found, the number of probes in Step 2 is exactly 2t. We therefore
have that the expected cost is

1 + δ

δ
·
(

2t

1 + δ
+ 2t

)
= 2t ·

(
1

δ
+

1 + δ

δ

)
= 2t · 2 + δ

δ
< 5 · 2

t

δ
.

However,
1

ϵ− 2−t
=

1

(1 + δ)2−t − 2−t
=

2t

δ
,

proving that the algorithm runs in time O(1/(ϵ − 2−t)), as required. This
completes the proof that any Σ-protocol with challenge length t is a proof of
knowledge with knowledge error 2−t.

6.4 Proving Compound Statements

In this section, we show how basic Σ-protocols can be used to prove com-
pound statements. This is a very useful tool in cryptographic protocols and is
a good demonstration of the usefulness of Σ-protocols. It is easy to prove the
AND of two statements: simply have the prover prove both in parallel with
the verify sending a single challenge e for both proofs. It is easy to see that
the result is a Σ-protocol for a compound relation comprised of the AND of
two statements. We leave the proof of this as an exercise.

In contrast, proving the OR of two statements is more involved. Specifi-
cally, the problem we wish to solve is as follows. A prover and verifier P and
V hold a pair (x0, x1) for their common input. The prover P wishes to prove
to V that it knows a witness w such that either (x0, w) ∈ R or (x1, w) ∈ R,
without revealing which is the case. We use this methodology in Section 7.5 in
an oblivious transfer protocol where one party has to prove to another that
one of two tuples is a Diffie-Hellman tuple, without revealing which. We re-
mark that similar ideas can be used to extend the construction below to prove
that k out of n statements are true, again without revealing which; see [19].
In addition, the construction below remains unchanged when the statements
are for different relations R0 and R1 and the goal is for P to prove that it
knows a witness w such that either (x0, w) ∈ R0 or (x1, w) ∈ R1. We present
the case of a single relation for the sake of clarity.

Assume that we are given a Σ-protocol π for a relation R. Assume also
that the pair (x0, x1) is common input to P and V , and that w is the private
input of P , where either (x0, w) ∈ R or (x1, w) ∈ R. Let b be such that
(xb, w) ∈ R. Roughly speaking, the idea is to have the prover complete two

6.4 Proving Compound Statements 159

instances of π, one with input x0 and the other with input x1. Of course, the
problem is that the prover can only do this for xb, because it only knows a
witness for this statement (indeed, the other statement x1−b may not even
be in the language LR). Thus, the prover “fakes” the other statement by
running the simulator M . This does not seem to solve the problem because
in order to simulate, M needs to be able to determine e1−b by itself, or at
least to know e1−b before generating a1−b. Thus, the verifier V will know in
which execution its challenge is used, and in which execution the prover set
the challenge. This problem is overcome in the following fascinating way. The
prover runs M to obtain (a1−b, e1−b, z1−b). The prover P then sends V the
first message a1−b from the simulated transcript along with the first message
ab of the real execution. After receiving a challenge s from V , the prover P
sets the challenge for the real execution to be eb = s ⊕ e1−b and completes
both executions using challenges e0 and e1, respectively. (Observe that this
means that P sends z1−b from the simulated transcript in the simulated
execution, as required.) Now, soundness still holds because a1−b binds P to
the challenge e1−b (by the special soundness of π, if P does not know w
such that (x1−b, w) ∈ R then it cannot complete the proof with any e′1−b ̸=
e1−b). Thus, the first message a1−b together with the challenge s from the
verifier actually defines a unique and random challenge eb = s ⊕ e1−b for
the prover in the real execution. Thus, the prover must know w such that
(xb, w) ∈ R in order to complete this execution. Interestingly, the verifier
cannot distinguish which of the executions is real and which is simulated,
because the transcript generated by M looks the same as a real one, and
because s ⊕ e1−b is distributed identically to s ⊕ eb. We therefore have that
P can only complete the proof if it has a witness to one of the statements,
and yet V cannot know which witness P has. Protocol 6.4.1 contains the full
details of the OR protocol.

PROTOCOL 6.4.1 (OR Protocol for Relation R Based on π)

• Common input: The prover P and verifier V both have a pair (x0, x1).
• Private input: P has a value w and a bit b such that (xb, w) ∈ R.
• The protocol:

1. P computes the first message ab in π, using (xb, w) as input.
P chooses e1−b at random and runs the simulator M on input (x1−b, e1−b);
let (a1−b, e1−b, z1−b) be the output of M .
P sends (a0, a1) to V .

2. V chooses a random t-bit string s and sends it to P .
3. P sets eb = s⊕ e1−b and computes the answer zb in π to challenge eb using

(xb, ab, eb, w) as input. P sends (e0, z0, e1, z1) to V .
4. V checks that e0 ⊕ e1 = s and that both transcripts (a0, e0, z0) and

(a1, e1, z1) are accepting in π, on inputs x0 and x1, respectively.

160 6 Sigma Protocols and Efficient Zero-Knowledge

Let ROR = {((x0, x1), w) | (x0, w) ∈ R or (x1, w) ∈ R}. Then we have:

Theorem 6.4.2 Protocol 6.4.1 is a Σ-protocol for the relation ROR. More-
over, for any verifier V ∗, the probability distribution over transcripts between
P and V ∗, where w is such that (xb, w) ∈ R, is independent of b.

Proof. It is clear that the protocol is of the right form. To verify special
soundness, let there be two accepting transcripts (a0, a1, s, e0, e1, z0, z1) and
(a0, a1, s

′, e′0, e
′
1, z
′
0, z
′
1) where s ̸= s′. Since the transcripts are accepting it

holds that e0 ⊕ e1 = s and e′0 ⊕ e′1 = s′. Since s ̸= s′ this implies that for
some c ∈ {0, 1} it must hold that ec ̸= e′c. By the special soundness of π
this implies that from (ac, ec, zc) and (ac, e

′
c, z
′
c) it is possible to efficiently

compute w such that (xc, w) ∈ R, implying in turn that ((x0, x1), w) ∈ ROR.
Special honest verifier zero-knowledge is immediate: given s, choose e0 and

e1 at random subject to s = e0⊕e1 and run M twice, once with input (x0, e0)
and once with input (x1, e1).

It remains to prove that the probability distribution over transcripts is
independent of b. Let V ∗ be an arbitrary verifier. Then, observe that the
distribution over transcripts between P and V ∗ can be specified as follows. A
transcript is of the form (a0, a1, s, e0, e1, z0, z1), where a0, a1 are distributed
as an honest prover in π would choose them (this is immediate for ab and
holds for a1−b by the perfect honest verifier zero-knowledge of π). Then s has
whatever distribution V ∗ outputs, given (x0, x1, a0, a1), and e0, e1 are random
subject to s = e0⊕e1. Finally, z0 and z1 both have whatever distribution the
honest prover in π outputs upon the respective transcript prefixes (x0, a0, e0)
and (x1, a1, e1). As above, this is immediate for zb and holds for z1−b by the
perfect honest verifier zero-knowledge of π. We therefore conclude that the
distribution is independent of b.

By the last claim in this theorem, Protocol 6.4.1 is what is known as
witness indistinguishable [27]. There are several different values of w that a
prover may know that would enable it to complete the protocol successfully.
However, there is no way that a verifier (even a malicious one) can know
which of the possible witnesses the prover knows. This is a first sign that it
is possible to obtain security properties that hold for arbitrary verifiers, even
when starting from a protocol that is only honest verifier zero knowledge.

6.5 Zero-Knowledge from Σ-Protocols

In this section, we show how to construct efficient zero-knowledge protocols
from any Σ-protocol. We remark that this can be done in a number of ways.
We will first present a construction using any perfectly-hiding commitment
scheme. This construction achieves zero knowledge, but is not a proof of
knowledge. We will then show what needs to be modified so that the result
is a zero-knowledge proof of knowledge.

6.5 Zero-Knowledge from Σ-Protocols 161

6.5.1 The Basic Zero-Knowledge Construction

In order to motivate the construction, observe that the reason why a Σ-
protocol is not zero-knowledge for arbitrary verifiers is that a simulator can-
not predict the challenge e with probability greater than 2−t. Thus, a verifier
that outputs a different essentially random challenge for every first message
a (say, by applying a pseudorandom function to a) cannot be simulated. This
problem can be solved by simply having the verifier commit to its challenge
e before the execution begins. This is the methodology used by [34] for the
case of computational zero-knowledge. However, the simulation strategy and
its analysis is far more simple here because the underlying Σ-protocol has
a perfect zero-knowledge property (albeit for honest verifiers). Let com be
a perfectly-hiding commitment protocol for committing to binary strings of
length t. See Protocol 6.5.1 for the details of the construction.

PROTOCOL 6.5.1 (Zero-Knowledge Proof for LR Based on π)

• Common input: The prover P and verifier V both have x.
• Private input: P has a value w such that (x,w) ∈ R.

• The protocol:

1. V chooses a random t-bit string e and interacts with P via the commitment
protocol com in order to commit to e.

2. P computes the first message a in π, using (x,w) as input, and sends it to V .

3. V decommits to e to P .
4. P verifies the decommitment and aborts if it is not valid. Otherwise, it

computes the answer z to challenge e according to the instructions in π, and
sends z to V .

5. V accepts if and only if transcript (a, e, z) is accepting in π on input x.

Theorem 6.5.2 If com is a perfectly-hiding commitment protocol and π is
a Σ-protocol for relation R, then Protocol 6.5.1 is a zero-knowledge proof for
LR with soundness error 2−t.

Proof. Completeness is immediate. Soundness follows from Proposition 6.2.3
and the hiding property of the commitment scheme. Specifically, by the per-
fect hiding property of the commitment protocol, a cheating prover knows
nothing of e before it sends a. Thus, there is only a single challenge that it
can answer, and the probability that it equals e is at most 2−t.

In order to prove zero knowledge, we construct a black-box simulator S,
as follows:

1. S invokes the polynomial-time verifier V ∗ upon input x and interacts with
it in the commitment protocol.

2. S runs the Σ-protocol honest verifier simulator M on a random ẽ in order
to obtain a first message a′, and hands it to V ∗.

162 6 Sigma Protocols and Efficient Zero-Knowledge

3. S receives back V ∗’s decommitment. If it is invalid, S outputs what V ∗

upon receiving (x, a,⊥) and halts. Otherwise, let e be the decommitted
value. Then, S continues as follows:

a. S invokes the simulator M upon input e and obtains back (a, z).
b. S hands a to V ∗ and receives back its decommitment. If the decom-

mitment is to e, then S outputs whatever V ∗ outputs upon receiving
(a, e, z) and halts. If the decommitment is to some e′ ̸= e then S out-
puts fail. If the decommitment is not valid, S returns to the previous
step (and repeats with independent randomness).

We first observe that the computational binding of the commitment scheme
ensures that the probability that S outputs fail is at most negligible. The
reduction for this is identical to that in [34] and is omitted (one just needs to
use SV ∗

to break the computational binding, while truncating the simulation
to run in strict polynomial time). Next, we claim that the distribution over the
output of S given that it does not output fail is identical to the distribution
over real transcripts. This follows from the perfect zero-knowledge property
of M . Formally, let SV ∗

(x) denote the output of the simulator upon input x,
and let ⟨P, V ∗⟩(x) denote the output of V ∗ after a real execution. Then, for
any distinguisher D, we have∣∣∣Pr[D(SV

∗
(x)) = 1]− Pr[D(⟨P, V ∗⟩(x)) = 1]

∣∣∣
=

∣∣∣Pr[D(SV
∗
(x)) = 1 ∧ SV

∗
(x) ̸= fail]− Pr[D(⟨P, V ∗⟩(x)) = 1]

+ Pr[D(SV
∗
(x)) = 1 ∧ SV

∗
(x) = fail]

∣∣∣
≤

∣∣∣Pr[D(SV
∗
(x)) = 1 ∧ SV

∗
(x) ̸= fail]− Pr[D(⟨P, V ∗⟩(x)) = 1]

∣∣∣
+ Pr[SV

∗
(x) = fail].

Now, ∣∣∣Pr[D(SV
∗
(x)) = 1 ∧ SV

∗
(x) ̸= fail]− Pr[D(⟨P, V ∗⟩(x)) = 1]

∣∣∣
=

∣∣∣Pr[D(SV
∗
(x)) = 1 | SV

∗
(x) ̸= fail] · Pr[SV

∗
(x) ̸= fail]

−Pr[D(⟨P, V ∗⟩(x)) = 1]|

=
∣∣∣Pr[D(SV

∗
(x)) = 1 | SV

∗
(x) ̸= fail] ·

(
1− Pr[SV

∗
(x) = fail]

)
−Pr[D(⟨P, V ∗⟩(x)) = 1]

∣∣∣
≤

∣∣∣Pr[D(SV
∗
(x)) = 1 | SV

∗
(x) ̸= fail]− Pr[D(⟨P, V ∗⟩(x)) = 1]

∣∣∣
+ Pr[D(SV

∗
(x)) = 1 | SV

∗
(x) ̸= fail] · Pr[SV

∗
(x) = fail].

6.5 Zero-Knowledge from Σ-Protocols 163

Combining the above with the fact that Pr[SV ∗
(x) = fail] is negligible, we

have that there exists a negligible function µ such that∣∣∣Pr[D(SV
∗
(x)) = 1]− Pr[D(⟨P, V ∗⟩(x)) = 1]

∣∣∣
≤

∣∣∣Pr[D(SV
∗
(x)) = 1 | SV

∗
(x) ̸= fail]− Pr[D(⟨P, V ∗⟩(x)) = 1]

∣∣∣+ µ(|x|).

We are now ready to apply the above intuition that the output of S con-
ditioned on it not outputting fail is identical to a real execution transcript.
That is, we claim that

Pr[D(SV
∗
(x)) = 1 | SV

∗
(x) ̸= fail] = Pr[D(⟨P, V ∗⟩(x)) = 1].

In order to see this, note that if the execution terminates with the tran-
script (x, a,⊥), then the distributions are identical to the distribution of a
as generated by M . Otherwise, in the first pass S receives a decommitment
to e and repeats, generating an independent sample of (a, e, z) from M until
this same event repeats. Furthermore, the probability that V ∗ aborts in a
real execution is identical to the probability that it aborts in the simulation.
Combining the above together, we have that the distributions are identical.
We conclude that∣∣∣Pr[D(SV

∗
(x)) = 1]− Pr[D(⟨P, V ∗⟩(x)) = 1]

∣∣∣ ≤ µ(|x|).

It remains to show that S runs in expected polynomial time. Let p be the
probability that V ∗ sends a valid decommitment (to any value) upon receiving
a from S. The key observation is that since M is a perfect zero-knowledge
simulator, it follows that the distribution over a when M is invoked upon x
and a random ẽ is identical to the distribution over a whenM is invoked upon
x and the value e that was revealed in the first pass. This implies that V ∗

sends a valid decommitment in the rewinding phase with probability exactly
p. We stress that S halts as soon as V ∗ sends a valid decommitment in this
stage, irrespective of whether it is to the same e or some e′ ̸= e. Thus, the
expected running time of S is

poly(|x|) ·
(
(1− p) + p · 1

p

)
= poly(|x|),

completing the proof.

Efficient perfectly-hiding commitments. The complexity of Proto-
col 6.5.1 depends on the cost of running a perfectly-hiding commitment proto-
col. In order to appreciate the additional cost involved, we describe the highly
efficient Pedersen’s commitment scheme that is secure under the discrete log
assumption; see Protocol 6.5.3.

In order to see that the above commitment scheme is perfectly hiding,
observe that c = gr · αx = gr+ax. Now, for every x′ ∈ Zq there exists a value

164 6 Sigma Protocols and Efficient Zero-Knowledge

PROTOCOL 6.5.3 (The Pedersen Commitment Protocol)

• Input: The committer C and receiver R both hold 1n, and the committer C

has a value x ∈ {0, 1}n interpreted as an integer between 0 and 2n.

• The commit phase:

1. The receiver R chooses (G, q, g) where G is a group of order q with generator

g and q > 2n. R then chooses a random a← Zq , computes α = ga and sends
(G, q, g, α) to C.

2. The committer C verifies that G is a group of order q, that g is a generator
and that α ∈ G. Then, it chooses a random r ← Zq , computes c = gr · αx

and sends c to R.

• The decommit phase:

The committer C sends (r, x) to R, which verifies that c = gr · αx.

r′ such that r′+ax′ = r+ax mod q; specifically, take r′ = r+ax−ax′. Thus,
since r is chosen randomly, the distribution over commitments to x is identical
to the distribution over commitments to x′. In order to prove computational
binding, observe that given two decommitments (x, r), (x′, r) to x, x′ ∈ Zq

where x ̸= x′, it is possible to compute the discrete log of α, exactly as in
Schnorr’s protocol. Specifically, by the assumption that both decommitments
are valid, it holds that gxαr = gx

′
αr′ and so α = g(x

′−x)/(r−r′) mod q. This
similarity to Schnorr’s protocol is not coincidental, and indeed it is possible to
construct efficient commitments from any Σ-protocol; see Section 6.6 below.

Overall efficiency. The overall cost of Protocol 6.5.1 is exactly that of a
single invocation of the underlying Σ-protocol, together with a single invoca-
tion of the commit and decommit phase of the perfectly-hiding commitment
protocol. Using Pedersen’s commitment, for example, we have that the overall
cost of achieving zero-knowledge is just five exponentiations in G, in addi-
tion to the cost of the Σ-protocol. (We remark that the parameters (G, q, g)
can be reused many times, or can even be fixed and verified just once. We
therefore ignore the cost of choosing and verifying the parameters.)

In addition to the above computational cost, there are an additional two
rounds of communication (making an overall of five), and the additional com-
munication of two group elements and two values in Zq. (As above, we ignore
the cost of the parameters because they are typically fixed.)

6.5.2 Zero-Knowledge Proofs of Knowledge

As we have seen, any Σ-protocol is a proof of knowledge. Unfortunately,
however, the zero-knowledge protocol of Section 6.5.1 appears to not be a
proof of knowledge. The reason for this is that an extractor cannot send the
prover two different queries e ̸= e′ for the same a, because it is committed

6.5 Zero-Knowledge from Σ-Protocols 165

to e before the prover P ∗ sends a. Thus, the entire approach of Section 6.3
fails. This can be solved by using a perfectly-hiding trapdoor commitment
scheme instead. Such a commitment scheme has the property that there exists
a trapdoor that, when known, enables the committer to generate special
commitment values that are distributed exactly like regular commitments,
but can be opened to any value in the decommitment phase. Then, in the
last step of the protocol, after the verifier has already decommitted to e
and so is no longer relevant, the prover can send the trapdoor. Although
meaningless in a real proof, this solves the problem described above because
the knowledge extractor can obtain the trapdoor and then rewind P ∗ in order
to provide it with different values of e for the same a, as needed to extract.

Let com be a perfectly-hiding trapdoor commitment protocol; and de-
note the trapdoor by trap. We assume that the receiver in the commitment
protocol obtains the trapdoor, and that the committer can efficiently verify
that the trapdoor is valid if it receives it later. We do not provide a formal
definition of this, and later show that Pedersen’s commitment described in
Protocol 6.5.3 has this additional property. See Protocol 6.5.4 for the details
of the construction.

PROTOCOL 6.5.4 (ZK Proof of Knowledge for R Based on π)

• Common input: The prover P and verifier V both have x.
• Private input: P has a value w such that (x,w) ∈ R.
• The protocol:

1. V chooses a random t-bit challenge e and interacts with P via the commit-
ment protocol com in order to commit to e.

2. P computes the first message a in π, using (x,w) as input, and sends it to V .
3. V reveals e to P by decommitting.

4. P verifies the decommitment and aborts if it is not valid. Otherwise, it
computes the answer z to challenge e according to the instructions in π, and
sends z and the trapdoor trap to V .

5. V accepts if and only if the trapdoor trap is valid and the transcript (a, e, z)
is accepting in π on input x.

Theorem 6.5.5 If com is a perfectly-hiding trapdoor commitment protocol
and π is a Σ-protocol for relation R, then Protocol 6.5.4 is a zero-knowledge
proof of knowledge for R with knowledge error 2−t.

Proof. The fact that the protocol is zero knowledge follows from the proof
that Protocol 6.5.1 is zero knowledge. In particular, we define the same sim-
ulator S as in the proof of Theorem 6.5.2. The only subtlety that arises is in
the part of the analysis in which we show that S does not output fail. Recall
that if S outputs fail with non-negligible probability then it is possible to
construct a machine that uses SV ∗

(x) in order to break the computational
binding of the commitment scheme. However, when the trapdoor is known

166 6 Sigma Protocols and Efficient Zero-Knowledge

there is no guarantee whatsoever of binding and thus the machine used to
break the computational binding is not given the trapdoor. This means that
it cannot hand V ∗ the last message of the protocol that includes the trapdoor
trap. However, observe that the instructions of S are such that it only hands
the last message z to V ∗ after receiving a decommitment to e for the sec-
ond time. That is, if SV ∗

(x) outputs fail with non-negligible probability, then
this event can be reproduced without S ever handing V ∗ the last message z
and trap. Thus, the proof that S outputs fail with negligible probability goes
through.

In order to demonstrate that the protocol is a proof of knowledge, we need
to show that the knowledge extractor of the Σ-protocol π, as described in the
proof of Theorem 6.3.2, can be applied here. The main observation is that
a “hit” (or 1 in the matrix H), as described in the proof of Theorem 6.3.2,
occurs when V is convinced. By the specification of Protocol 6.5.4, whenever
this occurs, the knowledge extractor K obtains the valid trapdoor trap. Thus,
after the first hit, K can start the entire extraction process again. However,
this time it sends a “special” commitment that can be opened to any value at
a later time. This enables K to send any challenge e that it wishes, relative to
the same prover message a. In the terminology of the proof of Theorem 6.3.2,
this means that K can sample multiple entries in the same row. Finally,
observe that until the first hit occurs, K just randomly samples from the
matrix. This can be achieved by K beginning the execution from scratch
with a commitment to a new random e, and so the trapdoor is not needed
at this point. We therefore conclude that the extractor K described in the
proof of Theorem 6.3.2 can be applied here, as required.

Pedersen’s commitment is a trapdoor commitment. Observe that if
the committer in Protocol 6.5.3 knows the exponent a chosen by the receiver
to compute α, then it can decommit c to any value it wishes. In particular,
C can commit to x by sending c = gr · αx and can later decommit to any x′

by computing r′ = r+ ax− ax′. This then implies that r′+ ax′ = r+ ax and
so gr · αx = c = gr

′ · αx′
. Stated differently, (r′, x′) is a valid decommitment

to c, and so a is the desired trapdoor.2

Efficiency. When considering the concrete instantiation of Protocol 6.5.4
with Pedersen’s commitments, we have that the additional cost of making
the protocol a proof of knowledge is just a single additional exponentiation
(this exponentiation is the verification by V of the trapdoor). It therefore
follows that any Σ-protocol can be transformed into a zero-knowledge proof
of knowledge with an additional six group exponentiations only. As above, the
number of rounds of communication is five, and the additional communication
costs are three group elements and one value in Zq.

2 Observe that the trapdoor property of Pedersen’s commitment is actually stronger than
defined above. Specifically, it is possible for the committer to construct a regular commit-

ment to a value x, and then open it to whatever value it wishes even when it receives the
trapdoor after the commitment phase concludes.

6.5 Zero-Knowledge from Σ-Protocols 167

Concrete efficiency – discrete log and Diffie-Hellman. Later on this
book, we will use zero-knowledge proofs of knowledge for the discrete log
and Diffie-Hellman tuple relations. In order to enable a full and concrete
analysis of the efficiency of these protocols, we now give an exact analysis
of the cost of applying Protocol 6.5.4 to the Σ-protocols for the discrete log
(Protocol 6.1.1) and Diffie-Hellman tuples (Protocol 6.2.4).

• ZKPOK for discrete log: The complexity of Protocol 6.1.1 is just three
exponentiations, and the communication of one group element and two
elements of Zq (for simplicity we count e as an element of Zq). Thus, the
overall cost of the zero-knowledge proof of knowledge for this relation is
five rounds of communication, nine exponentiations, and the exchange of
four group elements and four elements of Zq.

• ZKPOK for DH tuples: The complexity of Protocol 6.2.4 is six exponen-
tiations, and the communication of two group elements and two elements
of Zq. Thus, the overall cost of the zero-knowledge proof of knowledge for
this relation is five rounds of communication, 12 exponentiations, and the
exchange of five group elements and four elements of Zq.

As can easily be seen here, zero-knowledge proofs of knowledge do not have
to be expensive, and Σ-protocols are a very useful tool for obtaining efficient
proofs of this type.

6.5.3 The ZKPOK Ideal Functionality

When constructing secure protocols, a very useful tool for proving security
is to use the modular composition theorem outlined in Section 2.7. However,
in order to do this for zero-knowledge, we must show that such a protocol
is secure by the ideal/real definitions of secure computation; see Section 2.3.
Let R be a relation and define the zero-knowledge functionality FR

ZK by

FR
ZK((x,w), w) = (λ,R(x,w)).

Intuitively, any zero-knowledge proof of knowledge for R securely realizes
FR

ZK because simulation takes care of the case where V is corrupted and
witness extraction takes care of the case where P is corrupted. However,
for technical reasons that will become apparent in the proof below, this is
not so simple. Although the proof of this fact is not related to Σ-protocols
specifically, it makes the task of proving the security of protocols that use
zero-knowledge proofs of knowledge much easier. Indeed, we will use this
numerous times in the coming chapters. For this reason, we prove the theorem
here (we remark that although it is folklore that this holds, we are not aware
of any full proof having appeared before). In addition, the technical problem
that arises when trying to prove this theorem occurs often in the setting

168 6 Sigma Protocols and Efficient Zero-Knowledge

of secure computation. Thus, the technique used to solve it, as introduced
by [34], is important to study.

Before proving the theorem we remark on one technical change that must
be made to the zero-knowledge proof of knowledge protocol. Specifically, in
the setting of secure computation, the prover may be invoked with input
(x,w) such that (x,w) /∈ R. In this case, the prover should just send 0 to
the verifier and do nothing else. Thus, we add an instruction to the protocol
to have the prover first verify that (x,w) ∈ R. If so, it proceeds with the
protocol, and if not it sends 0 to the verifier and halts. Observe that in order
for this to be possible, the relation R must be in NP . (We also need the
following property: for every x it is possible to efficiently find a value w such
that (x,w) /∈ R. This property holds for all “interesting” relations that we
know of. Note that if it does not hold, then a random witness is almost always
a valid one, and so running such a proof is meaningless.)

Theorem 6.5.6 Let π be a zero-knowledge proof of knowledge with negligible
knowledge error for an NP-relation R. Then, π securely computes the zero-
knowledge functionality FR

ZK in the presence of malicious adversaries.

Proof. Let A be an adversary. We separately consider the case where A
corrupts the prover P and the case whereA corrupts the verifier V . In the case
where the verifier is corrupted, the simulator S for FR

ZK receives a bit b ∈ {0, 1}
from the trusted party. If b = 0, then S hands 0 to A as if coming from P
and halts. Otherwise, if b = 1, then S runs the zero-knowledge simulator that
is guaranteed to exist for π with A as the verifier. In the case where b = 0,
the adversary A sees exactly what an honest prover would send. In the case
where b = 1, by the security properties of the zero-knowledge simulator, the
output generated by S is computationally indistinguishable from the output
of A in a real execution with P . This therefore completes this corruption
case.

We now consider the case where P is corrupted by A. Intuitively, the
simulator S works as follows:

1. S plays the honest verifier with A as the prover.

a. If A sends 0 to the verifier in this execution, then S sends the trusted
party computing FR

ZK an invalid witness w such that (x,w) /∈ R. Then,
S outputs whatever A outputs and halts.

b. If S, playing the honest verifier, is not convinced by the proof with
A, then it sends abortP to the trusted party computing FR

ZK, outputs
whatever A outputs and halts.

c. If S is convinced by the proof with A, then it records the output that
A outputs and proceeds to the next step.

2. S runs the knowledge extractor K that is guaranteed to exist for π on
the prover A, and receives back a witness w such that (x,w) ∈ R. S then
sends w to the trusted party computing FR

ZK and outputs the output of A
recorded above.

6.5 Zero-Knowledge from Σ-Protocols 169

The intuition behind this simulation is clear. In the case where A would not
convince the verifier in a real execution, the same behavior (output of the
value 0 or abortP) is achieved in the simulation. However, in the case where A
would convince the verifier, the simulator S has to send a valid witness w to
the trusted party computing FR

ZK. It therefore runs the knowledge extractor
K to do this. However, K runs in expected time

|x|c

ϵ(x)− κ(x)

where ϵ(x) is the probability that A would convince the verifier and κ(x) is
the (negligible) knowledge error. Now, since S only runs the extractor in the
case where A convinces it in the proof while S plays the honest verifier, we
have that S only runs the extractor with probability ϵ(x). Thus, the expected
running time of S is

ϵ(x) · |x|c

ϵ(x)− κ(x)
= |x|c · ϵ(x)

ϵ(x)− κ(x)

It may be tempting at this point to conclude that the above is polynomial
because κ(x) is negligible, and so ϵ(x)−κ(x) is almost the same as ϵ(x). This is
true for “large” values of ϵ(x). For example, if ϵ(x) > 2κ(x) then ϵ(x)−κ(x) >
ϵ(x)/2. This then implies that ϵ(x)/(ϵ(x)−κ(x)) < 2. Unfortunately, however,
this is not true in general. For example, consider the case where κ(x) = 2−|x|

and ϵ(x) = κ(x) + 2−|x|/2 = 2−|x| + 2−|x|/2. Then,

ϵ(x)

ϵ(x)− κ(x)
=

2−|x| + 2−|x|/2

2−|x|/2
= 2|x|/2 + 1,

which is exponential in |x|. In addition to the above problem, the guarantee
regarding the running time of K and its success only holds if ϵ(x) > κ(x).
Thus, if K runs for time ϵ(x)−2 whenever ϵ(x) ≤ κ(x), we once again have a
similar problem. For example, consider the case where κ(x) = ϵ(x) = 2−|x|.
Then, the expected running time of S for such an A is

(1− ϵ(x)) · poly(|x|) + ϵ(x) · 1

ϵ(x)2
>

1

ϵ(x)
= 2|x|.

This technical problem was observed and solved by [34] in the context of
zero-knowledge. We now show how to use their technique here.

Both of the problems described above are solved by ensuring that the
extractor never runs “too long”. Specifically, if S is convinced of the proof by
A, and so proceeds to the second step of the simulation, then it first estimates
the value of ϵ(x), where ϵ(x) denotes the probability that A successfully
proves that it knows a witness w such that (x,w) ∈ R. This is done by
repeating the verification until m(x) successful verifications occur for a large
enough polynomial m(·). Then, an estimate ϵ̃ of ϵ is taken to be m/T , where

170 6 Sigma Protocols and Efficient Zero-Knowledge

T is the overall number of attempts until m successful verifications occurred.
As we will see, this suffices to ensure that the probability that ϵ̃ is not within
a constant factor of ϵ(x) is at most 2−|x|. We show this using the following
bound:

Lemma 6.5.7 (Tail inequality for geometric variables [43]): Let X1, . . . , Xm

be m independent random variables with geometric distribution with proba-
bility ϵ (i.e., for every i, Pr[Xi = j] = (1− ϵ)j−1 · ϵ). Let X =

∑m
i=1 Xi and

let µ = E[X] = m/ϵ. Then, for every δ,

Pr[X ≥ (1 + δ)µ] ≤ e−
mδ2

2(1+δ) .

Proof. In order to prove this lemma, we define a new random variable Yα

for any α ∈ N as follows. Consider an infinite series of independent Bernoulli
trials with probability ϵ (i.e., the probability of any given trial being 1 is ϵ).
Then, write the results of these trials as a binary string and let Yα be the
number of 1s appearing in the prefix of length α. It is clear that

µα = E[Yα] = α · ϵ.

Furthermore,
Pr[X ≥ (1 + δ)µ] = Pr[Yα < m]

for α = (1+δ)µ. In order to see why this holds, observe that one can describe
the random variable X =

∑m
i=1 Xi by writing an infinite series of Bernoulli

trials with probability ϵ (as above), and then taking X to be the index of
the mth 1 to appear in the string. Looking at it in this way, we have that
X is greater than or equal to (1 + δ)µ if and only if Y(1+δ)µ < m (because
if Y(1+δ)µ < m then this means that m successful trials have not yet been
obtained). Observe now that µα = α · ϵ, α = (1 + δ)µ, and µ = m/ϵ. Thus,
µα = (1 + δ) ·m. This implies that(

1− δ
1+δ

)
· µα =

(
1− δ

1+δ

)
· (1 + δ) ·m = (1 + δ) ·m− δ ·m = m ,

and so
Pr[Yα < m] = Pr

[
Yα <

(
1− δ

1+δ

)
· µα

]
.

Applying the Chernoff bound3, we have that

Pr
[
Yα < m

]
= Pr

[
Yα <

(
1− δ

1+δ

)
µα

]
< e
−µα

2 ·
(

δ
1+δ

)2

.

Once again using the fact that µα = (1 + δ) ·m we conclude that

3 We use the following version of the Chernoff bound. Let X1, . . . , Xm be independent
Bernoulli trials where Pr[Xi = 1] = ϵ for every i, and let X =

∑m
i=1 Xi and µ = E[X] =

mϵ. Then, for every δ it holds that Pr[X < (1− β)µ] < e−
µ
2
·β2

.

6.5 Zero-Knowledge from Σ-Protocols 171

Pr[X ≥ (1 + δ)µ] = Pr
[
Yα < m

]
< e
− (1+δ)m

2 ·
(

δ
1+δ

)2

= e−
mδ2

2(1+δ)

as required.

Define Xi to be the random variable that equals the number of attempts
needed to obtain the ith successful verification (not including the attempts
up until the (i− 1)th verification), and let δ = ±1/2. Clearly, each Xi has a
geometric distribution with probability ϵ. It therefore follows that

Pr

[
X ≤ m

2ϵ
∨X ≥ 3m

2ϵ

]
≤ 2 · Pr

[
X ≥ 3

2
· m
ϵ

]
≤ 2 · e−m

12 .

Stated in words, the probability that the estimate ϵ̃ = m/X is not between
2ϵ/3 and 2ϵ is at most 2e−m/12. Thus, if m(x) = 12|x| it follows that the
probability that ϵ̃ is not within the above bounds is at most 2−|x|, as required.

Next, S repeats the following up to |x| times: S runs the extractor K and
answers all of K’s oracle queries with the A as the prover. However, S limits
the number of steps taken byK to |x|c+1/ϵ̃ steps, where c is the constant from
the knowledge soundness (or validity) condition in the definition of proofs of
knowledge (every extractor K has a single constant c associated with it and
so S can use the appropriate c). Note that a “call” to A as the prover is
counted by S as a single step. Now, if within this time K outputs a witness
w, then S sends w to the trusted party computing FR

ZK and outputs the
output of A that it first recorded. (We note that S does not need to check
if w is a valid witness because by the definition of K, it only outputs valid
witnesses.) If K does not output a witness within this time, then S aborts
this attempt and tries again. As mentioned above, this is repeated up to |x|
times; we stress that in each attempt, K is given independent coins by S. If
the extractor K did not output a witness in any of the |x| attempts, then
S halts and outputs fail. We will show that this strategy ensures that the
probability that S outputs fail is negligible. Therefore, the probability that
the initial verification of the proof succeeded, yet S does not output a valid
witness, is negligible.

In addition to the above, S keeps a count of the overall running time of
K and if it reaches 2|x| steps, it halts, outputting fail. (This additional time-
out is needed to ensure that S does not run too long in the case where the
estimate ϵ̃ is not within a constant factor of ϵ(x). Recall that this “bad event”
can only happen with probability 2−|x|.)

We first claim that S runs in expected polynomial time.

Claim 6.5.8 Simulator S runs in expected time that is polynomial in |x|.

Proof. Recall that S initially verifies the proof provided by A. Since S
merely plays an honest verifier, this takes a strict polynomial number of
steps. Next, S obtains an estimate ϵ̃ of ϵ(x). This involves repeating the veri-
fication until m(|x|) successes are obtained. Therefore, the expected number

172 6 Sigma Protocols and Efficient Zero-Knowledge

of repetitions in order to obtain ϵ̃ equals exactly m(|x|)/ϵ(x) (since the ex-
pected number of trials for a single success is 1/ϵ(x)). After the estimation ϵ̃
has been obtained, S runs the extractor K for a maximum of |x| times, each
time for at most |x|c+1/ϵ̃ steps.

Given the above, we are ready to compute the expected running time of
S. In order to do this, we differentiate between two cases. In the first case, we
consider what happens if ϵ̃ is not within a constant factor of ϵ(x). The only
thing we can say about S’s running time in this case is that it is bound by 2|x|

(since this is an overall bound on its running time). However, since this event
happens with probability at most 2−|x|, this case adds only a polynomial
number of steps to the overall expected running time. We now consider the
second case, where ϵ̃ is within a constant factor of ϵ(x). In this case, we can
bound the expected running time of S by

poly(|x|) · ϵ(x) ·
(
m(|x|)
ϵ(x)

+
|x| · |x|c+1

ϵ̃

)
= poly(|x|) · ϵ(x)

ϵ̃
= poly(|x|)

and this concludes the analysis.

It is clear that the output of S is distributed exactly like the output of A
in a real execution. This is because S just plays the honest verifier with A
as the prover, and so the view of A in this simulation is identical to a real
execution. Thus, the only problem that arises is if S accepts A’s proof, but
fails to obtain a valid witness. Notice that whenever A’s proof is accepting,
S runs the extractor K and either obtains a proper witness w or outputs
fail. That is, in the case of accepting proofs, if S does not output fail, then it
outputs a proper witness. Therefore, it suffices to show that the probability
that S outputs fail is negligible.

Claim 6.5.9 The probability that S outputs fail is negligible in |x|.

Proof. Notice that the probability that S outputs fail is less than or equal
to the probability that the extractor K does not succeed in outputting a
witness w in any of the |x| extraction attempts plus the probability that K
runs for 2|x| steps.

We first claim that the probability that K runs for 2|x| steps is negligible.
We have already shown in Claim 6.5.8 that S (and thus K) runs in expected
polynomial time. Therefore, the probability that an execution will deviate so
far from its expectation and run for 2|x| steps is negligible. (It is enough to
use Markov’s inequality to establish this fact.)

We now continue by considering the probability that in all |x| extraction
attempts, the extractor K does not output a witness within |x|c+1/ϵ̃ steps.
Consider the following two possible cases (recall that ϵ(x) equals the prob-
ability that A succeeds in proving the proof, and that κ is the negligible
knowledge error function of the proof system):

1. Case 1: ϵ(x) ≤ 2κ(x): In this case, A succeeds in proving the proof with
only negligible probability. This means that the probability that S even

6.6 Efficient Commitment Schemes from Σ-Protocols 173

reaches the stage that it runs K is negligible (and thus S outputs fail with
negligible probability only).

2. Case 2: ϵ(x) > 2κ(x): Recall that by the definition of proofs of knowledge,
the constant c is such that the expected number of steps taken by K to
output a witness is at most |x|c/(ϵ(x)−κ(x)). Now, since in this case ϵ(x) >
2κ(x), it holds that the expected number of steps required byK is less than
2|x|c/ϵ(x). Assuming that ϵ̃ is within a constant factor of ϵ(x), we have
that the expected number of steps is bound by O(|x|c/ϵ̃). Therefore, by
Markov’s inequality, the probability thatK runs longer than |x|c+1/ϵ̃ steps
in any given extraction attempt is at most O(1/|x|). It follows that the
probability that K runs longer than this time in |x| independent attempts
is negligible in |x| (specifically, it is bound by O(1/|x|)|x|). This covers the
case where ϵ̃ is within a constant factor of ϵ(x). However, the probability
that ϵ̃ is not within a constant factor of ϵ(x) is also negligible. Putting this
together, we have that S outputs fail with negligible probability only.

Combining the above two claims, together with the fact that the simulation
by S is perfect when it does not output fail, we conclude that S is a valid
simulator for the case where P is corrupted. Thus, π securely computes the
FR

ZK functionality.

6.6 Efficient Commitment Schemes from Σ-Protocols

In our constructions of zero-knowledge proofs and zero-knowledge proofs of
knowledge in Sections 6.5.1 and 6.5.2, we relied on the existence of perfectly-
hiding commitments and perfectly-hiding trapdoor commitments. In this sec-
tion, we present a general construction of (trapdoor) commitment schemes
from Σ-protocols. The advantage of the construction here is that it does not
rely on any specific hardness assumption.

Hard relations. We typically use zero-knowledge for relations R with the
property that given x it is “hard” to find a witness w such that (x,w) ∈ R.
Otherwise, the verifier V could just find a witness by itself and would not
need the prover. This is not entirely accurate. However, in the context of
protocols for secure computation, this seems to almost always be the case.
We formally define the notion of a hard relation in this light.

Definition 6.6.1 An NP-relation R is said to be hard if

• Efficient generation of instances: There exists a probabilistic poly-
nomial-time algorithm G, called the generator, that on input 1n outputs a
pair (x,w) ∈ R where |x| = n. Denote the first element of G’s output (i.e.,
the x portion) by G1.

174 6 Sigma Protocols and Efficient Zero-Knowledge

• Hardness of generated instances: For every probabilistic polynomial-
time algorithm A there exists a negligible function µ such that

Pr[(x,A(G1(1
n)) ∈ R] ≤ µ(n).

In words, given x as output by G, no efficient A can find a witness w such
that (x,w) ∈ R with more than negligible probability.

Consider the following example of a hard relation. Let G be a group of
order q with generator g, and let RDL = {(h, a) | h = ga}. Then, consider an
algorithm G that chooses a random a ← Zq and outputs (ga, a). Then, the
relation RDL is hard if and only if the standard discrete logarithm problem
is hard in the group G.

Commitments from hard relations. Assume that R is a hard relation
with a generator G, and let π be a Σ-protocol for R. Assume also that it is
easy to check membership in LR. That is, given x it is easy to decide if there
exists a w such that (x,w) ∈ R (of course, since R is hard, it is hard to find
such a w).

With this setup, we can build a perfectly hiding commitment scheme,
which is as efficient as π and enables commitment to many bits at once; see
Protocol 6.6.2.

PROTOCOL 6.6.2 (Commitment from Σ-Protocol)

• Input: The committer C and receiver R both hold 1n, and the committer C
has a value e ∈ {0, 1}t.

• The commit phase:

1. The receiver R runs (in private) the generator G on input 1n to obtain
(x,w) ∈ R, and sends x to C.

2. C verifies that x ∈ LR; if not, it aborts. If so, in order to commit to e ∈
{0, 1}t, the committer C runs the Σ-protocol simulator M on input (x, e)
and obtains a transcript (a, e, z). C then sends a to R.

• The decommit phase: In order to decommit, the committer C sends the
remainder of the transcript (e, z) to R, which accepts e as the decommitted
value if and only if (a, e, z) is an accepting transcript in π with respect to input

x.

Observe that the generation of (x,w) and verification that x ∈ LR need
to be run only once, and can be reused for many commitments.

Theorem 6.6.3 Protocol 6.6.2 is a perfectly-hiding commitment scheme
with computational binding.

Proof. We first prove that the protocol is perfectly hiding. In order to see
this, observe that in a real execution of the Σ-protocol π, the first message
a by the prover is independent of the challenge e. Now, since x ∈ LR, the

6.7 Summary 175

simulation by M is perfect, by the definition of a Σ-protocol. Thus, the value
a generated by M (upon input (x, e)) is independent of e. We now prove com-
putational binding. Assume that some probabilistic polynomial-time cheating
committer C∗ can output a, and then later decommit to two different val-
ues e ̸= e′, with non-negligible probability. This implies that C∗ outputs a
and two continuations (e, z), (e′, z′) such that (a, e, z) and (a, e′, z′) are both
accepting transcripts. By the special soundness property of Σ-protocols, we
know that w can be computed efficiently from these transcripts. Thus, it is
possible to construct an efficient algorithm that is given x and computes w
such that (x,w) ∈ R with non-negligible probability. This contradicts the
assumption that R is a hard relation.

Trapdoor commitments. In Section 6.5.2 we used an additional prop-
erty of commitments in order to obtain a zero-knowledge proof of knowledge.
Specifically, we needed there to be a trapdoor trap that was generated dur-
ing the commit phase and known only to the receiver. The desired property
is that given trap, the committer could generate a special commitment that
looks exactly like a regular commitment, but that can be opened to any
value it wishes. Observe that Protocol 6.6.2 is actually a trapdoor commit-
ment scheme because if C has a witness w then it can run the honest prover
strategy (and not the simulator M) in order to generate the commitment
value a. Since C knows w, by perfect completeness, for any e it can gener-
ate the proper prover response z. In addition, by the special honest verifier
zero-knowledge property, the commitment value a generated in this way is
distributed exactly like a regular commitment value. We have the following:

Theorem 6.6.4 Protocol 6.6.2 is a perfectly-hiding trapdoor commitment
scheme with computational binding.

6.7 Summary

Σ-protocols are an important and useful tool for building efficient secure pro-
tocols. The underlying structure behind many (if not most) zero-knowledge
proofs for concrete number-theoretic languages is actually that of a Σ-
protocol. The advantage in making this explicit is that it is possible to
worry only about the relatively simpler problem of constructing the ba-
sic Σ-protocol, and then the transformations necessary for achieving zero-
knowledge proofs of knowledge and for proving compound statements follow
easily without sacrificing efficiency. We remark also that proving that a proof
is a Σ-protocol is much easier than proving that it is a zero-knowledge proof
of knowledge. In this chapter we have reviewed only a few of the results re-
garding Σ-protocols. Many other efficient transformations exist. For just one
example, Σ-protocols have been used as a tool to significantly improve the
efficiency of proving a large number of statements simultaneously [18].

Chapter 7

Oblivious Transfer and Applications

In this chapter we carry out an in-depth study of the problem of construct-
ing efficient protocols for oblivious transfer (as introduced in Section 3.2.2).
Oblivious transfer is one of the most important building blocks in cryptogra-
phy, and is very useful for constructing secure protocols. We demonstrate this
by showing how to achieve secure pseudorandom function evaluation using
oblivious transfer.

The 1-out-of-2 oblivious transfer (OT) functionality, denoted by FOT, is
defined by ((x0, x1), σ) 7→ (λ, xσ) where λ denotes the empty string. That is,
a sender has a pair of inputs (x0, x1) and a receiver has a bit σ. The aim of
the protocol is for the receiver to receive xσ (and xσ only), without revealing
anything about σ to the sender. Oblivious transfer is one of the basic building
blocks of cryptographic protocols and its efficiency is a bottleneck in many
protocols using it; see Chapter 4 for just one example. In this chapter we
present three protocols for three different notions of security: privacy only,
one-sided simulation and full simulation, as defined in Sections 2.6.1, 2.6.2
and 2.3, respectively.

Our starting point is the private and highly efficient protocol of [62] which
relies on the hardness of the decisional Diffie-Hellman (DDH) problem. There-
after, in Section 7.3 we show how to slightly modify this protocol so that it
achieves one-sided simulatability. Then, in Section 7.4 we present another
protocol for this task that is fully secure in the presence of malicious adver-
saries. The security of this protocol follows from the same hardness assump-
tion (e.g., DDH) and the (exact) computation and communication costs are
approximately doubled. We conclude with a construction for batch oblivious
transfer which is of great importance for protocols such as that of Chapter 4,
where many OT executions are run together. This protocol is considerably
more efficient than just taking the previous protocol and running it many
times in parallel.

In addition to the protocols for OT, we present the protocol of [28] for
securely computing the pseudorandom function evaluation functionality, de-
noted by FPRF, and defined by (k, x) 7→ (λ, FPRF(k, x)). The aim of the pro-

177C. Hazay, Y. Lindell, Efficient Secure Two-Party Protocols,
Information Security and Cryptography, DOI 10.1007/978-3-642-14303-8_7,
© Springer-Verlag Berlin Heidelberg 2010

178 7 Oblivious Transfer and Applications

tocol is for party P2 to learn FPRF(k, x)) (and FPRF(k, x)) only), without
revealing anything about x to P1. We consider the concrete pseudorandom
function of [64] and present the secure (slightly modified) construction of [28]
for this specific function. We will use FPRF in later constructions. We remark
that with one exception, the protocols do not utilize any specific properties of
this function and can employ any other (possibly more efficient) secure pro-
tocol that implements the pseudorandom function evaluation functionality.
All the protocols in this chapter achieve security in the presence of malicious
adversaries.

7.1 Notational Conventions for Protocols

We now describe some notational conventions that are used in this and the
subsequent chapters. The aim of our notation is to enable the reader to
quickly identify if a protocol is secure in the semi-honest or covert model, or
whether it provides privacy only, one-sided simulatability or full security in
the presence of malicious adversaries. In addition, since our more complex
protocols use a number of subprotocols, we include notation to identify the
function being computed. The general template is

πS
f

where f is the function being computed and S is the level of security ob-
tained. For example, protocols for computing the oblivious transfer function-
ality in the presence of semi-honest and covert models are denoted by πSH

OT

and πCO
OT , respectively. Regarding malicious adversaries, protocols achieving

privacy only and one-sided simulatability are denoted by πP
OT and πOS

OT, re-
spectively. Protocols achieving full simulation are not given any superscript,
and so πOT denotes an OT protocol achieving full security in the presence of
malicious adversaries.

7.2 Oblivious Transfer – Privacy Only

7.2.1 A Protocol Based on the DDH Assumption

We now present the protocol of [62] that computes FOT with privacy in the
presence of malicious adversaries; see Definition 2.6.1 in Section 2.6.1 for the
definition of private oblivious transfer. This protocol involves a sender S and
a receiver R and is implemented in two rounds. Its high efficiency is due to

7.2 Oblivious Transfer – Privacy Only 179

the fact that the parties are not required to prove that they followed the
protocol specification, and this is also why only privacy is achieved.

We assume that the parties have a probabilistic polynomial-time algorithm
V that checks membership in G (i.e., for every h, V (h) = 1 if and only if
h ∈ G). This is easily achieved in typical discrete log groups.

PROTOCOL 7.2.1 (Private Oblivious Transfer πP
OT)

• Inputs: The sender has a pair of strings x0, x1 ∈ G and the receiver has a bit
σ ∈ {0, 1}.

• Auxiliary inputs: Both parties have the security parameter 1n and the de-
scription of a group G of prime order, including a generator g for the group

and its order q. The group can be chosen by P2 if not given as auxiliary input.
• The protocol:

1. The receiver R chooses α, β, γ ←R {1, . . . , q} and computes ā as follows:
a. If σ = 0 then ā = (gα, gβ , gαβ , gγ).

b. If σ = 1 then ā = (gα, gβ , gγ , gαβ).
R sends ā to S.

2. Denote the tuple ā received by S by (x, y, z0, z1). Then, S checks that
x, y, z0, z1 ∈ G and that z0 ̸= z1. If not, it aborts outputting ⊥. Otherwise,

S chooses random u0, u1, v0, v1 ←R {1, . . . , q} and computes the following
four values:

w0 = xu0 · gv0 , k0 = (z0)
u0 · yv0 ,

w1 = xu1 · gv1 , k1 = (z1)
u1 · yv1 .

S then encrypts x0 under k0 and x1 under k1. For the sake of simplicity,
assume that one-time pad type encryption is used. That is, assume that x0

and x1 are mapped to elements of G. Then, S computes c0 = x0 · k0 and
c1 = x1 · k1 where multiplication is in the group G.
S sends R the pairs (w0, c0) and (w1, c1).

3. R computes kσ = (wσ)β and outputs xσ = cσ · (kσ)−1.

The security of Protocol 7.2.1 rests on the decisional Diffie-Hellman (DDH)
assumption that states that tuples of the form (gα, gβ , gγ) where α, β, γ ←R

{1, . . . , q} are indistinguishable from tuples of the form (gα, gβ , gαβ) where
α, β ←R {1, . . . , q} (recall that q is the order of the group G that we are work-
ing in).1 This implies that an adversarial sender S∗ cannot discern whether
the message sent by R is (gα, gβ , gαβ , gγ) or (gα, gβ , gγ , gαβ) and so R’s input
is hidden from S∗. The motivation for privacy in the case where R∗ is mali-
cious is more difficult and it follows from the fact that – informally speaking
– the exponentiations computed by S in Step 2 completely randomize the

1 Formally, we consider the game where a ppt distinguisher DDDH is given a description
of a prime order group G, a generator g and a tuple ⟨x, y, z⟩ and outputs a bit b. We say
that the DDH problem is hard relative to G if the probability DDDH outputs b when given
a Diffie-Hellman tuple is essentially the same as when given a tuple of random elements.

See [49] for a formal definition of the DDH problem.

180 7 Oblivious Transfer and Applications

triple (gα, gβ , gγ) when γ ̸= α · β, and so w1−σ is independent of x1−σ. In-
terestingly, it is still possible for R to derive the key kσ that results from the
randomization of a Diffie-Hellman tuple of the form (gα, gβ , gαβ). None of
these facts are evident from the protocol itself but are demonstrated below
in the proof. We therefore proceed directly to prove the following theorem:

Theorem 7.2.2 Assume that the decisional Diffie-Hellman problem is hard
in G with generator g. Then, Protocol 7.2.1 is a private oblivious transfer,
as in Definition 2.6.1.

Proof. The first requirement of Definition 2.6.1 is that of non-triviality, and
we prove this first. Let x0, x1 be S’s input and let σ be R’s input. The pair
(wσ, cσ) sent by S to R is defined as wσ = xuσ · gvσ and cσ = xσ · kσ where
kσ = (zσ)

uσ · yvσ . Non-triviality follows from the fact that

(wσ)
β
= xuσ·β · gvσ·β = g(α·β)·uσ · gβ·vσ = (zσ)

uσ · yvσ = kσ

where the second equality is because x = gα and the third equality is due
to the fact that zσ = gαβ . Thus, R recovers the correct key kσ and can
compute (kσ)

−1, implying that it obtains the correct value when computing
xσ = cσ · (kσ)−1.

Next, we prove the privacy requirement for the case of a malicious S∗.
Recall that this requirement is that S∗’s view when R has input 0 is indistin-
guishable from its view when R has input 1. Now, the view of an adversarial
sender S∗ in Protocol 7.2.1 consists merely of R’s first message ā. By the
DDH assumption, we have that{

(gα, gβ , gαβ)
}
α,β←R{1,...,q}

c≡
{
(gα, gβ , gγ)

}
α,β,γ←R{1,...,q}

.

Now, assume by contradiction that there exists a probabilistic polynomial-
time distinguisher D and a non-negligible function ϵ such that for every n∣∣Pr[D(gα, gβ , gαβ , gγ) = 1]− Pr[D(gα, gβ , gγ , gαβ) = 1]

∣∣ ≥ ϵ(n)

where α, β, γ ←R {1, . . . , q}. Then, by subtracting and adding

Pr[D(gα, gβ , gγ , gδ) = 1]

we have,∣∣Pr[D(gα, gβ , gαβ , gγ) = 1]− Pr[D(gα, gβ , gγ , gαβ) = 1]
∣∣

≤
∣∣Pr[D(gα, gβ , gαβ , gγ) = 1]− Pr[D(gα, gβ , gγ , gδ) = 1]

∣∣
+
∣∣Pr[D(gα, gβ , gγ , gδ) = 1]− Pr[D(gα, gβ , gγ , gαβ) = 1]

∣∣
where α, β, γ, δ ←R {1, . . . , q}. Therefore, by the contradicting assumption,

7.2 Oblivious Transfer – Privacy Only 181∣∣Pr[D(gα, gβ , gαβ , gγ) = 1]− Pr[D(gα, gβ , gγ , gδ) = 1]
∣∣ ≥ ϵ(n)

2
(7.1)

or ∣∣Pr[D(gα, gβ , gγ , gδ) = 1]− Pr[D(gα, gβ , gγ , gαβ) = 1]
∣∣ ≥ ϵ(n)

2
. (7.2)

Assume that (7.1) holds. We construct a distinguisher D′ for the DDH prob-
lem that works as follows. Upon input ā = (x, y, z), the distinguisher D′

chooses a random δ ←R {1, . . . , q} and hands D the tuple ā′ = (x, y, z, gδ).
The key observation is that on the one hand, if ā = (gα, gβ , gγ) then
ā′ = (gα, gβ , gγ , gδ). On the other hand, if ā = (gα, gβ , gαβ) then ā′ =
(gα, gβ , gαβ , gδ). Noting that in this last tuple γ does not appear, and γ
and δ are distributed identically, we have that ā′ = (gα, gβ , gαβ , gγ). Thus,∣∣Pr[D′(gα, gβ , gαβ) = 1]− Pr[D′(gα, gβ , gγ) = 1]

∣∣
=

∣∣Pr[D(gα, gβ , gαβ , gγ) = 1]− Pr[D(gα, gβ , gγ , gδ) = 1]
∣∣

≥ ϵ(n)

2

in contradiction to the DDH assumption. A similar analysis follows in the case
where (7.2) holds. It therefore follows that ϵmust be a negligible function. The
proof of R’s privacy is concluded by noting that (gα, gβ , gαβ , gγ) is exactly
the distribution over R’s message when σ = 0 and (gα, gβ , gγ , gαβ) is exactly
the distribution over R’s message when σ = 1. Thus, the privacy of R follows
from the DDH assumption over the group in question.

It remains to prove privacy in the case of a malicious R∗. Let R∗ be a non-
uniform deterministic receiver with auxiliary input z (our proof will hold
even for R∗ that is computationally unbounded). Let ā = (x, y, z0, z1) denote
R∗(z)’s first message, and let α and β be such that x = gα and y = gβ

(we cannot efficiently compute α and β from R∗’s message, but they are
well defined because S checks that x, y, z0, z1 ∈ G). If z0 = z1 then S sends
nothing and so clearly the requirement in Definition 2.6.1 holds. Otherwise,
let τ ∈ {0, 1} be such that zτ ̸= gαβ (note that since z0 ̸= z1 it cannot be
that both z0 = gαβ and z1 = gαβ). The sender S’s security is based on the
following claim:

Claim 7.2.3 Let x = gα, y = gβ and zτ = gγ ̸= gαβ. Then, given α, β and
γ, the pair of values (wτ , kτ), where wτ = xuτ · gvτ and kτ = (zτ)

uτ · yvτ , is
uniformly distributed when uτ , vτ are chosen uniformly in {1, . . . , q}.

Proof. We prove that for every (µ0, µ1) ∈ G×G,

Pr[wτ = µ0 ∧ kτ = µ1] =
1

|G|2
, (7.3)

182 7 Oblivious Transfer and Applications

where the probability is taken over random choices of uτ , vτ , and wτ , kτ are
computed according to the honest sender’s instruction based on the message
ā from R∗ (this is equivalent to the stated claim). Recall first that

wτ = xuτ · gvτ = gαuτ · gvτ = gαuτ+vτ ,

and that
kτ = (zτ)

uτ · yvτ = gγuτ · gβvτ = gγuτ+βvτ

where the above holds because x = gα, y = gβ and zτ = gγ . Let ϵ0 and ϵ1
be such that µ0 = gϵ0 and µ1 = gϵ1 . Then, since uτ and vτ are uniformly
distributed in {1, . . . , q}, we have that (7.3) holds if and only if there is a
single solution to the equations

α · uτ + vτ = ϵ0 and γ · uτ + β · vτ = ϵ1.

Now, there exists a single solution to these equations if and only if the matrix(
α 1
γ β

)
is invertible, which is the case here because its determinant is α · β − γ and
by the assumption α · β ̸= γ and so α · β − γ ̸= 0. This completes the proof.

Proving this claim, it follows that kτ is uniformly distributed, even given
wτ (and k1−τ , w1−τ). Thus, for every x, xτ ∈ G, kτ · xτ is distributed identi-
cally to kτ · x. This completes the proof of the sender’s privacy.

Exact efficiency. Recall that we measure the protocols in this book ac-
cording to three parameters; round complexity, bandwidth and asymmetric
computations (i.e., the number of modular exponentiations computed rela-
tive to some finite group) According to these, Protocol 7.2.1 is extremely
efficient. Specifically, the number of rounds of communication is only two.
Furthermore, the total number of modular exponentiations is thirteen (eight
by the sender and five by the receiver), and each party exchanges four group
elements.

7.2.2 A Protocol from Homomorphic Encryption

In this section we show how to construct a private oblivious transfer protocol
from any homomorphic encryption scheme, as in Definition 5.1.1. Recall that
this is an encryption scheme such that for any public key pk the plaintext
spaceM and ciphertext space C are additive groups, and it is possible to ef-
ficiently compute Epk(m1 +m2) given pk, c1 = Epk(m1) and c2 = Epk(m2).

7.2 Oblivious Transfer – Privacy Only 183

Such encryption schemes can be constructed under the quadratic residuosity,
decisional Diffie-Hellman and other assumptions; see [2, 42] for some refer-
ences. The idea behind the protocol is very simple. The receiver encrypts its
input bit, and the server uses the homomorphic properties of the encryption
scheme in order to construct a pair of ciphertexts so that if σ = 0 then the
receiver can decrypt the first ciphertext and the second is random, and vice
versa if σ = 1. As we will see in the proof, this idea works as long as the
sender can verify that the ciphertext it receives from the receiver encrypts a
value in the plaintext groupM.

Formally, we call a homomorphic encryption scheme efficiently verifiable if
the following conditions all hold:

1. the public-key pk fully defines M and there is an efficient 1–1 mapping
from {0, 1}n toM for pk that is generated with security parameter 1n,

2. given a ciphertext c and public key pk it is possible to efficiently verify that
c encrypts a plaintext α ∈ M such that α = 0 or α has a multiplicative
inverse (recall that M is an additive group and so only elements α with
order that is relatively prime to the group order q have this property), and

3. it is possible to efficiently verify that a public-key pk is “valid”, meaning
that the homomorphic properties always work.

We remark that the assumptions of efficient verifiability can be removed in
a number of ways. First, it is possible to prove the required properties in
zero-knowledge. Efficient proofs for such statements do exist, and so this can
sometimes be carried out without too much additional cost. In addition, if
the plaintext groupM is of prime order, then every ciphertext that encrypts
a value in the group has the required property. In this case, it suffices to
be able to efficiently verify (or prove in zero-knowledge) that a ciphertext c
encrypts any value in the group. See Protocol 7.2.4 for the full description.

PROTOCOL 7.2.4 (Private Oblivious Transfer π′P
OT)

• Inputs: The sender has a pair of strings x0, x1 ∈ {0, 1}n and the receiver has
a bit σ ∈ {0, 1}.

• Auxiliary inputs: Both parties have the security parameter 1n.

• The protocol:

1. The receiver R chooses a pair of keys (pk, sk) ← G(1n), computes c =
Epk(σ) and sends c and pk to S.

2. The sender S verifies that pk is a valid public key and that c encrypts
either 0 or a value with a multiplicative inverse in the plaintext group M.

If both checks pass, then S maps x0 and x1 into M and then uses the
homomorphic property of the encryption scheme, and its knowledge of x0

and x1, to compute two random encryptions c0 = Epk((1− σ) · x0 + r0 · σ)
and c1 = Epk(σ ·x1 + r1 · (1−σ)) where r0, r1 ←R M are random elements

in the plaintext group.
3. R computes and outputs sr = Dsk(c

′).

184 7 Oblivious Transfer and Applications

We have the following theorem:

Theorem 7.2.5 Assume that the encryption scheme (G,E,D) is indistin-
guishable under chosen-plaintext attacks and is efficiently verifiable. Then,
Protocol 7.2.4 is a private oblivious transfer, as in Definition 2.6.1.

Proof. We begin by proving non-triviality. In order to see this, observe
that if σ = 0 then c0 = Epk(1 · x0 + 0 · s1) = Epk(x0) and if σ = 1 then
c1 = Epk(1 · x1 + (1− 1) · r1) = Epk(x1).

We now prove privacy in the case of a malicious sender S∗. Privacy in this
case is derived from the fact that S∗’s entire view consists of an encryption
c = Epk(σ). Furthermore, the encryption key and ciphertext are generated
honestly by R. Thus, the ability to distinguish between an execution where R
has input 0 and where R has input 1 is equivalent to the ability to distinguish
between the distributions {pk,Epk(0)} and {pk,Epk(1)}, in contradiction to
the semantic security of the encryption scheme.

It remains to prove privacy in the case of a malicious receiver. Let R∗ be an
arbitrary sender, and let z be an auxiliary input. Then R∗(z)’s first message
consists of fixed public key pk and ciphertext c. There are three cases:

1. The checks regarding the validity of the public key and the fact that c
encrypts a value in M do not pass: In this case, the sender does nothing
and so clearly the distributions over inputs (x0, x1) and (x0, x) are identical
for all x0, x1, x ∈ {0, 1}n.

2. The checks pass and c = Epk(0): In this case, c1 = Epk(r1) and so R∗’s
view is independent of x1. That is, R

∗’s view when S has input (x0, x1) is
identical to its view when S has input (x0, x).

3. The checks pass and c = Epk(1): In this case, c0 = Epk(r0) and so R∗’s
view is independent of x0. Thus, as above, R∗’s view when S has input
(x0, x1) is identical to its view when S has input (x, x1).

4. The checks pass and c /∈ {Epk(0), Epk(1)}: Let α ∈ M be such that c =
Epk(α). Then, c0 = Epk((1−α)x0+r0 ·α). Now, for every x ∈M, we claim
that there exists a value r′0 such that (1−α)x+ r′0 ·α = (1−α)x0 + r0 ·α.
This holds by taking

r′0 =
(1− α) · x0 + r0 · α− (1− α) · x

α
.

The key point is that such an r′0 exists as long as α has a multiplicative
inverse inM which is guaranteed by the efficient verifiability and checks
carried out by S. Since r0 is chosen randomly, the above demonstrates that
the distribution of the view of R∗ when S has input (x0, x1) is identical
to its view when S has input (x, x1).

This completes the proof.

7.3 Oblivious Transfer – One-Sided Simulation 185

On the necessity of efficient verifiability. The fact that efficient verifi-
ability is needed for the proof to go through is clear. However, it is natural
to ask whether this is a real concern for known homomorphic encryption
schemes. We show that this is indeed the case, and in particular, it must be
possible to check that a given ciphertext encrypts a value with a multiplicative
inverse in the plaintext group M. That is, if the homomorphic encryption
scheme of Paillier [68] is used and if the receiver sends an encryption of a
value α that is not relatively prime to the modulus N , then it is actually
possible for the receiver to cheat. Recall that the plaintext group M in the
case of Paillier equals ZN , where N = pq. Consider a malicious R∗ that sends
c = Epk(α) where α = 0 mod p and α = 1 mod q. (Such a value can be found
efficiently using the extended Euclidean algorithm. Specifically, it is possible
to find X and Y such that Xp+ Y q = 1, and now define α = Xp = 1− Y q.
It then follows that α = 0 mod p and α = 1 mod q, as required.) Now, S
sends c0 that is an encryption of γ0 = (1 − α) · x0 + r0 · α. Using the fact
that α = Xp and 1 − α = Y q we have that γ0 = Y q · x0 + r0 · Xp. Thus
γ0 = Y q · x0 mod p. However, R∗ knows Y q and so can obtain x0 mod p.
Likewise, c1 is an encryption of γ1 = α · x1 + r1 · (1− α) = Xp · x1 + r1 · Y q.
Thus, γ1 = Xp · x1 mod q, and R∗ can learn x1 mod q. We conclude that R∗

learns x0 mod p and x1 mod q, in contradiction to the privacy requirement.
This problem can be solved by having R∗ prove in zero-knowledge that

it encrypted a value that is relatively prime to N . This ensures that the
encrypted value has a multiplicative inverse, as required. Alternatively, it is
possible for R∗ to simply prove that it encrypted either 0 or 1; fortunately,
efficient zero-knowledge proofs for this latter task are known.

Efficiency. Protocol 7.2.4 has two rounds of communication. The com-
putational cost involves R choosing a key pair (pk, sk) and computing one
encryption and one decryption. In addition, S carries out ten homomorphic
operations (six scalar multiplications and four additions).

7.3 Oblivious Transfer – One-Sided Simulation

In this section we present an oblivious transfer protocol that is secure with
one-sided simulation, by introducing a minor change to Protocol 7.2.1. Re-
call that by Definition 2.6.2, simulation must be possible for the party that
receives output. We modify Protocol 7.2.1 as follows. In Step 1 where the re-
ceiver computes and sends the tuple ā = (gα, gβ , ·, ·), we add a zero-knowledge
proof of knowledge for α. That is, the receiver proves that it knows α by run-
ning a proof for the relation

RDL =
{
((G, q, g, h), α) | h = gα

}

186 7 Oblivious Transfer and Applications

where it is to be understood that G is of order q, that q is prime and that
α ∈ Zq. This, in turn, enables the simulator to extract the input bit of the
malicious receiver by simply verifying whether it is the third or the fourth
element of ā that equals (gβ)α = gαβ . A protocol for this task is presented in
Chapter 6, by applying the transformation of Protocol 6.5.4 (zero-knowledge
proof of knowledge from Σ-protocols) to Protocol 6.1.1 (Σ-protocol for RDL).
This protocol requires nine additional exponentiations overall, five rounds of
communication, and the exchange of six additional group elements. As in
Protocol 7.2.1, we assume that the parties have a probabilistic polynomial-
time algorithm V that checks membership in G (i.e., for every h, V (h) = 1 if
and only if h ∈ G), and thus S verifies the membership of all elements within
ā. Let πOS

OT denote Protocol 7.2.1 with the above additions. Then we have,

Theorem 7.3.1 Assume that the DDH problem is hard in G with generator
g. Then, Protocol πOS

OT securely computes FOT with one-sided simulation.

Proof (sketch). Note first that the proof for the case of a malicious sender
S∗ is identical to the proof of Theorem 7.2.2, with the exception that the
distinguisher D for DDH invokes the simulator for the zero-knowledge proof
of RDL since it does not know α.

The proof for the case of a malicious receiver R∗ is in a hybrid model
where a trusted party is used to compute an ideal functionality for the zero-
knowledge proof of knowledge for RDH; see Chapter 6. We construct a simu-
lator SREC for a malicious receiver R∗ as follows.

1. SREC invokes R∗ upon its input and receives from A its tuple ā and its
input (G, q, g, h, α) to the trusted party computing the zero-knowledge
functionality FDL

ZK . If the conditions for outputting (1, λ) are not met then
SREC sends ⊥ to the trusted party for FOT and aborts.

2. Otherwise, SREC sets σ = 0 if ā = (gα, h̃, h̃α, ·) and σ = 1 otherwise.
Then, SREC sends σ to the trusted party computing the oblivious transfer
functionality and receives back the string xσ.

3. SREC computes (wσ, cσ) as an honest S would, using the value xσ. In
contrast, it computes (w1−σ, c1−σ) using x1−σ = 1.

4. SREC outputs whatever A outputs and halts.

We continue by proving that{
idealFOT,SREC(z),R((x0, x1), σ, n)

} c≡
{
hybridZK

πOS
OT,A(z),R((x0, x1), σ, n)

}
Since the honest S does not have any output, it suffices to show that the
distribution over R∗’s output is computationally indistinguishable in a hy-
brid execution with S and in the simulation with SREC (we actually show
that the distributions are identical). It is clear that until the last message,
A’s view is identical (all the messages until the last are independent of S’s
input). Furthermore, the only difference is in the way (w1−σ, c1−σ) are con-
structed. Thus, all we need to show is that for every x1−σ, the distribution

7.3 Oblivious Transfer – One-Sided Simulation 187

over (w1−σ, c1−σ) is the same when constructed by an honest S and SREC.
We do this separately for σ ∈ {0, 1} and the case where σ is neither 1 nor 0.
We distinguish between the values generated by the simulator SREC and those
generated by a real S by adding a tilde to the values generated by SREC.

1. Case σ ∈ {0, 1}: For simplicity we take the concrete case where σ = 0
(the case where σ = 1 follows symmetrically). In this case we know that
ā = (x, y, z0, z1) where z0 = yα. We have that the distributions generated
over (w1, c1) are

• generated by the simulator SREC: w̃1 = xũ1 ·gṽ1 and c̃1 = zũ1
1 ·yṽ1 (recall

that SREC uses x1 = 1),
• generated by the honest sender S: w1 = xu1 · gv1 and c1 = x1 · zu1

1 · yv1 .

To show that the distributions over (w1, c1) and (w̃1, c̃1) are identical, we
first let x = gr, y = gs, z1 = gt and x1 = gℓ. (Such values are guaranteed
because x, y, z1 ∈ G are checked by SREC and the honest S.) Next, let
ṽ1 = v1 − rℓ/(t− sr) and ũ1 = u1 + ℓ/(t− sr). For fixed r, s, t and ℓ and
uniformly distributed u1, v1, the values ũ1, ṽ1 chosen in this way are also
uniformly distributed. Plugging these values in, we have that

w̃1 = xũ1 · gṽ1 = gru1+rℓ/(t−sr)+v1−rℓ/(t−sr) = xu1 · gv1

where the second equality is because x = gr. Furthermore,

c̃1 = zũ1
1 · yṽ1 = gtu1+tl/(t−sr)+sv1−srℓ/(t−sr) = x1 · zu1

1 · yv1

because z = gt and y = gs. Observe now that these are the exact values
w1 and c1 generated by an honest S. Thus, the distribution viewed by A
in this case is the same in the hybrid and simulated executions.

2. Case σ /∈ {0, 1}: In this case the simulator fixes σ = 1; thus the computa-
tion of (w1, c1) is as in the hybrid execution. The proof in which the view
of the malicious receiver is identical in both executions, given that SREC

enters x0 = 1, is as in the previous case.

This concludes the proof.

Exact efficiency. The complexity of this protocol is the same as Proto-
col 7.2.1 with the addition of the zero-knowledge proof of knowledge of the
discrete log, and the verification that all elements of ā are in G. Therefore,
the number of rounds of communication is six (Protocol 7.2.1 has two rounds
and the zero-knowledge proof of knowledge has five, but the first message
of the zero-knowledge protocol can be sent together with the receiver’s first
message in the OT protocol). Furthermore, the total number of modular
exponentiations is 22, and overall 14 group elements are exchanged.

188 7 Oblivious Transfer and Applications

7.4 Oblivious Transfer – Full Simulation

In this section we present a protocol for oblivious transfer that is fully secure
under the DDH assumption and has only a constant number of exponentia-
tions and a constant number of rounds. The following protocol uses a zero-
knowledge proof of knowledge that a given tuple is a Diffie-Hellman tuple. A
protocol for this task is presented in Chapter 6, by applying the transforma-
tion of Protocol 6.5.4 (zero-knowledge proof of knowledge from Σ-protocols)
to Protocol 6.2.4 (Σ-protocol for the relation of Diffie-Hellman tuples). This
protocol has five rounds of communication and 12 exponentiations.

7.4.1 1-out-of-2 Oblivious Transfer

In order to motivate the protocol, we begin by discussing the reason that
the protocol πOS

OT for one-sided simulation does not achieve full simulation.
Clearly, the problem is with respect to simulating the case of a corrupted
sender (because a corrupted receiver can be simulated). Recall that if R
sends ā = (x, y, z0, z1) where x = gα and y = gβ , then for zτ = gγ ̸= gαβ it
holds that wτ , kτ are uniformly distributed and independent of the input xτ ;
see Claim 7.2.3. Furthermore, since the sender checks that z0 ̸= z1 it is only
possible that at most one of z0, z1 equals gαβ . Now, consider a simulator that
constructs and sends ā to an adversary A that has corrupted the sender S.
The simulator must hand A a message ā = (x, y, z0, z1) and it too can only
make one of z0, z1 equal gαβ . Therefore, like an honest receiver, the simulator
can also only obtain one of the sender’s inputs x0, x1. The natural way to solve
this problem is for the simulator to rewind A. Specifically, it first hands A the
message ā = (gα, gβ , gαβ , gγ) and learns x0, and then rewinds A and hands
it the message ā′ = (gα, gβ , gγ , gαβ) so that it learns x1. The problem with
this strategy, however, is that the adversary A may make its inputs x0, x1

depend on the first message that it sees (e.g., it may apply a pseudorandom
function to the first message and take the result as the input). In this case, it
uses different inputs for every different first message that it receives from the
simulator. This is a problem because the simulator does not know the honest
party’s input bit σ and so cannot know whether to write ā in the output view
or ā′. (Observe that if the honest receiver has input σ = 0 then its output
will be consistent with the view of the adversarial sender A only if ā appears
in the output transcript. In contrast, if the honest receiver has input σ = 1
then its output will be consistent with the view of the adversarial sender A
only if ā′ appears in the output transcript. This discrepancy can be detected
by the distinguisher in the case where A’s output includes the inputs that it
used.)

7.4 Oblivious Transfer – Full Simulation 189

One way to overcome this problem is to have the receiver send two separate
tuples ā = (x = gα, y = gβ , z0, z1) and ā′ = (x′ = gα

′
, y′ = gβ

′
, z′0, z

′
1), while

proving in zero-knowledge that either z0 = gαβ or z′1 = gα
′β′

but not both.
This ensures that a corrupted receiver will only be able to learn one of x0, x1.
However, a simulator that can rewind the adversary in the zero-knowledge
proof and “cheat” can set both z0 = gαβ and z′1 = gα

′β′
, thereby learning both

values x0 and x1. Importantly, both values are obtained at the same time, on
the same execution transcript. Therefore, the above problem is solved. For the
sake of optimization, we actually do something slightly different and combine
the two tuples ā, ā′ into one. More exactly, we have the receiver construct a
tuple (h0, h1, a, b0, b1) as follows,

1. if σ = 0 it sets

h0 = gα0 , h1 = gα1 , a = gr, b0 = gα0r, b1 = gα1r,

2. if σ = 1 it sets

h0 = gα0 , h1 = gα1 , a = gr, b0 = gα0r+1, b1 = gα1r+1,

and prove that the tuple is correctly constructed. Note that this holds if
(h0/h1, a, b0/b1) is a Diffie-Hellman tuple. (Actually, it is a Diffie-Hellman
tuple as long as b0 = gα0r+i and b1 = gα1r+i for any i. However, if i /∈ {0, 1}
then an adversarial receiver will learn nothing about x0 or x1.) The prover
then uses a similar transformation as in Protocols πP

OT and πOS
OT to ensure

that only one of x0, x1 is learned. Note that the transformation used is such
that when applied to a DH tuple the receiver can learn the input, and when
applied to a non-DH tuple the result is uniformly distributed (and perfectly
hides the input). Observe now that when σ = 0 it holds that (h0, a, b0)
and (h1, a, b1) are DH tuples, and when σ = 1 it holds that (h0, a, b0/g)
and (h1, a, b1/g) are DH tuples. We stress that when σ = 0 we have that
(h1, a, b1/g) is not a DH tuple, and when σ = 1 we have that (h0, a, b0) is not
a DH tuple. Therefore, the prover applies the transformation to (h0, a, b0) in
order to “encrypt” x0, and to (h1, a, b1/g) in order to “encrypt” x1. By what
we have shown, this means that when σ = 0 the receiver can learn x0 but x1

is completely hidden, and vice versa. Of course, all of the above holds unless
the receiver sets b0 = gα0r and b1 = gα1r+1, in which case it could learn
both x0 and x1. However, the zero-knowledge proof described above prevents
an adversarial receiver from doing this. In contrast, as described above, the
simulator can cheat in the zero-knowledge proof and set the b0, b1 values so
that it can learn both x0 and x1. See Protocol 7.4.1.

190 7 Oblivious Transfer and Applications

PROTOCOL 7.4.1 (Fully Simulatable Oblivious Transfer πOT)

• Inputs: The sender has a pair of strings x0, x1 ∈ G and the receiver has a bit

σ ∈ {0, 1}.
• Auxiliary inputs: Both parties have the security parameter 1n and the de-

scription of a group G of prime order, including a generator g for the group
and its order q.2

• The protocol:

1. R chooses α0, α1, r ←R {1, . . . , q} and computes h0 = gα0 , h1 = gα1 and
a = gr. It also computes b0 = hr

0 · gσ and b1 = hr
1 · gσ.

R sends (h0, h1, a, b0, b1) to S.
2. S checks that all of h0, h1, a, b0, b1 ∈ G, and if not, it aborts.

3. Let h = h0/h1 and b = b0/b1. Then, R proves to S that (G, q, g, h, a, b) is a
Diffie-Hellman tuple, using a zero-knowledge proof of knowledge. Formally,
R proves the relation:

RDH =
{
((G, q, g, h, a, b), r) | a = gr & b = hr

}
.

4. If S accepted the proof in the previous step, it chooses u0, v0, u1, v1 ←R

{1, . . . , q} and sends (e0, e1) computed as follows:
a. e0 = (w0, z0) where w0 = au0 · gv0 and z0 = bu0

0 · h
v0
0 · x0.

b. e1 = (w1, z1) where w1 = au1 · gv1 and z1 =
(

b1
g

)u1
· hv1

1 · x1.

5. R outputs zσ
w

ασ
σ

and S outputs nothing.

In order to understand the protocol better, we first show that if S and R
are honest, then R indeed outputs xσ. We prove this separately for σ = 0
and σ = 1. Recall that hσ = gασ , a = gr and bσ = hr

σ · gσ = grασ+σ.

1. Case σ = 0: We have that

z0
wα0

0

=
bu0
0 · h

v0
0 · x0

au0α0 · gv0α0
=

gu0rα0 · gv0α0 · x0

gu0α0r · gv0α0
= x0.

2. Case σ = 1: We have that

z1
wα

1

=

(
b1
g

)u1

· hv1
1 · x1

au1α1 · gv1α1
=

gu1rα1 · gv1α1 · x1

gu1α1r · gv1α1
= x1

where the second equality follows from the fact that b1 = hr
1 · g and so(

b1
g

)u1

= hu1r
1 = gu1rα1 .

We now proceed to prove the security of the protocol:

2 We stress that the group must be of prime order in order to ensure that every element

in G is a generator; we use this fact in the proof of security. In addition, we note that
the group can be chosen by R if not given as auxiliary input; in this case, it needs to be
possible for S to check that all values are chosen correctly.

7.4 Oblivious Transfer – Full Simulation 191

Theorem 7.4.2 Assume that the DDH problem is hard in G with genera-
tor g. Then, Protocol 7.4.1 securely computes FOT in the presence of malicious
adversaries.

Proof. We separately prove security in the case where S is corrupted and
the case where R is corrupted. We note that the proof is in a hybrid model
where a trusted party is used to compute an ideal functionality for the zero-
knowledge proof of knowledge for RDH.

The sender S is corrupted. Let A be an adversary controlling S. We
construct a simulator SSEND as follows:

1. SSEND invokes A upon its input and computes h0 and h1 as the honest R
would. Then it computes a = gr, b0 = hr

0 and b1 = hr
1 · g. (Note that this

message is computed differently than an honest R.)
SSEND hands (h0, h1, a, b0, b1) to A.

2. SSEND receives from A its input to the trusted party computing the zero-
knowledge functionality FDH

ZK ; this input is just (G, q, g, h0/h1, a, b0/b1). If
the input is the values handed by SSEND to A, it simulates the trusted
party returning 1; otherwise it simulates the trusted party returning 0.

3. SSEND receives from A two encryptions e0 and e1. It then computes x0 =
z0

w
α0
0

and x1 = z1
w

α1
1

and sends (x0, x1) to the trusted party computing the

oblivious transfer functionality.
4. SSEND outputs whatever A outputs and halts.

We now show that the joint output distribution of A and R in a real protocol
execution is computationally indistinguishable from the output of SSEND and
R in the ideal-world simulation. Note that the only difference is that SSEND

generates the values b0 and b1 incorrectly (because b0 equals hr
0 multiplied

by 1 whereas b1 equals hr
1 multiplied by g). We prove this separately for the

case where R’s input is σ = 0 and the case where it is σ = 1. Denoting
Protocol 7.4.1 by πOT, we begin by proving that{
idealFOT,SSEND(z),S((x0, x1), σ, n)

} c≡
{
hybridZK

πOT,A(z),S((x0, x1), σ, n)
}
.

We construct a distinguisher DDDH for the DDH problem that distinguishes a
Diffie-Hellman tuple from a non-Diffie-Hellman tuple with the same probabil-
ity that it is possible to distinguish the ideal and hybrid executions. Before
doing this we note that if the DDH problem is hard, then it is also hard to
distinguish between Diffie-Hellman tuples of the form (G, q, g, h, gr, hr) and
non-Diffie-Hellman tuples of the specific form (g, h, gr, hr · g).3 DDDH receives

3 This can be shown as follows. We will use the following distributions: X0 =
{(G, q, g, h, gr, hr)}, X1 = {(G, q, g, h, gr, ghr)} and X2 = {(G, q, g, h, gr, hs)}, where r

and s are chosen randomly. First note that for every distinguisher DDDH we have that
|Pr[D(X0) = 1] − Pr[D(X1) = 1]| ≤ |Pr[D(X0) = 1] − Pr[D(X2) = 1]| + |Pr[D(X2) =
1] − Pr[D(X1) = 1]|. The fact that |Pr[D(X0) = 1] − Pr[D(X2) = 1]| is negligible is

exactly the DDH assumption. Regarding |Pr[D(X2) = 1] − Pr[D(X1) = 1]| this follows

192 7 Oblivious Transfer and Applications

a tuple (G, q, g, h, s, t) and wishes to determine if there exists an r such that
s = gr and t = hr. First, DDDH chooses α0 and computes h0 = gα0 and
b0 = sα0 . Then it sets h1 = h and b1 = t. Note that if (G, q, g, h, s, t) is
a Diffie-Hellman tuple then DDDH generates (h0, h1, a, b0, b1) exactly as an
honest R with input σ = 0 would. (In order to see this, let r be such that
s = gr. Then, b1 = t = hr = hr

1. Furthermore, b0 = sα0 = hr
0, as required.)

In contrast, if (G, q, g, h, s, t) is such that for some r, s = gr and t = ghr,
then DDDH generates (h0, h1, a, b0, b1) exactly as the simulator SSEND would.
(This follows because b1 = ghr

1 whereas b0 = sα0 = hr
0.) Next, DDDH con-

tinues the simulation as SSEND by handing A the values h0, h1, a, b0, b1 and
receiving back the encryptions e0, e1. Finally, it computes x0 = z0

w
α0
0

, sets this

as R’s output and combines it with A’s output (generating a joint output
distribution of A and R). Now, if DDDH receives a non-Diffie-Hellman tuple
(with the fourth element being ghr), then the output of DDDH is identical to
the output distribution of the ideal-world execution with SSEND and an hon-
est R. Furthermore, if DDDH receives a Diffie-Hellman tuple, then the output
distribution is identical to a hybrid execution between A and R (note that
R would derive x0 in exactly the same way as DDDH derived it from e0). By
the assumed hardness of the DDH problem, this implies that the ideal and
hybrid distributions are computationally indistinguishable, as required. The
proof for the case of σ = 1 is almost identical.

The receiver R is corrupted. Let A be an adversary controlling R. We
construct a simulator SREC as follows:

1. SREC invokes A upon its input and receives the vector (h0, h1, a, b0, b1).
2. SREC checks that all h0, h1, a, b0, b1 ∈ G; if not, it sends ⊥ to the trusted

party for FOT, simulates S aborting, outputs whatever A outputs and
halts.

3. Otherwise, SREC obtains fromA its input ((G, q, g, h, a, b), r) for the trusted
party computing the zero-knowledge functionality FDH

ZK . If the conditions
for outputting (1, λ) are not met then SREC sends ⊥ to the trusted party
for FOT and aborts. Otherwise, SREC proceeds.

4. SREC computes ℓ = b0/h
r
0. If ℓ = 1, SREC sets σ = 0; if ℓ ̸= 1 (including

the case where ℓ = g), SREC sets σ = 1. Then, SREC sends σ to the trusted
party computing the oblivious transfer functionality and receives back the
string xσ.

5. SREC computes eσ = (wσ, zσ) as an honest S would, using the value xσ. In
contrast, it computes e1−σ using x1−σ = 1.

6. SREC outputs whatever A outputs and halts.

from the fact that by dividing the fourth element of the input by g, an instance of X1

becomes an instance of X0, whereas an instance of X2 remains an instance of X2. Thus, if
|Pr[D(X2) = 1] − Pr[D(X1) = 1]| is non-negligible then we can construct a distinguisher
D′ so that |Pr[D′(X0) = 1] − Pr[D′(X2) = 1]| is non-negligible, in contradiction to the
DDH assumption.

7.4 Oblivious Transfer – Full Simulation 193

We continue by proving that{
idealFOT,SREC(z),R((x0, x1), σ, n)

} c≡
{
hybridZK

πOT,A(z),R((x0, x1), σ, n)
}
.

Since the honest S does not have any output, it suffices to show that the
distribution over A’s output is computationally indistinguishable in a hybrid
execution with S and in the simulation with SREC (we actually show that the
distributions are identical). It is clear that until the last message, A’s view
is identical (all the messages until the last are independent of S’s input).
Furthermore, the only difference is in the way e1−σ is constructed. Thus, all
we need to show is that for every x1−σ, the distribution over e1−σ is the same
when constructed by an honest S and SREC. We do this separately for ℓ = 1,
ℓ = g and ℓ /∈ {1, g} (where ℓ is the value obtained by SREC by computing
b0/h

r
0). We distinguish between the values generated by the simulator SREC

and those generated by a real S by adding a tilde to the values generated by
SREC.

1. Case ℓ = 1: In this case we know that for some r it holds that a = gr

and b0/b1 = (h0/h1)
r (this is given due to the zero-knowledge protocol).

Combining this with the fact that b0/h
r
0 = 1 we have that

b1 = b0 ·
(
h1

h0

)r

= (h1)
r.

Letting α be such that h1 = gα, we have that b1 = (h1)
r = (gα)r. (Such an

α is guaranteed to exist because h1 ∈ G as checked by SREC and the honest
S.) This implies that b1

g = grα ·g−1. Finally, for every x1 ∈ G it holds that
there exists a value s such that x1 = gs; this holds because g is a generator

and x1 is in G). Recalling that w1 = bu1 · gv1 and z1 =
(

b1
g

)u1

· hv1
1 · x1

and that SREC uses x1 = 1, we have that the distributions generated over
e1 are

• generated by SREC:
w̃1 = aũ1 · gṽ1 = grũ1+ṽ1

and

z̃1 =

(
b1
g

)ũ1

· hṽ1
1 = grαũ1+ṽ1α · g−ũ1 ;

• generated by S:
w1 = au1 · gv1 = gru1+v1

and

z1 =

(
b1
g

)u1

· hv1
1 · x1 = grαu1+v1α · gs · g−u1 .

We claim that the above distributions are identical. In order to see this,
let ũ1 = u1 − s and ṽ1 = v1 + rs. For a fixed r and s and a uniformly

194 7 Oblivious Transfer and Applications

distributed u1 and v1, the values ũ1 and ṽ1 chosen in this way are also
uniformly distributed. Plugging these values in, we have that

w̃1 = grũ1+ṽ1 = gr(u1−s)+v1+rs = gru1+v1

and

z̃1 = grαũ1+ṽ1α−ũ1 = grα(u1−s)+α(v1+rs)−(u1−s)

= grαu1+αv1−u1+s = grαu1+αv1 · gs · g−u1 ,

which are the exact values w1 and z1 generated by an honest S. Thus,
the distribution viewed by A in this case is the same in the hybrid and
simulated executions.

2. Case ℓ = g: In this case we know that for some r it holds that a = gr

and b0 = ghr
0 (this is given due to the zero-knowledge protocol and the

fact that b0/h
r
0 = g, as in the previous case). Now, as above there exists

a value α such that h0 = gα (because h0 ∈ G) and we know that a = gr,
implying that b0 = ghr

0 = gaα = g · grα. Furthermore, for every x0 ∈ G
there exists a value s such that x0 = gs.
Recalling that w0 = au0 · gv0 and z0 = bu0

0 · h
v0
0 · x0 and that SREC uses

x0 = 1, we have that the distributions generated over e0 are

• generated by SREC:
w̃0 = aũ0 · gṽ0 = grũ0+ṽ0

and
z̃0 = bũ0

0 · h
ṽ0
0 = grαũ0+ṽ0α · gũ0 ;

• generated by S:
w0 = au0 · gv0 = gru0+v0

and
z0 = bu0

0 · h
v0
0 · x0 = grαu0+v0α · gs · gu0 .

As above, let ũ0 = u0 + s and ṽ0 = v0 − rs; again these are uniformly
distributed if u0 and v0 are uniformly distributed. Then,

w̃0 = grũ0+ṽ0 = gr(u0+s)+v0−rs = gru0+v0

and

z̃0 = grαũ0+ṽ0α · gũ0 = grα(u0+s)+α(v0−rs)+(u0+s) = grαu0+αv0 · gs · gu0 ,

which are the exact values generated by an honest S. Thus, the distribution
viewed byA in this case is the same in the hybrid and simulated executions.

3. Case ℓ /∈ {1, g}: In this case, SREC sets σ = 1 and so generates the distri-
bution for e1 exactly as an honest S would. In contrast to above, here we
only know that a = gr and b0 = ℓ · hr

0 for some ℓ. This means that for α
such that h0 = gα we have that b0 = ℓ · grα. However, since b0 ∈ G (as

7.4 Oblivious Transfer – Full Simulation 195

checked by SREC) and h0 = grα is also in G, it follows that ℓ ∈ G; let t be
such that ℓ = gt and let s be such that x0 = gs. As above, we write the
distributions generated by SREC and an honest S:

• Generated by SREC:
w̃0 = grũ0+ṽ0

and
z̃0 = grαũ0+ṽ0α · ℓũ0 = grαũ0+ṽ0α · gtũ0 ;

• Generated by S:
w0 = gru0+v0

and
z0 = grαu0+v0α · gb · ℓu0 = grαu0+v0α · gs · gtu0 .

Let ũ0 = u0 + s/t and ṽ0 = v0 − rs/t. The crucial point here is that G is
a group of prime order, and thus t has an inverse modulo q, meaning that
s/t is well defined (recall that we can work modulo q in the exponent).
Thus, we can define ũ0 and ṽ0 in this way, and as above, if v0 and u0 are
uniformly distributed then so are ṽ0 and ũ0. Plugging these values in as
above, we have that w̃0, z̃0 are distributed identically to w0, z0, as required.

This completes the proof of the theorem.

Exact efficiency. The number of rounds of communication in the protocol,
including the zero-knowledge subprotocol, is exactly six (each party sends
three messages). We note that the first message from R to S is combined with
the first message of the zero-knowledge protocol (also sent by R). Regarding
exponentiations, we have the following:

1. The sender S: In the zero-knowledge protocol S, playing the verifier, com-
putes exactly seven exponentiations. In the rest of the protocol, S com-
putes eight exponentiations (for computing e0 and e1). Overall, S has 15
exponentiations.

2. The receiver R: In the zero-knowledge protocol R, playing the prover,
computes exactly five exponentiations. In the rest of the protocol, R com-
putes six exponentiations (five for computing h0, h1, a, b0, b1 and one for
decrypting eσ). Overall, R has 11 exponentiations.

Finally, we count the bandwidth in terms of the number of group elements
sent by each party:

1. The sender S: In the zero-knowledge protocol S, playing the verifier, sends
three group elements. In the rest of the protocol, S sends four group ele-
ments (w0, z0, w1 and z1). Overall, S sends seven group elements.

2. The receiver R: In the zero-knowledge protocol R, playing the prover,
sends five group elements. In the rest of the protocol, R sends five group
elements (h0, h1, a, b0 and b1). Overall, R sends ten group elements.

196 7 Oblivious Transfer and Applications

Summing up, the protocol has six rounds of communication, an overall num-
ber of exponentiations for both parties of 26 (almost equally divided between
them), and an overall bandwidth of 17 group elements sent. We remark that
if the random oracle model can be tolerated, then the zero-knowledge proof
of knowledge can be collapsed into a single round (using the Fiat-Shamir
paradigm [26]) yielding a two-round protocol (this also saves five exponenti-
ations).

Recall that Protocol 7.2.1 that achieves privacy only has 13 exponentia-
tions, an overall bandwidth of eight group elements, and two rounds of com-
munication. Therefore Protocol 7.4.1 achieves full simulation at the cost of
approximately twice the complexity (and three times the number of rounds).

7.4.2 Batch Oblivious Transfer

In many settings, it is necessary to run many oblivious transfers at the same
time. We have seen this, for example, in the protocols of Chapters 4 and 5.
Two issues arise in such a case. The first issue relates to the question of
whether or not a stand-alone OT protocol remains secure when run many
times in parallel. In short, the answer is that it depends; some protocols
do and some do not. An alternative is therefore to construct a single pro-
tocol that directly handles many oblivious transfers, and prove it secure.4

Beyond the issue of security, this alternative also has the potential to yield
greater efficiency. For example, if an oblivious transfer protocol requires a
zero-knowledge proof, thenm executions would requirem copies of that proof
to be run. However, it may be possible to run a single proof, even when con-
sidering many executions. As we will see, this is indeed the case with the
above protocol.

We call a multi-execution protocol of this type batch oblivious transfer, and
define the batch OT functionality as follows:

FBOT : ((x0
1, x

1
1), . . . , (x

0
m, x1

m), (σ1, . . . , σm))→ (λ, (xσ1
1 , . . . , xσm

m)).

We note that private and one-sided batch oblivious transfer can be achieved
by directly invoking πP

OT and πOS
OT in parallel (this holds as long as the zero-

knowledge proof of knowledge for RDL composes in parallel, which can be
achieved by first constructing the parallel Σ protocol; see Section 6.4). Fur-
ther optimizations can be made by fixing the first element in the tuple
ā = (gα, ·, ·, ·). We omit the details here and continue with a detailed analysis
for fully simulatable batch oblivious transfer in the malicious setting.

4 This is not the same as parallel composition, because in parallel composition the honest

parties run each execution as if it is the only one being run. In contrast, we propose running
a single protocol which coordinates all the executions together.

7.4 Oblivious Transfer – Full Simulation 197

We construct our batch OT protocol by modifying Protocol 7.4.1 as fol-
lows. Conceptually, we run many copies of Protocol 7.4.1 in parallel, except
for the following changes:

1. We use the same h0, h1 values in each execution: this is of no conse-
quence because the DDH assumption holds even if the same base is used
in many tuples. That is, (gα, gβ , gαβ), (gα, gγ , gαγ) are indistinguishable
from (gα, gβ , gδ1), (gα, gγ , gδ2), even though gα appears in both. This can
be proven quite easily by a reduction to the basic DDH problem.

2. We provide a single zero-knowledge proof of Diffie-Hellman for all execu-
tions: We achieve this by combining all of the values sent by the receiver
into a single tuple, so that if all the values are correctly constructed then
the resulting tuple is of the Diffie-Hellman type, but if even one set of
values is incorrectly constructed then the resulting tuple is not of the
Diffie-Hellman type.

Before proceeding to the protocol, we describe how all the values are com-
bined into a single tuple for which a Diffie-Hellman proof can be used. We
demonstrate this for the special case of two executions. The receiver prepares
a single h0, h1 as in Protocol 7.4.1. It then prepares (a1, b10, b

1
1) and (a2, b20, b

2
1)

separately depending on its input σ1 in the first execution and σ2 in the sec-
ond execution; in both cases it prepares the values again as in Protocol 7.4.1.
As a first attempt, these values can be combined by computing

a = a1 · a2 and b =
b10
b11
· b

2
0

b21
. (7.4)

Observe that if the receiver prepares the tuples correctly, then the tuple
(h0/h1, a, b) is a Diffie-Hellman tuple. This is because the product of the
second and third elements of Diffie-Hellman tuples with the same first element
yields a Diffie-Hellman tuple. (That is, given (gα, gβ , gαβ) and (gα, gγ , gαγ),
it holds that (gα, gβ+γ , gαβ+αγ) is also a Diffie-Hellman tuple.) Recall that in
the basic protocol, each (h0/h1, a

j , bj0/b
j
1) is a Diffie-Hellman tuple, and so the

computation of a and b above yields a Diffie-Hellman tuple. One is tempted to
conclude that if however at least one of (h0/h1, a

1, b10/b
1
1) or (h0/h1, a

2, b20/b
2
1)

is not a Diffie-Hellman tuple, then (h0/h1, a, b) where a and b are as in (7.4)
is not a Diffie-Hellman tuple. However, this is not necessarily the case. For
example, if a1 = gr1 , a2 = gr2 then a malicious receiver can set b10 = hr1

0 , b11 =
hr1
1 · g and b20 = hr1

0 · g, b21 = hr1
1 . In this case, it holds that

a =
a1

a2
= gr1−r2

and

b =
b10
b11
· b

2
0

b21
=

hr1
0

hr1
1 · g

· h
r2
0 · g
hr2
1

=
hr1
0

hr1
1

· h
r2
0

hr2
1

=

(
h0

h1

)r1−r2

198 7 Oblivious Transfer and Applications

and thus (h0/h1, a, b) is a Diffie-Hellman tuple. Furthermore, observe that in
the first execution, the receiver learns both x0

1 and x1
1 (i.e., both inputs of

S in the first execution), and so this is not secure. In order to prevent this
attack, the sender chooses random value ρ1, ρ2 and requires the receiver to
prove that (h0/h1, a, b) is a Diffie-Hellman tuple when

a = (a1)ρ1 · (a2)ρ2 and b =

(
b10
b11

)ρ1

·
(
b20
b21

)ρ2

.

The reason why this helps is because a malicious receiver could fool the sender
above by preparing b10, b

1
1, b

2
0, b

2
1 so that the same deviation from the Diffie-

Hellman values is found in both b10/b
1
1 and b20/b

2
1 (but inverted). In this way,

when multiplied together, the deviation disappears and the result is a Diffie-
Hellman tuple. However, now the receiver can only succeed if this deviation
disappears after each quotient is raised to the power of an independent ran-
dom value. However, this occurs with only very small probability because the
random exponentiations cause the deviations from the Diffie-Hellman values
to be random. The full description is found in Protocol 7.4.3.

PROTOCOL 7.4.3 (Batch Oblivious Transfer πBOT)

• Inputs: The sender has a list of m pairs of strings (x0
1, x

1
1), . . . , (x

0
m, x1

m) and
the receiver has an m-bit string (σ1, . . . , σm).

• Auxiliary inputs: Both parties have the security parameter 1n and the de-
scription of a group G of prime order, including a generator g for the group and

its order q. In addition, they have a probabilistic polynomial-time algorithm V
that checks membership in G (i.e., for every h, V (h) = 1 if and only if h ∈ G).
The group can be chosen by R if not given as auxiliary input; in this case, it

needs to be possible for S to check that all values are chosen correctly.
• The protocol:

1. R chooses a single α0, α1 and computes h0, h1 as above. Then, R proves that
it knows the discrete log of h0, using a zero-knowledge proof of knowledge
for RDL.

2. Next, for every j = 1, . . . ,m, the receiver R chooses a random rj and com-

putes aj = grj , bj0 = h
rj
0 · g

σj and bj1 = h
rj
1 · g

σj . R sends all these values
to S.

3. S chooses random ρ1, . . . , ρm ←R {1, . . . , q} and sends them to R.

4. Both parties locally compute

a =

m∏
j=1

(aj)ρj and b =

m∏
j=1

(
bj0

bj1

)ρj

and then R proves that (G, q, g, h0/h1, a, b) is a Diffie-Hellman tuple.

5. S computes ej0, e
j
1 as in the basic protocol πOT, for every j.

6. R decrypts ejσj
as in the basic protocol πOT, for every j.

7.4 Oblivious Transfer – Full Simulation 199

Before proceeding to the proof, we observe that if R is honest then

a = g
∑

rjρj and b =

∏n
j=1(b

j
0)

ρj∏n
j=1(b

j
1)

ρj

=

∏n
j=1(h0)

rjρj∏n
j=1(h1)rjρj

=

(
h0

h1

)∑
rjρj

.

Therefore, (G, q, g, h0/h1, a, b) is a Diffie-Hellman tuple, as required. We now
prove that the protocol is secure.

Theorem 7.4.4 Assume that the DDH problem is hard in G with generator
g. Then, Protocol 7.4.3 securely computes FBOT in the presence of malicious
adversaries.

Proof (sketch). As we have seen, if the fact that (G, q, g, h0/h1, a, b) is
a Diffie-Hellman tuple implies that all (G, q, g, h0/h1, b

j , bj0/b
j
1) are Diffie-

Hellman tuples except with negligible probability, then the only difference
between the proof of security of the batch protocol and the original one
is that the simulator does not know the individual r values and so cannot
compute each σj . However, for this reason, R proves that it knows the discrete

log of h0; this enables SREC to extract α0 and therefore learn σj from hj
0. In

all other ways, the simulator remains identical. It therefore remains to show
that if (G, q, g, h0/h1, a, b) is a Diffie-Hellman tuple, then this implies that
all (G, q, g, h0/h1, a

j , bj0/b
j
1) are Diffie-Hellman tuples except with negligible

probability. Now, assume that there exists an index k (1 ≤ k ≤ m) such that
(G, q, g, h0/h1, a

k, bk0/b
k
1) is not a Diffie-Hellman tuple. Denote h = h0/h1

and let rk be such that ak = grk . Then, this implies that there exists a
value t ̸= 1 such that bk0/b

k
1 = hrk · t (this follows immediately from the fact

that h = h0/h1 and the assumption that there exists a non-Diffie-Hellman
tuple). Now, fix ρℓ for all ℓ ̸= k. This fixes the values a′ =

∏
j ̸=k(b

j)ρj ,

b′0 =
∏

j ̸=k(b
j
0)

ρj and b′1 =
∏

j ̸=k(b
j
0)

ρj . We have two cases:

1. Case 1 – (G, q, g, h, a′, b′0/b
′
1) is a Diffie-Hellman tuple:

We prove that (G, q, g, h, a, b0/b1) is not a Diffie-Hellman tuple in this case
as follows. Note first that a = a′ · (ak)ρk = a′ · grkρk (where rk is such that
ak = grk as above). Next, b0 = b′0 · (bk0)ρk and b1 = b′1 · (bk1)ρk . Therefore,
we have that b0/b1 = b′0/b

′
1 · (bk0)ρk/(bk1)

ρk = b′0/b
′
1 · (hrk · t)ρk . Letting r

be such that a′ = gr and b′0/b
′
1 = hr we have that (G, q, g, h, a, b0/b1) =

(G, q, g, h, gr+rk·ρk , hr+rk·ρk · tρk). Since G is a group of prime order and
t ∈ G we have that t is of order q and so tρk ̸= 1, implying that the tuple
is not of the Diffie-Hellman type, as required.

2. Case 2 – (G, q, g, h0/h1, a
′, b′0/b

′
1) is not a Diffie-Hellman tuple:

In this case, (G, q, g, h0/h1, a, b0/b1) can only be a Diffie-Hellman tuple if
there exists a value r such that a = a′ · (ak)ρk = gr and

b0/b1 = b′0/b
′
1 · (hrk · t)ρk = hr.

Let α and β be such that a′ = gα and b′0/b
′
1 = hβ (by the assumption

in this case, α ̸= β). This implies that (G, q, g, h0/h1, a, b0/b1) can only

200 7 Oblivious Transfer and Applications

be a Diffie-Hellman tuple if gr = gα+rk·ρk and hr = hβ+rk·ρk · tρk . Let γ
be such t = hγ (such a γ exists because h ∈ G and is thus a generator).
We have that (G, q, g, h0/h1, a, b0/b1) is a Diffie-Hellman tuple if and only
if r = α + rk · ρk and r = β + rk · ρk + γ · ρk and thus if and only if
0 = α − β − γ · ρk (where the operations here are in Zq). Since ρk is
uniformly chosen after α, β and γ are fixed (because these values are a
function of the values sent by R initially), we have that equality occurs
with probability 1/q only, which is negligible.

Exact efficiency. We conclude by analyzing the efficiency of the batch
oblivious transfer. For m executions, we have the following:

1. Rounds of communication: there are still six rounds of communication
because R’s initial values can still be sent with the first round of the zero-
knowledge protocol and S’s random values ρj can be sent together with
the second round of the zero-knowledge protocol. Furthermore, the proof
of discrete log of h0 can be run in parallel with the proof of the Diffie-
Hellman tuple. In order to do this, R sends h0, h1 and all of the aj , bj0, b

j
1

values to S in the first round, together with the first message of both
zero-knowledge protocols (this can be done because the first two rounds of
the zero-knowledge proofs are independent of the statements). Next, the
sender S sends R all of the ρj values together with the second message
of the zero-knowledge proofs. The parties then conclude the proofs, which
takes three more rounds, and finally S sends its last message.

2. Exponentiations: the number of exponentiations is equal to 14m + 23
(counting the number of exponentiations for all operations plus the num-
ber of exponentiations in each zero-knowledge proof).

3. Bandwidth: Overall 8m+ 15 group elements are sent.

Implementation. In [58], Protocol 7.4.3 was implemented over an elliptic
curve group, as part of a general implementation of the protocol of Chapter 4.
An interesting result of this implementation is the observation that when
oblivious transfers are batch, the savings made by using a random oracle are
insignificant. In this implementation, 320 oblivious transfers took an overall
time of 20 seconds per party and 480 oblivious transfers took an overall time
of 34 seconds per party (this is the total amount of time from the beginning
to end, which upper-bounds the actual computation of each side). We remark
that a fully simulatable oblivious transfer was needed in this implementation,
and due to the efficiency of Protocol 7.4.1, the oblivious transfers were not
the main bottleneck of the overall protocol.

7.5 Another Oblivious Transfer – Full Simulation 201

7.5 Another Oblivious Transfer – Full Simulation

In this section, we present another oblivious transfer protocol that is based
on [70]. The protocol is similar to that of Section 7.4 and is also based on the
private oblivious transfer of [62]. However, the protocol here is more efficient
in batch mode. Due to its similarity to the protocol above, the presentation
of the protocol here is more concise and we only sketch the proof of security.
A full description appears in Protocol 7.5.1 below.

PROTOCOL 7.5.1 (Another Fully Simulatable Oblivious Transfer)

• Inputs: The sender’s input is a pair (x0, x1) and the receiver’s input is a bit σ.
• Auxiliary input: Both parties hold a security parameter 1n and (G, q, g0),

where G is an efficient representation of a group of order q with a generator g0,
and q is of length n.

• The protocol:

1. The receiver R chooses random values y, α0 ← Zq and sets α1 = α0 + 1. R
then computes g1 = (g0)y , h0 = gα0

0 and h1 = gα1
1 and sends (g1, h0, h1) to

the sender S.
2. R proves, using a zero-knowledge proof of knowledge, that (g0, g1, h0,

h1
g1

) is
a DH tuple; see Protocol 6.2.4.

3. R chooses a random value r and computes g = (gσ)r and h = (hσ)r, and

sends (g, h) to S.
4. The sender operates in the following way:

– Define the function RAND(w, x, y, z) = (u, v), where u = (w)s · (y)t and
v = (x)s · (z)t, and the values s, t← Zq are random.

– S computes (u0, v0) = RAND(g0, g, h0, h), and (u1, v1) =
RAND(g1, g, h1, h).

– S sends the receiver the values (u0, w0) where w0 = v0 · x0, and (u1, w1)

where w1 = v1 · x1.
5. The receiver computes xσ = wσ/(uσ)r.

In order to see that the protocol works, observe that

wσ

(uσ)r
=

vσ · xσ

(uσ)r
=

gs · ht · xσ

((gσ)s · (hσ)t)r
=

gs · ht · xσ

((gσ)r)s · ((hσ)r)t
=

gs · ht · xσ

gs · ht
= xσ

and so the receiver obtains the desired output.
Regarding security, if (g0, g1, h0, h1) is not a DH tuple, then the receiver

can learn only one of the sender’s inputs, since in that case one of the two
pairs (u0, w0), (u1, w1) is uniformly distributed and therefore reveals no in-
formation about the corresponding input of the sender. This is proven in the
same way as Claim 7.2.3. The nice observation is that in order to prove that
(g0, g1, h0, h1) is not a DH tuple, it suffices to prove that (g0, g1, h0,

h1

g1
) is a

DH tuple, which can be efficiently proven in zero knowledge. The proof of
security takes advantage of the fact that a simulator can extract R’s input-
bit σ because it can extract the value α0 from the zero-knowledge proof of

202 7 Oblivious Transfer and Applications

knowledge proven by R. Given α0, the simulator can compute α1 = α0 + 1
and then check if h = gα0 (in which case σ = 0) or if h = gα1 (in which case
σ = 1). For simulation in the case where S is corrupted, the simulator sets
α0 = α1 and cheats in the zero-knowledge proof, enabling it to extract both
sender inputs. We have the following theorem:

Theorem 7.5.2 Assume that the DDH problem is hard in G with genera-
tor g. Then, Protocol 7.5.1 securely computes FOT in the presence of malicious
adversaries.

Exact efficiency. In the oblivious transfer without the zero-knowledge
proof, the sender computes eight exponentiations and the receiver computes
six. The zero-knowledge proof adds an additional five exponentiations for the
prover (which is played by the receiver) and seven for the verifier (which
is played by the sender). In addition, the parties exchange fourteen group
elements (including the zero-knowledge proof), and the protocol takes six
rounds of communication (three messages are sent by each party). In sum-
mary, there are 26 exponentiations, fourteen group elements sent and six
rounds of communication.

Batch oblivious transfer and efficiency. The main observation here
is that Steps 1 and 2 are independent of the parties’ inputs (x0, x1) and
σ. Furthermore, the tuple (g0, g1, h0, h1) can be reused for many exchanges.
Thus, a batch oblivious transfer is obtained by running Steps 1 and 2 once,
and then repeating Steps 3–5 for every execution. Observe also that the
executions do not need to be run at the same time, and so this optimization
can be utilized when oblivious transfers are carried out over time. This yields
an extraordinarily efficient batch protocol. Specifically, the cost of carrying
out m transfers is as follows:

1. Rounds of communication: Steps 3–5 can be run in parallel and so there
are still six rounds of communication.

2. Exponentiations: the number of exponentiations is equal to 11m+ 15.
3. Bandwidth: overall 4m+ 8 group elements are sent.

7.6 Secure Pseudorandom Function Evaluation

Intuitively, the secure pseudorandom function evaluation problem is as fol-
lows. One party holds a secret key k for a pseudorandom function and the
other party has an input x. The aim is for the second party to learn F (k, x),
where F is a pseudorandom function, without the first party learning any-
thing about x.

Formally, let (IPRF, FPRF) be an ensemble of pseudorandom functions,
where IPRF(1

n) is a probabilistic polynomial-time algorithm that generates
keys (or more exactly, that samples a function k ← IPRF(1

n) from the ensem-
ble), and FPRF(k, ·) is a keyed function that is indistinguishable from a truly

7.6 Secure Pseudorandom Function Evaluation 203

random functionHFunc(·). This is formalized by giving the distinguisher oracle
access to either FPRF(k, ·) or HFunc(·) and comparing its output in both cases;
for more details see [30]. The pseudorandom function evaluation functionality
FPRF is defined by

(k, x) 7→
{
(λ, FPRF(k, x)) if k is a valid key
(⊥, λ) otherwise

(7.5)

where k ← IPRF(1
n) and x ∈ {0, 1}m.5 Observe that the length of the input

x is m, whereas the security parameter is n.
We show how to compute this functionality for the Naor-Reingold [64]

pseudorandom function ensemble (with some minor modifications). For ev-
ery n, the function’s key is the tuple k = (G, q, g, ga0 , a1, . . . , am), where G is
the description of a cyclic group of prime order q (of length n), g is a gener-
ator of G, and a0, a1, . . . , am ←R Z∗q . Note that the function is defined over
inputs of length m. (This is slightly different from the description in [64] but
makes no difference to the pseudorandomness of the ensemble.) The validity
of the key k can be verified as follows. First, check that q is prime and that
g is a generator of G. Next, the values a1, . . . , am should be strings from Z∗q ,
and ga0 should also be of order q. (Note that for all a ∈ Z∗q , ga is of order
q because the group is of prime order, and so all elements are generators.
Thus, if g is correctly chosen then this check will pass.) The function itself is
defined by

FPRF(k, x) = ga0·
∏m

i=1 a
xi
i .

We remark that this function is not pseudorandom in the classical sense of
it being indistinguishable from a random function whose range is composed
of all strings of a given length. Rather, it is indistinguishable from a random
function whose range is the group G. Nevertheless, this is sufficient for most
applications.

A protocol for securely computing the pseudorandom function evaluation
functionality for the Naor-Reingold function was presented in [28] and in-
volves the parties running an oblivious transfer execution for every bit of the
input x. Consequently, the security level of this protocol relies heavily on the
security of the oblivious transfer subprotocol. Furthermore, by using OT with
different levels of security (privacy only, one-sided simulation and so on), we
obtain a set of protocols for FPRF with different levels of security.

7.6.1 Pseudorandom Function – Privacy Only

We begin by defining privacy for the pseudorandom function functionality.
This definition follows the same intuition of private oblivious transfer that
was given in Section 2.6.1. Specifically, privacy in the presence of a malicious

5 An alternative formulation is to take any arbitrary value if k is not a valid key in the
range of IPRF(1n).

204 7 Oblivious Transfer and Applications

P ∗1 is formalized by showing that P ∗1 cannot distinguish between the case
where P2 has input x and the case where it has input x′, for any two strings
x, x′ of the same size. Since P ∗1 does not obtain any output, this suffices.
In contrast, party P ∗2 does receive output; in particular, it learns FPRF(k, x)
for some value x of its choice. Thus, we must somehow require that it learn
FPRF(k, x) for one value of x and only one value of x. This is problematic
to define for the case of general protocols because the value x used by P ∗2 is
not necessarily well defined; see the discussion regarding oblivious transfer in
Section 2.6.1. In the case of oblivious transfer, we defined privacy specifically
for the case of a two-message protocol (see Section 2.6.1 as to why this is
beneficial). We therefore use the same methodology and define privacy for
the case of pseudorandom function evaluation specifically for the case of two-
message protocols.

Intuitively, in a two-message protocol (in which P ∗2 receives output), the
input used by P ∗2 is fully determined by its first message. Therefore, we wish
to formalize privacy by saying that for every first message from P ∗2 there exists
an input x such that P ∗2 knows FPRF(k, x), but for every other x′ ̸= x it cannot
distinguish FPRF(k, x

′) from random. As in the case of oblivious transfer, we
do not quantify over possible first messages. Rather, we observe that when
considering deterministic non-uniform adversaries (which are no weaker than
ppt adversaries), the first message is fully defined by the adversary’s code
and its auxiliary input. Then, a first attempt at defining privacy is to consider
a game where P ∗2 is given an oracle that it can query on every point except
for x (as determined by its first message), and then to require that it cannot
distinguish between the case where its oracle is a random function from the
case where its oracle is FPRF(k, ·), where k is the same key as used by P1

in the protocol. The reason P ∗2 ’s oracle is restricted to not computing the
function on x is to prevent P ∗2 from comparing the output of the protocol
execution with P1 (which is always FPRF(k, x)) to the computation of the
oracle on x. Although this definition is intuitively appealing, we were not
able prove security according to it.

We therefore define privacy in the case of a malicious P ∗2 in a different
way. First, we provide P ∗2 with an oracle (which is either a random function
or FPRF) and do not limit its access to the oracle; in particular, it may query
the oracle on x. Second, we compare a real protocol execution between P1

with input key k and P ∗2 with oracle FPRF(k, ·) to an execution between
an imaginary party P̂1 given HFunc(x) and P ∗2 given oracle access to HFunc,
where HFunc is a random function whose range is G. Intuitively, P̂1 is a “mini-
simulator” that is given HFunc(x) where x is the determined input used by
P ∗2 . Then, the requirement is that the view of P ∗2 generated by the execution
with P̂1 be indistinguishable from its view in a real execution with P1. This
means that P ∗2 ’s view in a world with a random function is indistinguishable
from its view in a world with FPRF, and thus all of the intuition stating that
the pseudorandom function behaves like a random function follows.

7.6 Secure Pseudorandom Function Evaluation 205

Definition 7.6.1 Let m = m(n) be a polynomial. A two-message two-party
probabilistic polynomial-time protocol (P1, P2) is a private pseudorandom func-
tion evaluation for messages of length m if the following holds:

• Non-triviality: If P1 and P2 follow the protocol then after an execution
in which P1 has for input a key k and P2 has for input any string x ∈
{0, 1}m, the output of P2 is FPRF(k, x).

• Privacy in the case of a malicious P ∗1 : For every non-uniform prob-
abilistic polynomial-time P ∗1 , for every pair of inputs x, x′ ∈ {0, 1}m and
every auxiliary input z ∈ {0, 1}∗, it holds that{
viewP∗

1
(P ∗1 (1

n, z), P2(1
n, x))

}
n∈N

c≡
{
viewP∗

1
(P ∗1 (1

n, z), P2(1
n, x′))

}
n∈N .

• Privacy in the case of a malicious P ∗2 : There exists a probabilis-
tic polynomial-time P̂1, such that for every non-uniform deterministic
polynomial-time receiver P ∗2 and every auxiliary input z ∈ {0, 1}∗, there
exists an input x ∈ {0, 1}m such that{

viewP∗
2
(P1(1

n, k);P
∗FPRF(k,·)
2 (1n, z))

}
n∈N

c≡
{
viewP∗

2
(P̂1(1

n,HFunc(x));P
∗HFunc

2 (1n, z))
}
n∈N

where k ← IPRF(1
n) is randomly chosen.

Constructing private pseudorandom function evaluation. Recall first
that the protocol for FPRF, as presented in [28], requires an oblivious transfer
evaluation for every bit in P2’s input. Moreover, as in private oblivious trans-
fer, P ∗2 ’s first message must determine its input x and the value it learns
from the execution. This can be achieved by having the parties run all of
the oblivious transfer executions (for all bits of P2’s input) simultaneously,
thereby having P2’s first message in the protocol determine its entire in-
put x. We use batch oblivious transfer, denoted by πP

BOT, for this task (see
Section 7.4.2). Such a protocol can be achieved by simply running the pri-
vate oblivious transfer protocol πP

OT (see Section 7.2) many times in parallel.
Formally, we define private batch oblivious transfer as follows:

Definition 7.6.2 Let m = m(n) be a polynomial. A two-message two-party
probabilistic polynomial-time protocol (S,R) is said to be a private batch obliv-
ious transfer for m executions if the following holds:

• Non-triviality: If S and R follow the protocol then after an execution
in which S has for input any vector x of pairs of strings xi

0, x
i
1 ∈ {0, 1}∗

(1 ≤ i ≤ m), and R has for input any string σ = σ1, . . . , σm ∈ {0, 1}, the
output of R is the vector (x1

σ1
, . . . , xm

σm
).

• Privacy in the case of a malicious S∗: For every non-uniform prob-
abilistic polynomial-time S∗, every auxiliary input z ∈ {0, 1}∗, and every
pair of inputs σ, σ′ ∈ {0, 1}m for R it holds that

206 7 Oblivious Transfer and Applications

{viewS∗(S∗(1n, z), R(1n, σ))}n∈N
c≡ {viewS∗(S∗(1n, z), R(1n, σ′))}n∈N .

• Privacy in the case of a malicious R∗: For every non-uniform deter-
ministic polynomial-time receiver R∗ and every auxiliary input z ∈ {0, 1}∗,
there exists a vector σ ∈ {0, 1}m such that for every triple of vectors
x0, x1, x ∈ {0, 1}∗ such that for every i |xi

0| = |xi
1| = |xi| it holds that

{viewR∗(S(1n, (x0, x1));R
∗(1n, z))}n∈N

c≡ {viewR∗(S(1n, (y0, y1));R
∗(1n, z))}n∈N

where for every i, yiσi
= xi

σi
and yi1−σi

= xi.

We now proceed to describe the protocol, using πP
BOT as defined above.

PROTOCOL 7.6.3 (Private Pseudorandom Function Evaluation πP
PRF)

• Inputs: The input of P1 is k = (ga0 , a1, . . . , am) and the input of P2 is a value

x of length m.
• Auxiliary inputs: Both parties have the security parameter 1n and are given

G, q and g, as described above.

• The protocol:

1. P1 chooses m random values r1, . . . , rm ←R Z∗
q .

2. The parties engage in a 1-out-2 private batch oblivious transfer protocol
πP
BOT. In the ith iteration, P1 inputs yi0 = ri and yi1 = ri · ai (with mul-

tiplication in Z∗
q), and P2 enters the bit σi = xi where x = x1, . . . , xm. If

the output of any of the oblivious transfers is ⊥, then both parties output
⊥ and halt.

3. Otherwise, P2’s output from the m executions is a series of values
y1x1

, . . . , ymxm
. If any value yixi

is not in Z∗
q , then P2 redefines it to equal 1.

4. P1 computes g̃ = g
a0·

∏m
i=1

1
ri and sends it to P2.

5. P2 computes y = g̃
∏m

i=1 yi
xi and outputs y.

Observe that Protocol 7.6.3 is a two-message protocol. In the first message,
P2 sends its receiver-message in πP

BOT, and in the second message P1 sends
its sender-message in πP

BOT together with g̃. We now prove security:

Theorem 7.6.4 Assume that πP
BOT privately computes FBOT as in Defini-

tion 7.6.2 and that the DDH assumption holds in G. Then, Protocol 7.6.3
privately computes FPRF as in Definition 7.6.1.

Proof. The first requirement of Definition 7.6.1 is that of non-triviality, and
we prove this first. Let k be P1’s input and let x be P2’s input. Non-triviality
follows from the fact that

y = g̃
∏m

i=1 yi
xi = g

a0·
∏m

i=1

yi
xi
ri = ga0·

∏m
i=1 a

xi
i = FPRF(k, x)

7.6 Secure Pseudorandom Function Evaluation 207

where the second last equality is due to the fact that for xi = 0 it holds that
axi
i = 1 and yixi

/ri = yi0/ri = 1, and for xi = 1 it holds that axi
i = ai and

yixi
/ri = yi1/ri = ai.
Next, we prove the requirement of privacy in the case of a malicious P ∗1 .

Recall that this requirement is that P ∗1 ’s view when P2 has input x is in-
distinguishable from its view when P2 has input x′, for any two strings
x, x′ ∈ {0, 1}m. Now, the view of an adversarial P ∗1 in Protocol 7.6.3 con-
sists merely of P2’s first message within πP

BOT. By the privacy of this protocol
we have that for every pair of inputs σ, σ′ ∈ {0, 1}m

{viewS∗(S∗(1n, z), R(1n, σ))}n∈N
c≡ {viewn

S∗(S∗(1n, z), R(1n, σ′))}n∈N .

Replacing S∗ with P ∗1 , R with P2, and σ and σ′ with x and x′ respectively,
we obtain that{

viewP∗
1
(P ∗1 (1

n, z), P2(1
n, x))

}
n∈N

c≡
{
viewP∗

1
(P ∗1 (1

n, z), P2(1
n, x′))

}
n∈N

as required.
We now prove privacy in the case of a malicious P ∗2 . We begin by describing

the party P̂1 from Definition 7.6.1. Party P̂1 receives a value w = HFunc(x)
and runs the following protocol. For every i it sets both of its inputs xi

0, x
i
1 to

the ith oblivious transfer to be the same random value ri ←R Z∗q , and thus

xi
0 = xi

1 = ri. Then, it sends P
∗
2 the value ĝ = w

∏m
i=1

1
ri .

We now reduce the security of Protocol 7.6.4 to the privacy of the batch
oblivious transfer πP

BOT and the pseudorandomness of FPRF. In order to do
this, we first define a hybrid gameH1 with the same parties P̂1 and P ∗2 , except
that instead of P̂1 receiving HFunc(x) and P ∗2 having an oracle HFunc, party P̂1

is given FPRF(k, x) and P ∗2 is given oracle FPRF(k, ·) for a random k ← I(1n).

(Note that P̂1 is the same in both games and thus computes ĝ = w
∏m

i=1
1
ri in

both games). The indistinguishability of the view of P ∗2 in an execution with
P̂1 with a random oracle HFunc from its view in an execution with P̂1 and an
oracle FPRF follows from a standard reduction to the pseudorandomness of
FPRF. (Observe that there is no difference in the instructions of the parties
and so a distinguisher for FPRF can just run P̂1 and P ∗2 using its oracle and
output P ∗2 ’s view at the end. If the oracle is random, then the view is as with
a random function, and otherwise the view is as in H1.)

Next, we define a game H2 between P ∗2 and a party P ′1 that is given x and
the key k = (ga0 , a1, . . . , am) of FPRF and works by setting the input vectors
to the oblivious transfers to be yi0 = yi1 = ri · axi

i (that is, if xi = 0 then
yi0 = yi1 = ri, and otherwise yi0 = yi1 = ri · ai). In addition, P ′1 computes

g̃′ = w

∏m
i=1

1

ri·a
xi
i . The view of P ∗2 in game H2 is identical to its view in

game H1 because the ri values are random, and thus ri · axi
i is identically

distributed to ri.

208 7 Oblivious Transfer and Applications

It remains to show that the view of P ∗2 in H2 is computationally indistin-
guishable from its view in a real execution of πP

PRF with P1. We prove this
via a reduction to the privacy of the batch oblivious transfer. Observe that
there are two differences between H2 and πP

PRF:

1. For every i, the inputs to the oblivious transfers inH2 are y
i
0 = yi1 = ri ·axi

i ,
whereas in πP

PRF we have that yi0 = ri and yi1 = ri ·ai. (Note that when P ∗2
uses input xi in the ith execution, it obtains ri · axi

i in both cases.)

2. P ′1 in H2 computes g̃′ = w

∏m
i=1

1

ri·a
xi
i , whereas P1 in πP

PRF computes g̃ =

g
a0·

∏m
i=1

1
ri . (Note that when w = ga0·

∏m
i=1 a

xi
i it follows that g̃′ = g̃.)

Let D be a distinguisher between the view of P ∗2 in H2 and its view in
πP

PRF. We construct a distinguisher DOT for the batch oblivious transfer with
receiver P ∗2 that works as follows. DOT is given x and k = (ga0 , a1, . . . , am).

Then, given the view of P ∗2 from the batch OT, it computes g̃′ = w

∏m
i=1

1

ri·a
xi
i

where w = FPRF(k, x). DOT then invokes D on the view of P ∗2 from the
batch OT concatenated with the message g̃′. Finally DOT outputs whatever
D outputs.

We now define vectors of inputs to the batch OT, and show that if D
successfully distinguishes between H2 and πP

PRF, then DOT successfully dis-
tinguishes between these vectors when used in batch OT. Specifically, we
define α0 = (r1, . . . , rm) and α1 = (r1 · a1, . . . , rm · am). In addition, we de-
fine α = (r1 · ax1

1 , . . . , r1 · ax1
1). (Since x is already used in this context for

P ∗2 ’s input, we replace the vectors x0, x1, x in Definition 7.6.1 with α0, α1, α.)
Now, let x = x1, . . . , xm be the input to all the oblivious transfers, defined
by P ∗2 (1

n, z). We then have that in the real execution of πP
PRF, the vectors of

inputs of P1 to the oblivious transfers are exactly α0, α1. Furthermore, in H2

the pair of inputs in the ith OT are both the same value ri ·axi
i . Observe that

when we define a pair of vectors β0, β1 (instead of y0, y1 in Definition 7.6.1)
so that for every i, βi

xi
= αi

xi
and βi

1−xi
= αi, it follows that for every i both

inputs are the same value ri ·axi
i . Finally, as we have already explained above,

the computed value g̃′ in H2 is exactly the same as the computed value g̃
in πP

PRF. Therefore, we conclude that the view generated by DOT (and given
to D) when DOT runs batch OT with a sender that inputs vectors β0, β1 is
identical to the view of P ∗2 in H2. Furthermore, the view generated by DOT

(and given to D) when DOT runs batch OT with a sender that inputs vectors
α0, α1 is identical to the view of P ∗2 in πP

PRF. Thus, DOT distinguishes with
the same probability as D. We conclude that the view of P ∗2 in H2 is indis-
tinguishable from its view in πP

PRF, and thus the view of P ∗2 in an execution
with P̂1 is indistinguishable from its view in πP

PRF, completing the proof.

Efficiency. The protocol has only two rounds and consists of running a single
batch OT with parameter m, with the addition of sending a single group
element and computing a single exponentiation. Thus, using the private OT

7.6 Secure Pseudorandom Function Evaluation 209

protocol of Section 7.2 we have that the number of exponentiations is 13m+1
(this can be reduced to 12m+ 2 by reusing the same α in all executions).

7.6.2 Pseudorandom Function – Full Simulation

We now present a protocol for computing the pseudorandom function evalua-
tion functionality that is fully secure in the presence of malicious adversaries.

PROTOCOL 7.6.5 (Fully Simulatable PRF Evaluation πPRF)

• Inputs: The input of P1 is k = (G, q, g, ga0 , a1, . . . , am) and the input of P2 is
a value x of length m.

• Auxiliary inputs: Both parties have the security parameter 1n and are given
G, q and g as above.

• The protocol:

1. P1 chooses m random values r1, . . . , rm ←R Z∗
q .

2. The parties engage in a 1-out-2 batch oblivious transfer protocol πBOT. In

the ith iteration, P1 inputs yi0 = ri and yi1 = ri · ai (with multiplication in
Z∗
q), and P2 enters the bit σi = xi where x = x1, . . . , xm. If the output of

any of the oblivious transfers is ⊥, then both parties output ⊥ and halt.
3. Otherwise, P2’s output from the m executions is a series of values

y1x1
, . . . , ymxm

. If any value yixi
is not in Z∗

q , then P2 redefines it to equal 1.

4. P1 computes g̃ = g
a0·

∏m
i=1

1
ri and sends it to P2.

5. P2 aborts if the order of g̃ is different than q. Otherwise, P2 computes

y = g̃
∏m

i=1 yi
xi and outputs y.

We remark that the only differences between Protocols 7.6.5 and 7.6.3 are
that (1) the batch OT here is fully secure whereas in Protocol 7.6.3 it only
achieved privacy, and (2) we require P2 to check g̃ in the last step because
we need correctness here (and this was not required for Protocol 7.6.3).

Theorem 7.6.6 Assume that πBOT securely computes FBOT in the presence
of malicious adversaries. Then Protocol 7.6.5 securely computes FPRF in the
presence of malicious adversaries.

Proof. We separately analyze the case where P1 is corrupted and the case
where P2 is corrupted. We prove the theorem in the hybrid model where a
trusted party is used to compute FBOT; see Section 2.7.

Party P1 is corrupted. Let A be an adversary controlling P1. We construct
a simulator S1 as follows.

1. S1 receives A’s inputs for all the m iterations of the oblivious transfers for
FBOT (recall our analysis is in the hybrid model). Let yi0 and yi1 denote

210 7 Oblivious Transfer and Applications

the inputs that A handed S1 in the ith iteration. In addition, S1 receives
from A the message g̃.

2. In case A does not send a valid message (where S1 conducts the same
check as the honest P2 does), S1 simulates P2 aborting and sends ⊥ to the
trusted party for FPRF. Otherwise, S1 checks the validity of all the yi0 and
yi1 values and modifies them to 1 if necessary (as an honest P2 would). S1
defines g0 = g̃. Then, for every i = 1, . . . ,m, S1 defines:

ai =
yi1
yi0

and gi = (gi−1)
yi
0 .

3. S1 defines the key used by A to be k = (p, q, gm, a1, . . . , am) and sends it
to FPRF.

This completes the description of S1. It is immediate that the view of A is
identical in a real and simulated execution because it receives no messages in
a hybrid execution where the oblivious transfers are run by a trusted party.
It thus remains to show that the output received by P2 in a real execution is
the same as in the ideal model. In order to see this, first note that S1 and P2

replace any invalid yi0 or yi1 values in the same way. Next, note that for any
x ∈ {0, 1}m

FPRF(k, x) = g
∏m

i=1 a
xi
i

m = g̃
∏m

i=1 yi
0·a

xi
i = g̃

∏m
i=1 yi

0·
(

yi
1

yi
0

)xi

= g̃

∏m
i=1

yi
0

(yi
0)

xi
·(yi

1)
xi

where the first equality is by the definition of the key by S1, the second
equality is by the fact that gm = g̃

∏m
i=1 yi

0 , and the third equality is by the fact
that ai = yi1/y

i
0. Notice now that if xi = 0 we have that yi0/(y

i
0)

xi ·(yi1)xi = yi0,
whereas if xi = 1 we have that yi0/(y

i
0)

xi · (yi1)xi = yi1. Thus,

m∏
i=1

yi0
(yi0)

xi
· (yi1)xi =

m∏
i=1

yixi
,

exactly as computed by P2 in a real execution. That is, the computation of
FPRF(k, x) as carried out by the trusted party using the key supplied by S1
is the same as that obtained by P2 in a real execution. Formally,

{idealFPRF,S1(z),1((G, q, g, ga0 , a1, . . . , am), x, n)}
≡ {hybridBOT

πPRF,A(z),1((G, q, g, ga0 , a1, . . . , am), x, n)}.

This completes the case where P1 is corrupted.

Party P2 is corrupted. In this case, S2 learns the full input x of A control-
ling P2 (through the oblivious transfer inputs). In each oblivious transfer, S2
hands A a random value ri ←R Z∗q (as if coming from the trusted third party
computing the batch OT). After all of the oblivious transfers have concluded,
S2 sends x to FPRF and receives back a value y = FPRF(k, x). S2 then sets

g̃ = y
∏m

i=1
1
ri and sends it to A. This completes the simulation.

7.6 Secure Pseudorandom Function Evaluation 211

We claim that the view of A in an execution of πPRF with P1 (using a
trusted party for the oblivious transfers) is identical to its view in an ideal
execution with S2. This is true because all of the ri values are distributed
identically to the messages sent in a real execution (note that ri and ri · ai
have the same distribution). Furthermore, in a real execution, it holds that

g̃Π
m
i=1y

i
xi = ga0Π

m
i=1a

xi
i = y, where the xi values are those used by P2 in the

oblivious transfers. Likewise, in the simulation it holds that

g̃Π
m
i=1y

i
xi =

(
y
∏m

i=1
1
ri

)Πm
i=1ri

= y = ga0Π
m
i=1a

xi
i

where the first equality is due to the fact that the simulator sets each yi value
received by A to ri, and the last equality is by the fact that y is computed
correctly by the trusted party. Thus, the joint distribution over the values
received by A and g̃ in the hybrid and ideal executions are exactly the same.
Formally,

{idealFPRF,S2(z),2((G, q, g, ga0 , a1, . . . , am), x, n)}
≡ {hybridBOT

πPRF,A(z),2((G, q, g, ga0 , a1, . . . , am), x, n)},

and the proof is concluded.

Remark. Observe that when proving the security of Protocol 7.6.3 in The-
orem 7.6.4 we assumed that the DDH assumption holds, whereas when prov-
ing the security of Protocol 7.6.5 in Theorem 7.6.6 we did not. This may
seem strange at first sight. However, our definition of privacy only compares
the output received by P2 to a random function, and this only holds if the
Naor-Reingold function is pseudorandom, which in turn relies on the DDH
assumption. In contrast, the definition of security for the pseudorandom func-
tion evaluation functionality which is based on simulation merely states that
the view of a corrupted party in a real execution is indistinguishable from
its view when a trusted party computes the specified Naor-Reingold func-
tion. The important point to note is that Protocol 7.6.5 securely computes
the Naor-Reingold function even if it is not pseudorandom. (One could argue
that this should be called Naor-Reingold evaluation and not pseudorandom
function evaluation. Nevertheless, under the DDH assumption, this is a pseu-
dorandom function evaluation.)

7.6.3 Covert and One-Sided Simulation

As shown above, protocol πPRF is carried out by m parallel invocations of
oblivious transfers. Therefore, we conclude that by employing a subprotocol
for FOT that is secure in the presence of covert adversaries, we derive a
protocol for FPRF that is also secure in the presence of covert adversaries.

212 7 Oblivious Transfer and Applications

Theorem 7.6.7 Assume that πCO
BOT securely computes the batch oblivious

transfer functionality in the presence of covert adversaries with deterrent ϵ,
and let πCO

PRF be the same as Protocol 7.6.5 except that πCO
BOT is used instead of

πBOT. Then πCO
PRF securely computes FPRF in the presence of covert adversaries

with deterrent ϵ.

Similarly, by replacing the batch oblivious transfer in protocol πPRF with
batch OT that is secure under one-sided simulation we obtain a protocol for
πPRF that achieves one-sided simulation. In this case, the proof of security
when P ∗1 is malicious can be taken from protocol πP

PRF (because in both cases
privacy only is needed), and the proof of security when P ∗2 is malicious can
be taken from protocol πPRF (because in both cases simulation is needed).

Theorem 7.6.8 Assume that πOS
BOT securely computes the batch oblivious

transfer functionality with one-sided simulation, and let πOS
PRF be the same as

Protocol 7.6.5 except that πOS
BOT is used instead of πBOT. Then πOS

PRF securely
computes FPRF with one-sided simulation.

7.6.4 Batch Pseudorandom Function Evaluation

In a similar way to batch oblivious transfer, we define the batch pseudoran-
dom function evaluation functionality as follows:

FBPRF : (k, (x1, . . . , xℓ))→ (λ, (FBPRF(k, x1), . . . , FBPRF(k, xℓ))). (7.6)

Observe that the definition requires that the PRF evaluations be computed
relative to the same key. Thus, it is not possible to simply run πPRF many
times, because a malicious P ∗1 may use different keys in different executions.
Thus, correctness – in the sense that the output of the honest party is cor-
rectly computed as in the functionality definition – is not achieved. (This is in
contrast to batch OT where the parties may use any input in any execution
and the only issue is to make the batch execution more efficient than just
running the basic protocol many times.) Due to the above, we do not present
a protocol for batch pseudorandom function evaluation that is fully secure
in the presence of malicious adversaries. However, note that in the models
of privacy only and one-sided simulation, there is no requirement of correct-
ness. Thus, simultaneously running many executions of protocols πP

PRF and
πOS

PRF does yield batch PRF evaluation that achieves privacy and one-sided
simulation, respectively. We have the following proposition (for the sake of
clarity, we state it for one-sided simulation only):

Proposition 7.6.9 Assume that πOS
BOT securely computes FBOT with one-

sided simulation, and let πOS
BPRF be many parallel executions of πOS

PRF, which
uses πOS

BOT. Then Protocol πOS
BPRF securely computes FBPRF with one-sided sim-

ulation.

Chapter 8

The kth-Ranked Element

In this chapter we describe the construction of Aggarwal et al. [1] for securely
computing the kth-ranked element of the union of two distributed and sorted
data sets in the presence of semi-honest and malicious adversaries. An impor-
tant special case of this problem is that of securely computing the median.
The construction of [1] is based on the iterative protocol of [74] for computing
the kth-ranked element with low communication complexity. The secure im-
plementation of this fundamental problem has been looked at by researchers
in the last few years, mostly due to its potential applications. One particular
setting is where the data sets contain sensitive data, yet the particular kth
element is of mutual interest. For instance, two health insurance companies
may wish to compute the median life expectancy of their insured smokers,
or two companies may wish to compute the median salary of their employ-
ees. By running secure protocols for these tasks, sensitive information is not
unnecessarily revealed. In this chapter we show how to securely compute the
two-party kth element functionality FKth, where each party enters a set of
values from some predetermined domain and the output is the kth element
of the sorted list comprised of the union of these sets.

8.1 Background

The functionality computing the kth-ranked element is defined as follows:

Definition 8.1.1 Let X and Y be subsets of a domain {0, 1}p(n) for some
known polynomial p(n). Then, the functionality FKth is as follows:

((X, k), (Y, k)) 7→
{
((X ∪ Y)k, (X ∪ Y)k) if |X ∪ Y | ≥ k
(⊥,⊥) otherwise

where (Γ)i denotes the ith element within the sorted set Γ .

We remark that the protocol of [1] presented here in Section 8.3 that is
secure in the presence of malicious adversaries is a rare example of a proto-
col that achieves this level of security without having the parties commit to
their inputs at the onset of the protocol (as in the general construction in
Chapter 4). Rather, the simulator is able to construct the inputs used by the

213C. Hazay, Y. Lindell, Efficient Secure Two-Party Protocols,
Information Security and Cryptography, DOI 10.1007/978-3-642-14303-8_8,
© Springer-Verlag Berlin Heidelberg 2010

214 8 The kth-Ranked Element

adversary dynamically, by continually rewinding the adversary. This is fea-
sible in this context because the communication complexity of the protocol
is logarithmic in the input length, and so continued rewinding of the adver-
sary (which can be exponential in the communication complexity) yields a
polynomial-time strategy.

8.1.1 A Protocol for Finding the Median

We begin by providing a detailed description of a protocol for computing the
median with only logarithmic communication; this protocol is due to [74].
This protocol is not supposed to be secure; however, it forms the basis of
the secure protocols presented below. We focus our attention on the case
in which the parties compute the median of two equally-sized disjoint sets,
where the size of each set is a power of 2. (By definition, the median of a set
X with an even number of elements is often taken to be the mean of the two
middle values. Yet, in this chapter we consider the element ranked ⌈|X|/2⌉.)
We stress that the general case can be reduced to this simpler instance;
see below for more details. The protocol is repeated in rounds where in each
round the parties compare the medians of their updated sets, and then remove
elements from their sets accordingly. Specifically, if, for instance, the median
of party P1 is larger than the median of P2, then P1 removes from its set
the elements that are larger than or equal to its median, whereas P2 removes
the elements that are smaller than its median, and vice versa. The protocol
is concluded when the data sets are of size 1, yielding that the number of
iterations is logarithmic in the size of the sets. Let Γ be a sorted list with ℓ
items. We write Γ⊤ to denote elements γℓ/2+1, . . . , γℓ ⊂ Γ and by Γ⊥ denote
the elements γ1, . . . , γℓ/2 ⊂ Γ . The formal details of the protocol are given in
Protocol 8.1.2.

PROTOCOL 8.1.2 (A Protocol for Computing the Median – FindMed)

• Input: Disjoint data sets X for party P1 and Y for party P2, with |X| = |Y | =
2ℓ for some ℓ.

• Output: The median m of X ∪ Y .
• The protocol:

1. If |X| = |Y | = 1, then output max(X,Y).

2. Else (if |X|, |Y | > 1):
a. P1 computes the median mX of X and sends it to P2.
b. P2 computes the median mY of Y and sends it to P1.
c. If mX > mY , then P1 sets X = X⊥ and P2 sets Y = Y ⊤.

d. Else (if mX < mY), then P1 sets X = X⊤ and P2 sets Y = Y ⊥.
e. Return FindMed(X,Y).

A protocol for computing the median with logarithmic communication

8.1 Background 215

The main idea behind the correctness of the protocol is that an equal
number of elements is removed from two sides of the median of X∪Y , and so
it does not change during the execution. That is, the median of X ∪ Y is the
median of (X⊥, Y ⊤) when mx ≥ mY and vice versa. This can be seen from
the following concrete example. Assume that in some iteration, mX ≥ mY

and that |X| = |Y | = 2i for some i. Now, recall that by definition the median
is the (2i + 1)th-ranked element. Therefore, each item that P1 removes is
larger than at least 2i + 1 elements in the combined sets, including the final
median (meaning that, the median must be smaller than mX). Likewise, the
elements removed by P2 are smaller than at least 2i + 1 elements of the
combined sets, including the final median (meaning that the median must be
larger than mY). We conclude that the number of removed elements that are
larger than the final median matches the number of removed elements that
are smaller than the final median. Formally,

Claim 8.1.3 Let X and Y be disjoint sets such that |X| = |Y | = 2i for
some i > 0, and let mX and mY be the medians of X and Y , respectively. If
mX > mY then mX > m ≥ mY , where m is the median of X ∪ Y .

Proof. Within the set X there are exactly 2i−1 elements that are strictly
smaller thanmX (becausemX is the median and we define it to be the (2i−1+
1)th element). Likewise, within the set Y there are exactly 2i−1 elements that
are strictly smaller than mY . Since mX > mY , every element that is smaller
than mY in Y is also smaller than mX . In addition, mY itself is smaller than
mX . This implies that within the set X ∪Y there are at least 2i+1 elements
that are strictly smaller than mX . Therefore, the median m of X ∪ Y must
be strictly less than mX . That is, m < mX .

Next, within the set Y there are exactly 2i−1 elements that are greater
than or equal to mY (because mY is the median). Likewise, within the set X
there are exactly 2i−1 elements that are greater than or equal to mX . Since
mY < mX , every element that is greater than or equal to mX is greater than
mY . This implies that within the set X ∪ Y there are at least 2i elements
that are greater than or equal to mY . Therefore, the median m of X ∪ Y
must be greater than or equal to mY . That is, m ≥ mY .

We now use the above to prove correctness of the algorithm.

Corollary 8.1.4 Let X and Y be disjoint sets such that |X| = |Y | = 2i

for some i, and let mX and mY be the medians of X and Y , respectively. If
mX > mY then the median of X ∪ Y is the median of X⊥ ∪ Y ⊤.

Proof. Observe that X⊥ is obtained by removing 2i−1 elements that are
greater than or equal to mX from X. Likewise Y ⊤ is obtained by removing
2i−1 elements that are strictly smaller thanmY from Y . SincemX > m ≥ mY

it follows that in X⊥ ∪ Y ⊤ we remove exactly 2i−1 elements that are strictly
smaller than m and 2i−1 elements that are strictly greater than m. Therefore,
the median value m remains the same as in X ∪ Y .

216 8 The kth-Ranked Element

We remark that the above deals with the case where mX > mY ; the proof
for the case where mY < mX is symmetrical.

Protocol efficiency. Clearly, the number of iterations is log |X|+ 1 (since
each set is reduced by half in each round). Moreover, in each iteration the
parties exchange p(n) bits (for comparing their medians). Therefore, the total
communication cost is O(p(n)·log |X|). The computation costs are dominated
by the sorting algorithm that the parties employ at the beginning of the
protocol, yielding O(|X| log |X|+ |Y | log |Y |) symmetric operations.

8.1.2 Reducing the kth-Ranked Element to the Median

As we have described, Protocol 8.1.2 finds the median on simplified input
instances X and Y where

1. X and Y are disjoint sets (i.e., X ∩ Y = ϕ),
2. |X| = |Y |, and
3. there exists an integer ℓ such that |X| = 2ℓ for some ℓ.

We now show that the ability to compute the median in the above simplified
case suffices for computing the kth-ranked element of arbitrary lists X and
Y . In order to show this, we first describe a series of modifications that each
party needs to carry out locally on its own list.

Input modification. Let X and Y be two lists of arbitrary length for
P1 and P2, respectively. In order for the parties to compute the kth-ranked
element of their list they each carry out the following local manipulation on
their lists:

1. Each party sorts its list in ascending order.
2. Each party constructs a list of size exactly k from its input:

a. Party P1: If |X| ≥ k, P1 takes the k smallest elements from its sorted
list. If |X| < k, then P1 adds k − |X| elements to its list that are all
guaranteed to be larger than all elements in X and Y (we denote such
elements by +∞).
If k is not a power of 2, let ℓ be the smallest integer for which k ≤ 2ℓ. P1

then adds an additional 2ℓ − k elements that are equal to +∞, thereby
obtaining a list of size 2ℓ.

b. Party P2: If |Y | ≥ k, P1 takes the k smallest elements from its sorted
list. If |Y | < k, P1 adds k − |Y | elements +∞ to its list; each element
being equal to +∞.
In the same way as P1, if k is not a power of 2, P1 adds an additional
2ℓ − k elements to its list (where ℓ is as above). However, for P2 these
elements all equal −∞ (i.e., are guaranteed to be smaller than all the
elements in X and Y).

8.1 Background 217

3. The final modifications that the parties make to their lists are to ensure
that all elements in all lists are distinct. In order to do this, each party
concatenates a unique index to each element, and a bit to distinguish
inputs of P1 from inputs of P2. This concatenation is carried out as follows:

a. Party P1: Party P1 concatenates to each element the bit 0 followed by
the index of the element in its sorted list X. (This concatenation is to
the least significant bits of the elements.)

b. Party P2: Party P2 concatenates to each element the bit 1 followed by
the index of the element in its sorted list Y .

4. We denote the modified lists of the parties by X ′ and Y ′, respectively.

It is easy to see that the result of the above manipulation is two disjoint lists
X and Y of distinct elements (i.e., sets), of size exactly 2ℓ each, for some
integer ℓ.

Computing the kth-ranked element. We now show that the result of
applying Protocol 8.1.2 for finding the median of the modified lists above is
the kth-ranked element of X ∪Y , as long as |X ∪Y | ≥ k (observe that if this
does not hold, then there is no kth-ranked element in any case). That is, the
median of X ′ ∪ Y ′ equals the kth-ranked element of X ∪ Y . In order to see
this, we separately look at the cases where the original input lists are larger
and smaller than k:

1. Case 1 – |X| > k and |Y | > k: In this case, both parties take their k
smallest elements. The result is that both parties hold lists of exactly
size k, and so the median of the combined lists is exactly the kth-ranked
element of the original lists. In addition, if k is not a power of 2, party P1

adds exactly 2ℓ−k values +∞ to its list, and party P2 adds exactly 2ℓ−k
values −∞ to its list. Since they add the same number of values each, the
median of the combined lists remains unchanged. Finally, adding a bit and
an index clearly has no effect on the median.

2. Case 2 – |X| ≤ k or |Y | ≤ k: If a party’s original list is smaller than k,
it works exactly as above except that it adds an additional k− |X| values
+∞ to its list. Since the size of the combined original input lists X ∪ Y
is greater than k, adding +∞ to one or both lists does not change the
result. In particular, the median of the lists after adding these k − |X| or
k−|Y | values is the kth-ranked element of X ∪Y . The rest of the analysis
remains the same as in the previous case.

Finally, we remark that the inputs X ′ and Y ′ fulfill the assumptions on the
input sets as required by Protocol 8.1.2 (i.e., they are disjoint sets of the
same size, which is a power of 2). Thus, the algorithm correctly computes the
median of X ′ ∪ Y ′, which is the kth-ranked element of X ∪ Y , as required.

Security in the semi-honest and malicious cases. It remains to argue
that the result of applying a secure protocol for computing the median of
combined lists X ′ ∪ Y ′ is a secure protocol for computing the kth-ranked

218 8 The kth-Ranked Element

element of X∪Y . First observe that the modifications to the input sets are all
carried out locally and therefore do not reveal any information. Furthermore,
since the output when computing the median of X ′ ∪ Y ′ equals the output
when computing the kth-ranked element of X∪Y , and a secure protocol only
reveals the output, security is preserved. One important subtlety however is
to deal with the case where a party may not correctly modify its input. This
does not arise in the semi-honest case. However, it must be dealt with in the
malicious case. Specifically, we must consider the possibility that a malicious
party replaces some of its original input values also with +∞ or −∞. This
is seemingly not allowed because +∞ and −∞ are outside of the domain.
However, this makes no difference because in an ideal execution of the kth-
ranked element a malicious party can use the maximum and minimum values
of the domain in order to achieve exactly the same effect.

From now on, we will consider only the problem of finding the median
of two disjoint sets of size 2i for some i. We denote the functionality that
computes this by FMED.

8.2 Computing the Median – Semi-honest

In this section we present a protocol for securely computing the median of two
distributed sets that achieves security in the presence of semi-honest adver-
saries. The protocol follows the outline of protocol FindMed from Section 8.1.1
for finding the median with low communication complexity. Intuitively, a se-
cure protocol can be derived from FindMed by having the parties use a secure
subprotocol to compare their local medians mX and mY , instead of just send-
ing them to each other. At first sight, this seems to reveal more information
than allowed. Specifically, in a secure protocol the parties are only allowed
to learn the final output. However, here they seemingly learn more because
in each iteration they learn whether their local median is greater or less than
the other party’s local median. Nevertheless, as we will see, this information
can actually be obtained from each party’s input and output alone. Thus,
surprisingly, this actually yields a secure protocol.

The protocol πSH
MED below for securely computing the median in the pres-

ence of semi-honest adversaries uses a subprotocol πSH
GT for securely computing

the greater-than functionality FGT in the presence of semi-honest adversaries.
The greater-than functionality FGT is defined by FGT(x, y) = (1, 1) if x > y,
and FGT(x, y) = (0, 0) otherwise. In addition, it also uses a subprotocol πSH

MAX

for securely computing the maximum functionality FMAX(x, y) = max{x, y}
in the presence of semi-honest adversaries.

8.2 Computing the Median – Semi-honest 219

PROTOCOL 8.2.1 (Secure Median – Semi-Honest Adversaries πSH
MED)

• Inputs: The inputs of P1 and P2 are disjoint sets X,Y ⊆ {0, 1}p(n) of size
exactly 2ℓ each for some integer ℓ.

• Auxiliary inputs: A security parameter 1n.

• The protocol:

1. Denote X1 = X and Y 1 = Y .
2. For j = 1, . . . , ℓ do:

a. P1 and P2 locally compute the respective medians mj
X and mj

Y of their
respective sets Xj and Y j .

b. P1 and P2 run subprotocol πSH
GT; party P1 inputs mj

X and party P2 inputs

mj
Y . Let b denote the result of the computation.

– If b = 1 (i.e., mj
X > mj

Y), then P1 sets Xj+1 = (Xj)⊥ (i.e., Xj+1

is derived from Xj by removing all of the elements that are greater
than or equal to mj

X). Moreover, P2 sets Y j+1 = (Y j)⊤ (i.e., Y j+1

is derived from Y j by removing all of the elements that are strictly

smaller than mj
Y).

– If b = 0 (i.e., mj
X ≤ mj

Y), then P1 sets Xj+1 = (Xj)⊤ and P2 sets
Y j+1 = (Y j)⊥.

c. The parties continue to the next iteration with their new data sets.

3. Obtain output: In this stage, |Xℓ+1| = |Y ℓ+1| = 1 and the parties run
a subprotocol πSH

MAX in order to obtain the maximum of the final elements.
The parties both output the result of this computation.

We now prove the security of Protocol 8.2.1.

Theorem 8.2.2 Assume that πSH
GT and πSH

MAX securely compute the greater-
than and maximum functionalities in the presence of semi-honest adversaries.
Then Protocol 8.2.1 securely computes FMED in the presence of semi-honest
adversaries.

Proof. We prove the security using the simpler formulation in Equa-
tions (2.1) and (2.2) in Section 2.2. As such, we first need to prove correctness;
however, this follows immediately from the proof of correctness of Protocol
FindMed above. We now proceed to prove security in the case where P1 is
corrupted; the case where P2 is corrupted is identical due to the symmetry
of the roles of P1 and P2 in the protocol. We present the proof in a hybrid
model in which a trusted party is used to compute FGT and FMAX.

We construct a simulator S1 that generates the view of P1, as in (2.1).
Observe first that the only messages that P1 sees when running Protocol 8.2.1
in the hybrid setting are the outputs from FGT and FMAX. Therefore, given
P1’s input X and the median m of X ∪Y , the simulator S1 needs to emulate
these hybrid outputs by playing the role of the trusted party for FGT and
FMAX. S1 works as follows:

1. S1 receives the input set X and the median m of X ∪ Y .

220 8 The kth-Ranked Element

2. S1 simulates P1’s view in iteration j: Let mj
X denote the median

value of Xj as P1 would compute it in the protocol. Then, if mj
X ≤ m, S1

simulates the output of FGT in this iteration to be 0 (as in the case where
mj

X ≤ mj
Y in the protocol). Otherwise, S1 simulates the output to be 1.

S1 sets Xj+1 in the same way as P1 would in the protocol (i.e., if b = 0
then Xj+1 = X⊤, and if b = 1 then Xj+1 = X⊥).

3. S1 simulates the obtain output phase: At this point |Xℓ+1| = 1. S1

simulates the output of FMAX to be the median m that it received above.

We claim that the view generated by S1 is identical to the view of P1 in a
hybrid execution of the protocol where a trusted party is used to compute
FGT and FMAX. We first prove that in every iteration j, mj

X > m if and

only mj
X > mj

Y (where mj
X is the median of Xj , m is the median of X ∪ Y ,

and mj
Y is the median of Y j based on the real input set Y of P2 that S1

is not given). This follows immediately from Claim 8.1.3 that states that if
mj

X > mj
Y then mj

X > m ≥ mj
Y . We prove the two directions:

1. Direction 1 – if mj
X > mj

Y then mj
X > m: this is written directly in the

claim.
2. Direction 2 – if mj

X > m then mj
X > mj

Y : in order to see this, observe

that Claim 8.1.3 is symmetric and thus if mj
X < mj

Y then mj
X ≤ m < mj

Y

(by simply exchanging the names X and Y). In other words, mj
X < mj

Y

implies that mj
X ≤ m, and so it cannot be that mj

X > m and mj
X < mj

Y .

This proves that the view of P1 in every iteration generated by S1 is identical
to its view in a real execution. Regarding the last phase, this also follows
from the correctness of Protocol FindMed because the correct median of the
sets is the maximum of the two remaining elements at the end.

Efficiency. The number of iterations in Protocol 8.2.1 is exactly ℓ. By using
a constant-round subprotocol for computing FGT and FMAX we have that the
total number of rounds of communication is O(ℓ). Specifically, if the protocol
of Chapter 3 is used, then this number is exactly 3ℓ+3 (three rounds for every
iteration and another three for the output phase). However, since there are
three rounds in the protocol (a message from P2 to P1 followed by a message
from P1 to P2 and finally a reply from P2 to P1) and party P2 receives its
output after the second round, P2 can send its input for the next execution
together with its round 3 message that it sends to P1. Therefore, we obtain
execution 2ℓ + 2 rounds, which is logarithmic in the size of the input sets.
Furthermore, the computation and communication complexity is inherited
from the cost of computing πSH

GT and πSH
MAX. See Section 3.5 for an exact analysis

(e.g., given that the circuit for computing greater than and maximum is of
linear size, the total computation cost is O(ℓ · p(n)) exponentiations, where
p(n) is the number of bits used to represent each element in the input sets).

8.3 Computing the Median – Malicious 221

8.3 Computing the Median – Malicious

In order to make the protocol for computing the median secure also for the
case of malicious adversaries, it is necessary to prevent a malicious adversary
from effectively deviating from the protocol specification. In addition to us-
ing subprotocols πGT and πMAX that are secure in the presence of malicious
adversaries, we also have to ensure that a corrupted party uses “consistent
inputs” in every iteration. In order to understand this consistency require-
ment observe that if the local median of P1 in the first iteration is m1

X and
m1

X > m1
Y , then in all later iterations the median used by P1 must be strictly

smaller than m1
X . This is because P1 sets X2 = X⊥ and because all elements

are distinct. Furthermore, if m1
X < m1

Y , then in all later iterations the me-
dian used by P1 must be greater than m1

X (because P1 sets X2 = X⊤). More

generally, the local median mj
X must be less than mi

X where i (1 ≤ i < j)
is the last iteration in which P1 received output b = 1, and must be greater
than mi′

X where i′ (1 ≤ i′ < j) is the last iteration in which P1 received
output b = 0. A similar argument holds with respect to P2. The protocol
for the case of malicious adversaries enforces this consistency requirement
between iterations by using a reactive greater-than functionality, described
below. As we will see, it turns out that enforcing this suffices for obtaining
full simulation.

8.3.1 The Reactive Greater-Than Functionality

In the protocol for the semi-honest setting, the parties used a simple greater-
than functionality FGT. As we have already discussed, in the case of malicious
adversaries it is necessary to enforce that the inputs used by the parties
are within the “allowed bounds”, based on the inputs they used in previous
iterations. We achieve this by making the functionality reactive, meaning that
it keeps state between executions. Specifically, the functionality stores local
“lower” and “upper” bounds for each party, based on the inputs and outputs
of previous iterations. More formally, let mj

X and mj
Y denote the medians

received from P1 and P2 respectively in iteration j. Then, if mj
X > mj

Y

(meaning that P1 should remove all values that are greater than or equal to
mj

X from its input set, and P2 should remove all values that are less than

mj
Y from its input set), the upper bound for P1 is set to mX

j and the lower

bound for P2 is set to mY
j . The functionality then outputs an error if at any

later stage a party enters a value that is greater than or equal to its upper
bound or less than its lower bound.

In addition to the above, it is also necessary to make sure that the values
used by the parties in the last phase (where maximum is computed) are
consistent with the values that they sent in the past. Observe that an honest

222 8 The kth-Ranked Element

P1’s input to the last phase (where the maximum is computed) equals the
last value that it input to FGT for which the output it received was 0. This
is due to the fact that in an iteration j where it receives back output 1, it
defines Xj+1 = (Xj)⊥, meaning that it throws out all elements from mj

X and

above, including mj
X . Thus, mj

X is no longer in the list. This implies that
the last value in the list is the last value for which it received back output 0.
Regarding an honest P2, the argument is the same when reversing 0 and 1,
specifically, the last value that an honest P2 inputs to FGT for which the
output it received was 1. (An exception to the above rule is the case for P1

where all outputs received were 1; in this case, an honest P1 can input any
value to the maximum computation that is smaller than all values sent until
this point. Likewise, if P2 received 0 in all outputs then it can input any
value to the maximum computation that is smaller than all values sent until
this point.) The reactive greater-than functionality forces the parties to use
an input in the maximum computation which is equal to the value defined
above that an honest party would input.

Due to the above, we cannot use a separate functionality for computing
maximum, because the functionality needs to know the bounds that are de-
fined by all previous iterations. We therefore incorporate the computation
of the maximum into the greater-than functionality, and distinguish between
greater-than and maximum computations via an additional string sent with
the values. A formal description of the reactive greater-than functionality
FRGT is presented in Figure 8.3.1.

FIGURE 8.3.1 (The Reactive Greater-Than Functionality FRGT)

Functionality FRGT works with parties P1 and P2 as follows (the variables
lower1, lower2 are initially set to −∞, whereas the variables upper1, upper2 are
initially set to +∞):

1. Upon receiving from P1 a message (gt,m1) and from P2 a message (gt,m2),

functionality FRGT checks whether lower1 < m1 < upper1 and lower2 < m2 <
upper2. If these conditions are not met it sends error to both parties and aborts.
Otherwise:

a. If m1 > m2 it sets upper1 = m1 and lower2 = m2, and returns 1 to the
parties.

b. If m1 ≤ m2 it sets lower1 = m1 and upper2 = m2 and returns 0 to the
parties.

2. Upon receiving from P1 a message (max,m1) and from P2 a message (max,m2):
If m1 (respectively m2) is the smallest item sent by P1 (resp., P2) in the
computation, the functionality FRGT checks that m1 < upper1 (resp., that

m2 < upper2). Otherwise, FRGT checks that m1 = lower1 and m2 = lower2. If
the checks fail, FRGT sends error to the parties. Otherwise, it sends them the
value max(m1,m2).

8.3 Computing the Median – Malicious 223

Before proceeding we remark that the value lower1 in the last phase of the
median computation equals the last value mj

X input by party P1 for which
the output was 0. Thus, in light of the discussion above regarding the input
used in the computation of the maximum, FRGT checks that the input equals
lower1 and this is equivalent to a check that it is the last value input for which
the output was 0. The same argument holds for P2.

Observe that a binary circuit for computing FRGT can be constructed simi-
larly to the circuit for FGT, while additionally storing state between iterations.
Such a circuit is of size that is linear in the input, and a protocol for securely
computing FRGT based on such a circuit can be found in Chapter 4 (with
explicit reference to reactive functionalities in Section 2.5.3).

8.3.2 The Protocol

In order to transform Protocol 8.2.1 for semi-honest parties into a protocol
for malicious parties, it suffices to replace the subprotocols πSH

GT and πSH
MAX

with a subprotocol πRGT that securely computes the reactive greater-than
functionality FRGT in the presence of malicious adversaries. Let πMED denote
this modified version of Protocol 8.2.1.

Theorem 8.3.2 Assume that πRGT securely computes the functionality FRGT

in the presence of malicious adversaries. Then Protocol πMED securely com-
putes FMED in the presence of malicious adversaries.

Proof. We present the proof in the hybrid model in which a trusted party
is used to compute FRGT. As in the proof of Theorem 8.2.2, the proof is
identical for both corruption cases due to symmetry. Thus we only consider
the corruption case of party P1.

Let A be an adversary controlling party P1. The main challenge in con-
structing a simulator is to extract the input used by A. This is non-trivial
because A does not commit to its input or even implicitly send it during the
protocol. Nevertheless, as we will see, S can construct a list X̃ of length 2ℓ

that is consistent with the values used by A in a real execution. Specifically,
when S sends the list X̃ to the trusted party, the resulting median obtained
by S and the honest P2 is the same value that they would obtain in a real
execution of πMED when P2 uses its private input list Y . Informally speaking,
the simulator S works as follows. All possible executions of the protocol can
be viewed as a binary “execution tree”, where the root is the input of A
(playing P1) in the first execution of πRGT. Each internal node corresponds to
the input used by A in some iteration. Specifically, the left child of a node is
the input used by A in the case where the output of the previous execution
of πRGT was b = 1 (in which an honest P1 would take the smaller half of its
remaining list), and the right child of a node is the input used by A when the
output was b = 0. The leaves of the tree are the inputs used by A in the last

224 8 The kth-Ranked Element

phase where the maximum function is computed. As we will see, the leaves
defined in this way actually define an input list for P1 that is consistent with
A’s actions in the protocol.

Before proceeding further, note that a single execution of the protocol
between A and an honest P2 corresponds to a single path in the tree from
the root to a leaf. Furthermore, the actual path taken depends on the set Y
used by an honest P2. We remark that although A may be probabilistic, for
any given random tape there exists a single binary tree that corresponds to
all possible executions between A and P2, for all possible inputs Y to P2.
A crucial observation is that although the tree corresponds to all possible
executions with all possible inputs Y (and there are exponentially many such
inputs), the tree has only 2ℓ leaves (and so 2ℓ+1 − 1 nodes overall). This
is due to the fact that there are only ℓ iterations in the protocol, which is
logarithmic in the size of the input sets.

The simulator S constructs the binary tree described above, and works as
follows:

1. S receives X, z and 1n, and invokes A on this input.
2. S plays the trusted party for the reactive greater-than functionality, with
A playing party P1. S traverses over all executions paths in the execution
tree by rewinding A and handing it b = 0 and b = 1 at each node. S
records the input values sent by A at every node in the tree, including the
leaves. If A aborts at a leaf then S records the value that A had to provide
at that leaf (recall that there is only a single value that A can provide,
namely lower1, unless this is the leftmost leaf, in which case A could use
any value smaller than upper1, and so S records any such value). If A
aborts at an internal node, then S records input values that A could have
legally sent (i.e., values that are within the bounds of FRGT) and continues
to complete the subtree of that node by itself, without interacting with
A. (Note that an “abort” can be the refusal of A to send anything, or the
event that it sends an invalid value that would cause FRGT to send error.)

3. S defines the set X̃ to be the set of values in all leaves of the execution
tree.

4. S sends X̃ to the trusted party for FMED and receives back m (which is
the median of X̃ ∪ Y).

5. S completes the simulation as the semi-honest simulator in the proof for
Theorem 8.2.2 by creating a view for A that is consistent with X̃ and m,
as follows. In iteration j:

a. If A sends mj
X and lower1 < mj

X < up1 and it sends continue to the
trusted party computing FRGT (meaning that A did not abort in this
iteration and P2 would receive its output from FRGT in the iteration),
then S simulates the answer from FRGT to equal 0 if and only ifmj

X ≤ m.

b. If A sends mj
X that is not within the bounds or sends abort1 to the

trusted party computing FRGT, then S simulates FRGT sending error
or abort1, respectively, to the parties. In addition, S sends abort1 to

8.3 Computing the Median – Malicious 225

its trusted party computing the median. Finally, it halts outputting
whatever A outputs.

6. If S has not halted (i.e., in the case where all values sent by A are within
the bounds and all computations of FRGT conclude successfully), then this
corresponds to an execution in which the parties reach the last phase
where maximum is computed. If A inputs the correct value (i.e., lower1)
and sends continue instructing the trusted party computing FRGT to send
the output to P2, then S sends continue to its trusted party computing
the median, indicating that P2 should receive output. Otherwise, it sends
abort1. Finally, S outputs whatever A does.

Note first that the traversal of the tree takes polynomial time because it has
logarithmic depth. We now prove that A’s view in a hybrid execution of πMED

(where a trusted party is used to compute FRGT) and in an ideal execution
with S are identical. In order to see this, we claim that an honest party P1

with input X̃ would input exactly the same values as A used throughout the
computation, and in the same order. Thus, by the correctness of the FindMed
protocol, the output received by a real P2 running with A is the median of
X̃ ∪ Y , exactly what it receives in the ideal model. In addition, the view of
A in the simulation by S is identical to its view in a hybrid model where
FRGT is computed by a trusted party. This follows from exactly the same
argument as in the proof of security for the semi-honest protocol πSH

MED; see
Theorem 8.2.2. Note that the proof for the semi-honest case suffices because,
as we have already stated, the behavior of A is identical to the behavior of an
honest party with input X̃ and so the simulation of S with A is the same as
the simulation of the semi-honest simulator for a semi-honest adversary with
input X̃. (The only exception is when A aborts or sends an inconsistent value
to FRGT. However, the simulator sends abort1 to the trusted party computing
FMED whenever an honest P2 would not receive output in its execution with
A. Thus the output distribution is also identical in this case.)

Efficiency. The round complexity of πMED equals ℓ + 1 times the round
complexity of a protocol computing FRGT, and thus is logarithmic in the size
of the sets when a constant-round protocol πRGT is used. Such a protocol
appears in Chapter 4. The communication and computation costs are domi-
nated by the protocol used for computing FRGT; see Section 4.5 for a detailed
analysis.

Proof technique – discussion. In order to achieve security in the presence
of malicious adversaries, most known protocols work by having the parties
commit to their entire input and then forcing them to work consistently with
these committed inputs. In the classic GMW protocol [35] these commitments
are explicit. However, in the protocol in Chapter 4, the same effect is also
achieved, albeit more implicitly. Specifically, P2 is committed to its inputs
through the oblivious transfers that it runs, and P1 is committed to its inputs
through the commitment sets Wi,j ,W

′
i,j which define its ith input bit; the

226 8 The kth-Ranked Element

input is only fully defined once P1 sends the decommitments, but this does
define the entire input. In contrast, in the protocol πMED, the parties do not
even read (let alone use) their entire input in any given execution. This is
because they only use a logarithmic number of values; all other input elements
are essentially undefined. Due to this, it is very surprising that it is possible to
define a simulator that can construct a full-length input X̃ that is equivalent
to the input used by A (in every execution with every possible list Y used by
P2) without knowing anything about Y . This is possible because the number
of elements sent is logarithmic and so S can exhaustively rewind A to traverse
all possible computation paths in a protocol execution.

Chapter 9

Search Problems

Recently, there has been much interest in the data mining and other commu-
nities for secure protocols for a wide variety of tasks. This interest exists not
only in academic circles, but also in industry, in part due to the growing con-
flict between the privacy concerns of citizens and the homeland security needs
of governments. In this chapter we focus on search problems involving two
parties; a client that is interested in performing a search in a database that is
being held by a server. The (informal) security requirements for search prob-
lems assert that the server should not learn any useful information regarding
the search conducted by the client, while the client should learn the search
result but nothing more. This chapter includes protocols for the following
three basic problems:

• Secure database search: In this problem, a client is able to search a database
held by a server so that the client can only carry out a single search (or a
predetermined number of searches authorized by the server). We remark
that searches are as in the standard database setting: the database has a
“key attribute” and each record has a unique key value; searches are then
carried out by inputting a key value – if the key exists in the database
then the client receives back the entire record; otherwise it receives back
a “non-existent” reply. This problem has been studied in [16, 28] and
has important applications to privacy. For example, consider the case of
homeland security where it is sometimes necessary for one organization
to search the database of another. In order to minimize information flow
(or stated differently, in order to preserve the “need to know” principle),
we would like the agency carrying out the search to have access only to
the single piece of information it is searching for. Furthermore, we would
like the value being searched for to remain secret. Another, possibly more
convincing, application comes from the commercial world. The LexisNexis
database is a paid service provided to legal professionals that enables them
– among other things – to search legal research and public records for the
purpose of case preparation. Now, the content of searches made for case
preparation is highly confidential ; this information reveals much about the

227C. Hazay, Y. Lindell, Efficient Secure Two-Party Protocols,
Information Security and Cryptography, DOI 10.1007/978-3-642-14303-8_9,
© Springer-Verlag Berlin Heidelberg 2010

228 9 Search Problems

legal strategy of the lawyers preparing the case, and if it were exposed
would allow the other side to prepare counter-arguments well ahead of
time. It is even possible that revealing the content of some of these searches
may breach attorney-client privilege. We conclude that the searches made
to LexisNexis must remain confidential, and even LexisNexis should not
learn them (either because they may be corrupted, or more likely, a breach
to their system could be used to steal this confidential information). Secure
database search can be used to solve this exact problem.

• Secure document search: A similar, but seemingly more difficult, prob-
lem to that of secure database search is that of secure document search.
Here, the database is made up of a series of unstructured documents and
a keyword query should return all documents that contain that query.
This is somewhat more difficult than the previous problem because of the
dependence between documents (the client should not know if different
documents contain the same keyword if it has not searched them both).
We remark that in many cases, including the LexisNexis example above,
what is really needed is the unstructured document search.

• Text search: The basic problem of private text search is the following one:
given a text T held by a server, the aim of the client is to learn all the
locations in the text where a pattern p appears (and there may be many)
while the server learns nothing about the pattern. This problem has been
intensively studied and can be solved optimally in time that is linear in
size of the text [10, 53], when security is not taken into account.

9.1 Background

The protocols presented in this chapter all employ a subprotocol that securely
computes the committed pseudorandom permutation (PRP) functionality de-
noted by FCPRP; see Figure 9.1.1 for a formal definition (the initialization
stage is a technicality that is used to ensure that a single secret key k is used
throughout). As opposed to batch pseudorandom function evaluation (for-
mally introduced in Section 7.6.4), which considers parallel repetition, the
committed functionality is reactive. This means that the client may choose
its current query based on the output it received from previous queries. Fur-
thermore, each query must be authorized by the server. We stress that as in
the case of batch pseudorandom function evaluation, all computations of the
pseudorandom function must be with the same secret key.

The protocols presented here can use any subprotocol πCPRP that securely
computes the functionality FCPRP. One possibility is to use a generic con-
struction like that in Chapter 4. This has actually been implemented in [71];
they constructed a circuit computing the AES function (with 30,000 gates),
and then implemented the protocol of Chapter 4 (and the covert protocol of
Chapter 5) for securely computing the AES function. The implementation
that achieves security in the presence of malicious adversaries takes approx-

9.2 Secure Database Search 229

FIGURE 9.1.1 (The Committed PRP Functionality FCPRP)

Functionality FCPRP, parameterized by 1n and FPRP, works with parties P1 and
P2 as follows (the variable init is initially set to 0):

Initialize: Upon receiving from P1 a message (init, k), if init = false, functional-
ity FCPRP sets init = true, stores k and sends receipt to P2. If init = true, then
FCPRP ignores the message.1

Evaluation: Upon receiving a message (retrieve, x) from P2, functionality
FCPRP checks that init = 1, and if not it returns notInit. Otherwise, if
x ∈ {0, 1}n it sends retrieve to P1. If P1 replies with approve then FCPRP

forwards FPRP(k, x) to P2. Otherwise, FCPRP forwards P2 reject.

imately four minutes to carry out. Thus, such a computation could be used
for low latency applications. However, more improvements are needed before
this approach is truly practical. Despite the above, in Section 9.4.1 we show
that the committed pseudorandom permutation functionality can be securely
realized in a novel setting where the parties have secure (standard) smart-
cards in addition to regular network communication. Instantiating the πCPRP

protocol in this model yields protocols for database and document search
that are truly practical; indeed the time that it takes to carry out a single
search is almost the same as when using a basic search scheme without any
security.

We remark that in contrast to the database and document search ap-
plications which may use any protocol for securely computing FCPRP, and
for any underlying pseudorandom permutation, the protocol for secure text
search in Section 9.5 is based on the Naor-Reingold pseudorandom func-
tion [64] and utilizes specific properties of it. In addition, the protocol for
secure text search achieves only one-sided simulation. In contrast, the proto-
cols for database and document search achieve full simulation when a fully
secure protocol is used for FCPRP (more efficient versions of the protocol that
achieve security for covert adversaries and one-sided simulation can also be
derived by instantiating the protocol πCPRP appropriately).

9.2 Secure Database Search

In this section we study the problem of secure database search. The aim here
is to allow a client to search a database without the server learning the query
(or queries) made by the client. Furthermore, the client should only be able
to make a single query (or, to be more exact, the client should only be able
to make a search query after receiving explicit permission from the server).
This latter requirement means that the client cannot just download the en-

1 We assume an efficient mapping ϕ : {0, 1}∗ → IPRP(1n) (i.e., ϕ maps any string to a valid
key for FPRP). This works well for block ciphers used below, where a key is any possible
string of appropriate length.

230 9 Search Problems

tire database and run local searches (this naive solution perfectly preserves
the privacy of the database searches because the server cannot learn any-
thing, but enables the client to carry out an unlimited number of searches).
In the solution presented here, the client therefore downloads the database in
encrypted form. A search is then carried on the database by running an in-
teractive protocol that enables the client to decrypt a single database record.
Our starting point is the one-sided simulatable protocol of [28], where the
use of secure pseudorandom function evaluation lies at its heart. Replacing
this subprotocol with a protocol for FCPRP is the first step towards achieving
full simulation against malicious adversaries.

We now provide an inaccurate description of our solution. Denote the ith
database record by (pi, xi), where pi is the value of the search attribute
(as is standard, the values p1, . . . , pN are unique). We assume that each
pi ∈ {0, 1}n, and for some ℓ each xi ∈ {0, 1}ℓn (recall that the pseudo-
random permutation works over the domain {0, 1}n; thus pi is made up of a
single “block” and xi is made up of ℓ blocks). Then, the server chooses a key
k ← IPRP and computes ti = FPRP(k, pi), ui = FPRP(k, ti) and ci = Eui(xi)
for every i = 1, . . . , N . The server sends the encrypted database (ti, ci) to
the client. Now, since FPRP is a pseudorandom function, the value ti reveals
nothing about pi, and the “key” ui is pseudorandom, implying that ci is a
cryptographically sound (i.e., secure) encryption of xi that therefore reveals
nothing about xi. In order to search the database for attribute p, the client
computes t = FPRP(k, p) and u = FPRP(k, t) using FCPRP. If there exists an
i for which t = ti, then the client decrypts ci using the key u, obtaining the
record xi as required. Note that the server has no way of knowing the search
query of the client. Furthermore, the client cannot carry out the search with-
out explicit approval from the server, and thus the number of searches can
be audited and limited (if required for privacy purposes), or a charge can be
issued (if a pay-per-search system is in place).

We warn that the above description is not a fully secure solution. To start
with, it is possible for a client to use the key k to compute t and t′ for two
different values p and p′. Although this means that the client will not be able
to obtain the corresponding records x and/or x′, it does mean that it can see
whether the two values p and p′ are in the database (something which it is
not supposed to be able to do, because just the existence of an identifier in a
database can reveal confidential information). We therefore use two different
keys k1 and k2; k1 is used to compute t and k2 is used to compute u. In
addition, we do not use u to directly mask x and use a third key k3 instead.
The reason for this will become apparent in the proof.

9.2 Secure Database Search 231

9.2.1 Securely Realizing Basic Database Search

We begin by describing the ideal functionality for the problem of secure
database search; the functionality is a reactive one where the server S first
sends the database to the trusted party, and the client can then carry out
searches. We stress that the client can choose its queries adaptively, meaning
that it can choose what keywords to search for after it has already received
the output from previous queries. However, each query must be explicitly ap-
proved by the server (this allows the server to limit queries or to charge per
query). In this section, we show how to securely realize a basic database search
functionality in which the database is completely static (i.e., no changes can
be made to it throughout the lifetime of the functionality). In Section 9.2.2 we
show how to extend the functionality and protocol to enable some database
updates. See Figure 9.2.1 for a specification of the basic database function-
ality.

FIGURE 9.2.1 (The Database Search Functionality FbasicDB)

Functionality FbasicDB works with a server S and a client C as follows (the variable
init is initially set to 0):

Initialize: Upon receiving from S a message (init, (p1, x1), . . . , (pN , xN)), if

init = false, functionality FbasicDB sets init = true, stores all pairs and sends
(init, N) to C. If init = true, then FbasicDB ignores the message.

Search: Upon receiving a message (retrieve, p) from C, functionality FbasicDB

checks that init = 1, and if not it returns notInit. Otherwise, it sends retrieve to

S. If S replies with approve then FbasicDB works as follows:

1. If there exists an i for which p = pi, functionality FbasicDB sends (retrieve, xi)
to C.

2. If there is no such i, then FbasicDB sends notFound to C.

If S replies with reject, then FbasicDB forwards reject to C.

The protocol for securely computing the basic functionality FbasicDB below
uses an efficiently invertible pseudorandom permutation over {0, 1}n. Let
FPRP denote such a permutation, and let IPRP denote the key generation
algorithm. We define a keyed function F̂PRP from {0, 1}n to {0, 1}ℓn by

F̂PRP(k, t) = ⟨FPRP(k, t+ 1), FPRP(k, t+ 2), . . . , FPRP(k, t+ ℓ)⟩

where addition is modulo 2n. We remark that F̂PRP(k, ·) is a pseudorandom
function when the input t is uniformly distributed (this follows directly from
the proof of security of the counter mode for block ciphers; for example,
see [49]). We assume that all records in the database are exactly of length ℓn
(and that this is known); if this is not the case, then padding can be used.
See Protocol 9.2.2 for a full description.

232 9 Search Problems

PROTOCOL 9.2.2 (secure basic database search πbasicDB)

• Inputs: The server has database (init, (p1, x1), . . . , (pN , xN)).

• Auxiliary inputs: Both parties have the security parameter 1n.
• The protocol:

– Initialization:
1. The server S chooses three keys k1, k2, k3 ← IPRP for the pseudorandom

permutation, and the parties employ the initialize phase within πCPRP

in which S initializes three distinct executions with keys k1, k2, k3. The
output of C from every execution is receipt.

2. S randomly permutes the pairs (pi, xi) and for every i, computes ti =
FPRP(k1, pi), ui = FPRP(k2, ti) and ci = F̂PRP(k3, ti) ⊕ xi, where F̂ is

as defined above.
3. S sends (u1, c1), . . . , (uN , cN) to the client C (these pairs denote an en-

crypted version of the database).

4. Upon receiving (u1, c1), . . . , (uN , cN), C stores the pairs and outputs
(init, N).

– Search: The parties employ three sequential invocations of the evaluation
phase within πCPRP as follows:

1. For the first run which was initialized with a key k1, C uses input
(retrieve, p). If S approves the evaluation, the output of C is t =
FPRP(k1, p).

2. Next, C uses input (retrieve, t) and learns u = FPRP(k2, t) if the evalu-

ation is approved by S. If there does not exist any i for which u = ui,
then C outputs notFound (but continues to the third execution anyway).

3. The parties engage in a third execution, initialized with a key k3, as
follows:

a. If there exists an i for which u = ui, C uses input (retrieve, t) and
learns r = F̂PRP(k3, t) (assuming S approves); this involves ℓ calls
to πCPRP for computing FPRP(k3, ·). Then, C sets x = r ⊕ ci and
outputs (retrieve, x).

b. Else, C enters an arbitrary value and ignores the outcome.
If S does not approve the computation at any stage, C halts and outputs ⊥.

It is easy to verify that if S and C follow the instructions of the protocol,
then the client outputs the correct result of its search query. We proceed to
prove security.

Theorem 9.2.3 Assume that FPRP is a strong pseudorandom permutation
over {0, 1}n and that πCPRP securely computes FCPRP in the presence of ma-
licious adversaries. Then, Protocol 9.2.2 securely computes FbasicDB in the
presence of malicious adversaries.

Proof. We treat each corruption case separately. We note that the proof
is in a hybrid model where a trusted party is used to compute an ideal
functionality for FCPRP.

The server S is corrupted. The idea behind the proof is to show the
existence of a simulator that can extract the input of a malicious server.
Intuitively we construct such a simulator by having it extract the server’s

9.2 Secure Database Search 233

keys to the pseudorandom permutations via the calls to FCPRP, thus enabling
it to decrypt the entire database and send it to the trusted party computing
FbasicDB. Since pseudorandom permutations are used, the database is fully
defined by the pairs (ui, ci) and the keys to the pseudorandom permutations.
Thus, a malicious server cannot do anything beyond approving or rejecting
a query, and the simulation therefore proceeds by approving and rejecting
queries of the client (in the ideal model) whenever a malicious server (in
the real model) approves or rejects queries. Formally, let A be an adversary
controlling S; we construct a simulator SSERV as follows:

1. SSERV obtains the keys k1, k2, k3 that A sends to the trusted party for
FCPRP. If A does not send three valid pseudorandom permutation keys,
then SSERV sends ⊥ to FbasicDB.

2. Upon receiving (u1, c1), . . . , (uN , cN) from A, simulator SSERV computes
ti = F−1PRP(k2, ui), pi = F−1PRP(k1, ti) and xi = F̂PRP(k3, ti)⊕ ci, for every i.
Then, SSERV sends (init, (p1, x1), . . . , (pN , xN)) to FbasicDB.

3. Upon receiving a message retrieve from FbasicDB, simulator SSERV simulates
C sending three retrieve requests to A for the three sequential calls to
FCPRP. Simulator SSERV sends approve to FbasicDB if and only if A answers
approve in all three calls; otherwise SSERV sends reject to FbasicDB.

This completes the simulation. The output distribution from the simulation is
identical to that from a hybrid execution. This is due to the fact that FPRP is
a pseudorandom permutation and thus k1, k2, k3 together with a pair (ui, ci)
define a unique (pi, xi) that is sent to FbasicDB. In addition, C can carry out
a search if and only if SSERV sends approve to FbasicDB. Finally, we note that
A’s view is identical in the simulation and in a hybrid execution because it
has no incoming messages in the hybrid protocol.

The client C is corrupted. We now proceed to the case where C is
corrupted. Intuitively, C can only learn by querying πCPRP in the specified
way. This is due to the fact that if C does not first compute t = FPRP(k, p)
for some keyword p, then the probability that it queries πCPRP with a value t
such that FPRP(k2, t) = ui for some ui in the encrypted database is negligible.
This follows from the pseudorandomness of FPRP. Thus, C can only learn
information by querying πCPRP as specified in the protocol. Again, let A be
an adversary controlling C; we construct SCL as follows:

1. Upon receiving input (init, N) from FbasicDB, simulator SCL constructs N
tuples (t1, u1, c1), . . . , (tN , uN , cN) where each ti, ui ←R {0, 1}n and ci ←R

{0, 1}ℓn (recall that ℓ is known to SCL). If there exist ti, tj with i ̸= j
such that

{ti + 1, . . . , ti + ℓ} ∩ {tj + 1, . . . , tj + ℓ} ≠ ϕ,

then SCL outputs fail1 and halts. Otherwise, SCL hands A the pairs
(u1, c1), . . . , (uN , cN).

234 9 Search Problems

2. Upon receiving a new query (retrieve, p) from A to the ideal execution for
FCPRP that was initialized by k1, SCL forwards (retrieve, p) to FbasicDB. If it
receives back reject then it hands reject to A. Otherwise,

a. If this is the first time that A has queried p, then:
i. If FbasicDB replies with (retrieve, x), then SCL chooses a random index

i ∈ {1, . . . , N} that has not yet been chosen, hands ti to A, and
stores the association (i, p, x).

ii. If FbasicDB replies with notFound, then SCL chooses a random tp ←R

{0, 1}n that was not chosen before, stores the pair (p, tp), and hands
tp to A.

b. If this is not the first time that A queried p, then SCL returns the same
reply as the last time (either tp or ti, appropriately).

3. When A queries the trusted party for FPRP(k2, ·) with some t, simulator
SCL works as follows:

a. If there exists an i and a tuple (ti, ui, ci) where t = ti, then SCL checks
that there is a recorded tuple (i, pi, xi). If no, SCL outputs fail2. Other-
wise, it hands A the value ui from the tuple (ti, ui, ci).

b. If there does not exist such an i, then SCL chooses a random u ←R

{0, 1}n and hands u to A. SCL also stores the pair (t, u) so that if t is
queried again, then SCL will reply with the same u.

4. When A queries the trusted party for FPRP(k3, ·) with some value t, simu-
lator SCL checks if there exists an i and a tuple (ti, ui, ci) where t = ti + j
for some j ∈ {1, . . . , ℓ}.

a. If so, SCL checks that there is a recorded tuple (i, pi, xi). If not, SCL

outputs fail2. Otherwise, it hands A the n-bit string rj = cji ⊕xj
i (as the

output of the jth block in F̂PRP(k3, ti)) where cji is the jth n-bit block

of ci, and xj
i is the jth n-bit block of xi.

b. If not, then SCL returns a random value (SCL stores a set to maintain
consistency, meaning that if in the future the same t′ is queried, it
returns the same random value).

This completes the simulation. We begin by showing that in the simulation,
the probability that SCL outputs fail1 or fail2 is negligible. Regarding fail1,
this follows from the fact that ℓ is polynomial in n, and the values t are
chosen randomly within a range of size 2n. Thus, the probability that there
exist ti, tj where i ̸= j such that {tj + 1, . . . , tj + ℓ} ∩ {ti + 1, . . . , ti + ℓ} ̸= ϕ
is negligible. (For a detailed proof that this probability is negligible, see the
proof of security of counter mode for encryption; e.g., see [49].) Regarding
fail2, recall that SCL outputs fail2 if A sends a value t ∈ {ti, ti +1, . . . , ti + ℓ}
for some tuple (ti, ui, ci) but there is no stored tuple (i, pi, xi). Now, if no
tuple (i, pi, xi) is stored, then this means that SCL never gave A the value ti
from the ith tuple (ti, ui, ci). However, ti is uniformly distributed and so the
probability that A sends t ∈ {ti, ti + 1, . . . , ti + ℓ} is negligible.

9.2 Secure Database Search 235

To prove that A’s output in the hybrid and simulated executions are com-
putationally close we construct a sequence of hybrid games and show that the

corresponding random variables H
A(z)
ℓ ({pi, xi}i, n) that consist of the output

of A in hybrid game Hℓ are computationally close. In each hybrid game, we
modify the simulator (and game definition), and we denote by Si the simula-
tor used in hybrid game Hi. Here and below, we denote by FPerm an ensemble
of truly random permutations.

Game H1: In the first game the simulator S1 has access to an oracle OFPerm

computing a truly random permutation FPerm; more exactly, the oracle com-
putes three distinct random permutations. Whenever SCL chooses a random
value ti (resp., ui, ci), S1 chooses ti (resp., ui, ci) by querying the first (resp.
second, third) permutation oracle on input i. We stress that the execution in
this game still involves a trusted party that computes FbasicDB. The output
distribution of the current and original simulation are statistically close since
SCL uses truly random values, which is equivalent to using a truly random
function, and S1 uses a random permutation.

Game H2: The next game is identical to the previous one except that the
simulator S2 knows the real input {pi, xi}i of the server and uses it for the
computation of {ti, ui, ci}i instead of the input i used by S1 (note that S2
still interacts with a trusted party that computes FbasicDB). Since the oracle
is a truly random permutation, the distribution here is identical unless fail1
or fail2 occurs; if either fail event occurs it is possible to distinguish between
the case where the real input is used and a fake input i is used. Thus, the
output distributions of H1 and H2 are statistically close.

Game H3: In this game, the simulator S3 has access to an oracle OFPRP

computing a pseudorandom permutation, instead of an oracle OFPerm com-
puting a truly random permutation. The computational indistinguishability
of H2 from H3 follows from the pseudorandomness of FPRP. The reduction is
straightforward and we therefore only briefly sketch it. We show that a dis-
tinguisher that distinguishes between the above distributions can be trans-
formed into a distinguisher for FPRP. Assume that there exist an adversary
A, a distinguisher D and infinitely many inputs (1n, {pi, xi}i) such that D
distinguishes between A’s outputs in the above games whenever the server’s
input is (1n, {pi, xi}i). Then a distinguisher DPRP with oracle access to either
OFPRP or OFPerm , and an auxiliary input ({pi, xi}i, z), is constructed the fol-
lowing way. On input 1n, DPRP invokes A(1n, z) and plays the roles of the
simulator and the trusted party computing FCPRP. Note that if the oracle of
DPRP computes OFPerm , then the adversary’s view is identical to its view in
game H2, whereas if DPRP’s oracle computes OFPRP , then it is identical to its
view in game H3. Thus DPRP distinguishes FPRP from FPerm with the same
probability that D distinguishes game H2 from game H3.

Game H4: Finally, we let the simulator S4 perfectly emulate the role of
the server S instead of working with a trusted party computing FbasicDB. In

236 9 Search Problems

particular, S4 carries out the computations of the pseudorandom permuta-
tions by itself, using keys k1, k2, k3. This does not affect the outputs of these
computations and yields an identical distribution.

Observe that H4 yields exactly the same distribution as in a hybrid exe-
cution of Protocol 9.2.2. This concludes the proof.

Efficiency. The computational cost of Protocol 9.2.2 is dominated by the
cost incurred by the ℓ+2 invocations of πCPRP. We note that if πCPRP is secure
under parallel composition, then the number of rounds of communication is
constant; otherwise O(ℓ) rounds are needed.

9.2.2 Securely Realizing Full Database Search

The main drawback with FbasicDB is that the database is completely static and
updates cannot be made by the server. We therefore modify FbasicDB so that
inserts and updates are included. An insert operation adds a new record to the
database, while an update operation makes a change to the x portion of an
existing record. We stress that we define an update by concatenating the new
x portion to the record without deleting the previous x value. We define the
functionality in this way because it affords greater efficiency. In order to see
why this is more efficient, recall that in the protocol for computing FbasicDB,
and thus also in the protocol that we will present for the full database func-
tionality, the client holds the entire database in encrypted form and retrievals
are carried out obtaining a decryption key based on the keyword p. Since p
does not change, and we do not wish to change the pseudorandom permu-
tation keys (because this would require re-encrypting the entire database),
we have that the old and new x portions are encrypted with the same key.
Thus, if the client does not erase an old encrypted x value, it can decrypt it
at the same time that it is able to decrypt the new x value. We model this
capability by defining an update to be a concatenation.

Another subtlety that arises is that since inserts are carried out over time,
and the client receives encrypted records when they are inserted, it is possible
for the client to know when a decrypted record was inserted. However, a naive
definition of the database functionality (that merely notifies the client when-
ever an insert takes place) would not leak this information. In order to model
this information leakage, we include unique identifiers to records; when a
record is inserted, the ideal functionality hands the client the identifier of the
inserted record. Then, when a search succeeds, the client receives the iden-
tifier together with the x portion. This allows the client in the ideal model
to track when a record was inserted (of course, without revealing anything
about its content). Finally, we remark that our solution does not efficiently
support delete commands (this is for the same reason that updates are mod-
eled as concatenations). We therefore include a reset command that deletes

9.2 Secure Database Search 237

all records. This requires the server to re-encrypt the entire database from
scratch and send it to the client. Thus, such a command cannot be issued at
too frequent intervals. See Figure 9.2.4 for the full definition of FDB.

FIGURE 9.2.4 (The Database Functionality FDB)

Functionality FDB works with a server S and client C as follows:

Insert: Upon receiving a message (insert, p, x) from S, functionality FDB checks

that there is no recorded tuple (idi, pi, xi) for which p = pi. If there is such
a tuple it ignores the message. Otherwise, it assigns an identifier id to (p, x),
sends (insert, id) to C, and records the tuple (id, p, x).

Update: Upon receiving a message (update, p, x) from S, functionality FDB

checks whether there is a recorded tuple (idi, pi, xi) for which p = pi. If there
is no such tuple it ignores the message. Otherwise it updates the tuple, by
concatenating x to xi.

Retrieve: Upon receiving a query (retrieve, p) from the client C, functionality

FDB sends retrieve to S. If S replies with approve then:

1. If there exists a recorded tuple (idi, pi, xi) for which p = pi, FDB sends
(idi, xi) to C.

2. If there does not exist such a tuple, FDB sends notFound to C.

Reset: Upon receiving a message reset from S, functionality FDB sends reset to
C and erases all entries.

A protocol for securely computing the more sophisticated functionality
FDB can be derived directly from Protocol 9.2.2. Specifically, instead of send-
ing all the pairs (ui, ci) at the onset, S sends a new pair every time an insert
is carried out, and C verifies that ui does not already appear in its encrypted
database. In addition, an update just involves S re-encrypting the new xi

value and sending the new ciphertext c′i together with ui (so that the client
can associate it with the correct record). Finally, a reset is carried out by
choosing new keys k1, k2, k3 and rejecting all FCPRP requests for the old keys.
Then, any future inserts are computed using these new keys. We denote by
πDB the modified construction of Protocol 9.2.2 and state the following,

Theorem 9.2.5 Assume that FPRP is a strong pseudorandom permutation
over {0, 1}n and that πCPRP securely computes FCPRP in the presence of mali-
cious adversaries. Then, Protocol πDB securely computes FDB in the presence
of malicious adversaries.

9.2.3 Covert and One-Sided Simulation

Our protocols πbasicDB and πDB only use calls to FCPRP. Thus, if a subpro-
tocol for computing FCPRP is used that achieves security in the presence of

238 9 Search Problems

covert adversaries, the result is a protocol for computing FbasicDB or FDB

that achieves security in the presence of covert adversaries. As shown in [71],
FCPRP can be securely computed much more efficiently in the presence of
covert adversaries. Furthermore, when considering one-sided simulation, it
suffices to use a subprotocol πPRF that securely computes the ordinary secure
pseudorandom function evaluation, rather than the more expensive commit-
ted pseudorandom permutation functionality. This is due to the fact that in
the setting of one-sided simulation there is no need to extract the server’s
input, and correctness need not be guaranteed. See Section 7.6.3 for an effi-
cient protocol that securely computes the pseudorandom function evaluation
functionality with one-sided simulation. We have the following theorem:

Theorem 9.2.6 Assume that FPRP is a strong pseudorandom permutation
over {0, 1}n, that πOS

PRF securely computes FPRF with one-sided simulation,
and that πCO

CPRP securely computes FCPRP in the presence of covert adversaries.
Then, Protocol πOS

DB, which is identical to πDB except that πOS
PRF is used, securely

computes FDB with one-sided simulation. Furthermore, Protocol πCO
DB , which

is identical to πDB except that πCO
CPRP is used, securely computes FDB in the

presence of covert adversaries.

9.3 Secure Document Search

In Section 9.2 we showed how a database can be searched securely, where
the search is based only on a key attribute. Here, we show how to extend
this to a less structured database, and in particular to a corpus of texts. In
this case, there are many keywords that are associated with each document
and the user wishes to gain access to all of the documents that contain a
specific keyword. A naive solution would be to define each record value so
that it contains all the documents the keyword appears in. However, this
would be horrifically expensive because the same document would have to
be re-encrypted many times. We present a solution where each document is
stored (encrypted) only once, as follows.

The following solution uses Protocol 9.2.2 as a subprotocol, and we model
this by constructing a protocol for secure document search in a “hybrid”
model where a trusted party is used to compute the ideal functionality
FbasicDB. The basic idea is for the parties to use FbasicDB to store an index
to the corpus of texts as follows. The server chooses a random value si for
every document Di and then associates with a keyword p the values si where
p appears in the document Di. Then, this index is sent to FbasicDB, enabling
C to search it securely. In addition, S sends (si, Di) to FbasicDB, enabling the
client to retrieve Di if it knows si. Since C is only able to decrypt a document
if it has the appropriate si value, it can only do this if it queried FbasicDB with
a keyword p that is in document Di. Observe that in this way, each document

9.3 Secure Document Search 239

is only encrypted once. We remark that the server is allowed to associate p
with a subset of the documents Di for which p ∈ Di and not all of them.
This makes sense because even in a regular non-secure search, upon query p
the server can send any subset of documents containing p (and so can filter
at will). Preventing this type of behavior is problematic and would be very
expensive. Furthermore, it is not clear that it is even desirable; in some cases
a word p is crucial to a document and thus should be viewed as a keyword for
retrieval and in other cases it is completely inconsequential to the document.
In this latter case, the server should be able to decide that the document
should not be retrieved upon query p.

Let P be the space of keywords of size M , let D1, . . . , DN denote N text
documents from some predetermined domain, and let Pi = {pij} be the
set of keywords that appear in Di (note Pi ⊆ P) as defined by the server
S. Using this notation, when a search is carried out for a keyword p, the
client is supposed to receive the set of documents Di for which p ∈ Pi. We
now proceed to formally define the document search functionality FDOC in
Figure 9.3.1.

FIGURE 9.3.1 (The Document Search Functionality FDOC)

Functionality FDOC works with a server S and client C as follows (the variable init
is initially set to 0):

Initialize: Upon receiving from S a message (init,P, P1, D1, . . . , PN , DN), if
init = 0, functionality FDOC sets init = 1, stores all documents and P, and
sends (init, N,M) to C, where N is the number of documents and M is the size

of the keyword set P. If init = 1, then FDOC ignores the message.
Search: Upon receiving a message (search, p) from C, functionality FDOC checks

that init = 1, and if not it returns notInit. Otherwise, it sends search to S. If S
replies with approve, FDOC works as follows:

1. If there exists an i for which p ∈ Pi, then functionality FDOC sends

(search, {Di}p∈Pi
) to C.

2. If there is no such i, then FDOC sends notFound to C.

If S replies with reject, then FDOC forwards reject to C.

Our protocol makes use of a perfectly-hiding commitment scheme, denoted
by comh(·, ·). We let comh(m; r) denote the commitment to a message m
using random coins r. For efficiency, we instantiate comh(·; ·) with Pedersen’s
commitment scheme [69]; see Protocol 6.5.3 in Section 6.5.1.

We now present a protocol for securely computing FDOC which uses a secure
protocol πbasicDB to compute FbasicDB. For the sake of clarity, we describe the
protocol in the hybrid model using a trusted party computing FbasicDB; a real
protocol is obtained by replacing the ideal calls with an execution of πbasicDB.

240 9 Search Problems

PROTOCOL 9.3.2 (secure document search by keyword πDOC)

• Inputs: The server has database (P, D1, . . . , DN).

• Auxiliary inputs: Both parties have the security parameter 1n and a pa-
rameter ℓ that upper bounds the size of every keyword set Pi. Unless stated
differently, i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}.

• The protocol:

– Initialize:

1. The server S chooses random values s1, . . . , sN ←R {0, 1}n (one ran-
dom value for each document), and computes the set of commitments
{comi = comh(si; ri)}Ni=1 where r1, . . . , rN are random strings of appro-
priate length.

2. S defines a database of M records (pj , xj) where pj ∈ P is a keyword,
and xj = {(i, (si, ri))}pj∈Pi

(i.e., xj is the set of pairs (i, (si, ri)) where
i is such that pj appears in the keyword list Pi associated with Di). We

assume that all xjs are of length ℓ; this can be achieved by padding if
necessary.

3. S sends the commitments (com1, . . . , comn) to the client C, and sends
(init, (p1, x1), . . . , (pM , xM), (s1, D1), . . . , (sN , DN)) to FbasicDB.

4. Upon receiving (com1, . . . , comN) from the server S and (init,M) from
FbasicDB, the client C outputs (init, N,M).

– Search: Upon input (search, p) to C, the client C sends (retrieve, p) to
FbasicDB, and receives the response from FbasicDB.

1. If FbasicDB sent notFound then C outputs notFound.
2. If FbasicDB sent reject then C outputs reject.
3. Otherwise, let x = {(i, (si, ri))} denote the set that C receives from
FbasicDB. Then, for every i in the set x, C verifies first that comi =

comh(si; ri). If there exists an i in which the verification does not hold,
then C outputs notFound.

4. Finally, for every pair (i, si) ∈ x, the client C sends (retrieve, si) to
FbasicDB and receives back either notFound, reject or a document Di.

If it receives reject in any of the ℓ queries then it outputs reject. Other-
wise, it outputs (search, {Di}), including in the output every document
Di containing the keyword p that it received back from FbasicDB.

We now prove the security of Protocol 9.3.2.

Theorem 9.3.3 Assume that πbasicDB securely computes FbasicDB in the pres-
ence of malicious adversaries. Then, Protocol 9.3.2 securely computes FDOC

in the presence of malicious adversaries.

Proof. We treat each corruption case separately. Our proof is in a hybrid
model where a trusted party computes the ideal functionality FbasicDB.

The server S is corrupted. Intuitively, the simulator SSERV learns the
set of documents and associated keywords from the init value sent by the
server to the trusted party computing FbasicDB. The only issue to deal with
is the case of incorrectly generated inputs by S. This is dealt with by having
the simulator verify the validity of each decommitment and include only the
documents where the attributes that correspond to their keywords include

9.3 Secure Document Search 241

only valid decommitments. Let A be an adversary controlling S; we construct
a simulator SSERV as follows:

1. Upon receiving from A the messages (com1, . . . , comN) and (init, (p1, x1),
. . . , (pM , xM)) (where the last message is for the trusted party for FbasicDB),
simulator SSERV sets P = {p1, . . . , pM}, eliminating repetitions. Then,
SSERV records (si, Di) if there exists a pair (i, j) for which (i, (si, ri)) ∈ xj ,
comi = comh(si; ri), and Di includes the keyword pj . Furthermore, for ev-
ery such pair (i, j), SSERV adds pj to the list of keywords Pi associated with
Di. If there exists i such that (i, (si, ri)) ∈ xj , yet comi ̸= comh(si; ri),
SSERV deletes pj from P. In addition, if there exist i, j0, j1, r0, r1 and
s0 ̸= s1, such that (i, (sib , rib)) ∈ xjb and comi = comh(sib ; rib) for both
b ∈ {0, 1}, SSERV outputs fail.

If SSERV recorded less than N pairs (si, Di) then it completes this set using
random si and arbitrary documents Di of appropriate size (and setting
the set of keywords for the document to be empty). Finally, SSERV sends
(init,P, P1, D1, . . . , PN , DN) to FDOC.

2. Upon receiving search from FDOC, SSERV sends retrieve to A (as if it were
sent by FbasicDB). If A replies with reject, then SSERV sends reject to FDOC.
Otherwise, SSERV simulates C sending ℓ queries si to FbasicDB. If A sends
reject for any of these queries, then SSERV sends reject to FDOC. Otherwise,
SSERV sends approve to FDOC.

This completes the simulation. We claim that the output distribution of C
in the simulation is statistically close to its output in the hybrid execution.
The only difference is when SSERV outputs fail. However, this happens with
negligible probability by the binding property of the commitment scheme.
Observe that when SSERV does not output fail, the output distribution is
identical. This is due to the way that SSERV constructs the input from the
server to FbasicDB. In particular, the commitments guarantee that the keyword
si used for storing Di is unique. Furthermore, SSERV defines Pi to be the set
of keywords associated with Di based on the sets xj . Thus, FbasicDB returns
a document Di to the client C whenever a real client would receive that
document in a real protocol execution.

The client C is corrupted. We now proceed to the case where C is
corrupted. Let A be an adversary controlling C; we construct SCL as follows:

1. Upon receiving (init, N,M) from FDOC, simulator SCL chooses N random
pairs (si, ri) of appropriate length, and sends A the commitments comi =
comh(si; ri).

2. Upon receiving a message (retrieve, p) fromA, simulator SCL sends (search, p)
to its trusted party that computes FDOC.

a. If FDOC returns t documents D1, . . . , Dt, then SCL chooses t random
indices i1, . . . , it ∈ {1, . . . , N} that were not chosen before, and sets
x = {(i′, (si′ , ri′))} for all i′ ∈ {i1, . . . , it} while associating si′ with
Di (if a document D′ was already returned in a previous search, SCL

242 9 Search Problems

chooses the same index for D′ that was previously associated with it).
It then sends x to A, emulating FbasicDB.

b. For every query (retrieve, si′) that A makes to FbasicDB, if si′ was pre-
viously given to A by SCL in a set x, then A returns the document Di

associated with si′ (as if coming from FbasicDB). If si′ was not previously
given to A by SCL, then A returns notFound.

c. If FDOC returns notFound, then SCL forwards it to A as if it were coming
from FbasicDB.

The output distributions of the simulated execution in the ideal model and
the protocol execution with A in the FbasicDB-hybrid model are statistically
close. The only difference occurs if A somehow queries FbasicDB with a value si′

that it did not receive from a previous keyword query p. However, since these
si′ values are of length n, this can happen with only negligible probability.

One-sided simulation and covert adversaries. As in previous exam-
ples, if a subprotocol πOS

basicDB that securely computes FbasicDB with one-sided
simulation is used in Protocol 9.3.2, then the result is a protocol that securely
computes FDOC with one-sided simulation. Likewise, security in the presence
of covert adversaries is achieved by using πCO

basicDB, which achieves security in
the presence of covert adversaries.

9.4 Implementing Functionality FCPRP with Smartcards

In the protocols that we have seen above for computing database and doc-
ument search, the expensive part of the computation is due to the secure
implementation of the functionality FCPRP. Although relatively efficient for
the case of covert adversaries, it is still quite expensive in the case of malicious
adversaries.

In this section we consider a setting where in addition to standard net-
work communication, the parties have access to smartcards. Namely, the
participating parties may initialize smartcards in some way and send them
to each other, in addition to sending messages over a network. As we describe
below, a standard smartcard can be used to securely compute FCPRP with ex-
traordinary efficiency (i.e., approximately 50 ms per execution) and thus our
protocols for database and document search when implemented in this way
become practical even in settings where retrieval must be very fast.

Clearly, such a modus operandi is only reasonable it is not necessary to
continually send smartcards between parties. In the uses described here, the
server initializes a smartcard and sends it to the client, and that is all. Impor-
tantly, it is also sufficient to send a smartcard once, which can then be used
for many executions of the protocol (and even for different protocols). This
model is clearly not suitable for protocols that must be run by ad hoc par-

9.4 Implementing Functionality FCPRP with Smartcards 243

ticipants over the Internet (e.g., for secure eBay auctions or secure Internet
purchases). However, it is indeed suitable whenever parties with non-transient
relationships need to run secure protocols. Thus, this model is suitable for
the purpose of privacy-preserving data mining between commercial, govern-
mental and security agencies.

9.4.1 Standard Smartcard Functionality and Security

A smartcard is a piece of secured hardware that carries out cryptographic
computations on board. Smartcards are designed to withstand physical and
logical attacks, while preserving the secrecy of their cryptographic keys and
the integrity of the computations carried out. Smartcards are widely used
today for the purposes of secure authentication, digital signatures and disk
encryption. High-end smartcards are considered to provide a high level of
security in practice; see the discussion regarding this at the end of this section.

One of the basic cryptographic operations of any smartcard is the com-
putation of a block cipher using a secret key that was imported into the
smartcard (and is never exported from it later). We assume that the block
cipher in the smartcard behaves like a pseudorandom permutation. This is
widely accepted for modern block ciphers, and in particular for 3DES and
AES. Since smartcards preserve the secrecy of their cryptographic keys, it
follows that a party holding a smartcard with a key k for block cipher oper-
ation is able to query the smartcard in order to compute FPRP(k, x) without
learning anything about k.

We now provide a description of standard smartcard functionality. We do
not include an exhaustive list of all available functions on standard smart-
cards. Rather we describe the most basic functionality and some additional
specific properties that we use.

1. Onboard cryptographic operations: Smartcards can store cryptographic
keys for private and public-key operations. Private keys that are stored
(for decryption or signing/MACing) can only be used according to their
specified operation and cannot be exported. We note that symmetric keys
are always generated outside of the smartcard and then imported, whereas
asymmetric keys can either be imported or generated onboard (in which
case, no one can ever know the private key). Two important operations
that smartcards can carry out are basic block cipher operations and CBC-
MAC computations. These operations may be viewed as pseudorandom
function computations, and we will use them as such. The symmetric al-
gorithms typically supported by smartcards use 3DES and/or AES, and
the asymmetric algorithms use RSA (with some also supporting elliptic
curve operations).

2. Authenticated operations: It is possible to “protect” a cryptographic oper-
ation by a logical test. In order to pass such a test, the user must either

244 9 Search Problems

present a password or pass a challenge/response test (in the latter case,
the smartcard outputs a random challenge and the user must reply with a
response based on some cryptographic operation using a password or key
applied to the random challenge).

3. Access conditions: It is possible to define which operations on a key are
allowed and which are not allowed. There is great granularity here. For all
operations (e.g., use key, delete key, change key, and so on), it is possible
to define that no one is ever allowed, anyone is allowed, or only a party
passing some test is allowed. We stress that for different operations (such
as use and delete) a different test (e.g., a different password) can also be
defined.

4. Special access conditions: There are a number of special operations; we
mention two here. The first is a usage counter ; such a counter is defined
when a key is either generated or imported and it says how many times the
key can be used before it “expires”. Once the key has expired it can only
be deleted. The second is an access-granted counter and is the same as a
usage counter except that it defines how many times a key can be used
after passing a test, before the test must be passed again. For example,
setting the access-granted counter to 1 means that the test (e.g., passing
a challenge/response) must be passed every time the key is used.

5. Secure messaging: Operations can be protected by “secure messaging”,
which means that all data is encrypted and/or authenticated by a pri-
vate (symmetric) key that was previously imported into the smartcard.
An important property of secure messaging is that it is possible to receive
a “receipt” testifying to the fact that the operation was carried out; when
secure messaging with message authentication is used, this receipt cannot
be tampered with by a man-in-the-middle adversary. Thus, it is possible
for one party to initialize a smartcard and send it to another party, with
the property that the first party can still carry out secure operations with
the smartcard without the second party being able to learn anything or
tamper with the communication in an undetected way. One example of
how this may be useful is that the first party can import a secret key
to the smartcard without the second party that physically holds the card
learning the key. We remark that it is typically possible to define a differ-
ent key for secure messaging that is applied to messages being sent to the
smartcard and to messages that are received from the smartcard (and thus
it is possible to have unidirectional secure messaging only). In addition to
ensuring privacy, secure messaging can be used to ensure integrity. Thus,
a message authentication code (MAC) can be used on commands to the
smartcard and responses from the smartcard. This can be used, for exam-
ple, to enable a remote user to verify that a command was issued to the
smartcard by the party physically holding the smartcard. (In order to im-
plement this, a MAC is applied to the smartcard response to the command
and this MAC is forwarded to the remote user. Since it is not possible to
forge a MAC without knowing the secret key, the party physically holding

9.4 Implementing Functionality FCPRP with Smartcards 245

the smartcard cannot forge a response and so must issue the command, as
required.)

6. Store files: A smartcard can also be used to store files. Such files can either
be public (meaning anyone can read them) or private (meaning that some
test must be passed in order to read the file). We stress that private keys
are not files because such a key can never be read out of a smartcard. In
contrast a public key is essentially a file.

We stress that all reasonable smartcards have all of the above properties,
with the possible exception of the special access conditions mentioned above
in item 4.

Smartcard Security. It is important to note that smartcards provide a
high level of physical security. They are not just regular microcontrollers
with defined functionality. Rather, great progress has been made over the
years to make it very hard to access the internal memory of a smartcard.
Typical countermeasures against physical attacks on a smartcard include
shrinking the size of transistors and wires to 200 nm (making them too small
for analysis by optical microscopes and too small for probes to be placed on
the wires), multiple layering (enabling sensitive areas to be buried beneath
other layers of the controller), protective layering (a grid is placed around
the smartcard and if this is cut, then the chip automatically erases all of its
memory), sensors (if the light, temperature, etc. are not as expected then all
internal memory is immediately destroyed), bus scrambling (obfuscating the
communication over the data bus between different components to make it
hard to interpret without full reverse engineering), and glue logic (mixing up
components of the controller in random ways to make it hard to know which
components hold which functionality). For more information, we refer the
reader to [76]. Having said the above, there is no perfect security mechanism,
and this includes smartcards. Nevertheless, we strongly believe that it is
a reasonable assumption to trust the security of high-end smartcards (for
example, smartcards that have FIPS 140-2, level 3 or 4 certification). Our
belief is also supported by the computer security industry: smartcards are
widely used today as an authentication mechanism to protect security-critical
applications.

Standard smartcards – what and why. We stress that our use of smart-
cards is such that any standard smartcard can be used. It is important for us
to use standard – rather than special-purpose – smartcards for the following
reasons:

1. Ease of deployment: It is much easier to actually deploy a protocol that
uses standard smartcard technology. This is due to the fact that many or-
ganizations have already deployed smartcards, typically for authenticating
users. However, even if this is not the case, it is possible to purchase any
smartcard from essentially any smartcard vendor.

246 9 Search Problems

2. Trust: If a special-purpose smartcard needs to be used for a secure pro-
tocol, then we need to trust the vendor that built the smartcard. This
trust extends to believing that it did not incorrectly implement the smart-
card functionality on purpose or unintentionally. In contrast, if standard
smartcards can be used then it is possible to use smartcards constructed
by a third-party vendor (and possibly constructed before the protocol de-
sign). In addition to reducing the chance of malicious implementation, the
chance of an unintentional error is much smaller, because these cards have
been tried and tested over many years.

We remark that Javacards can also be considered for the application that
we are considering. Javacards are smartcards with the property that special-
purpose Java applets can be loaded onto them in order to provide special-
purpose functionality. We remark that such solutions are also reasonable.
However, it does make deployment slightly more difficult as already-deployed
smartcards (that are used for smartcard logon and VPN authentication, for
example) cannot be used. Furthermore, it is necessary to completely trust
whoever wrote the applet; this can be remedied by having an open source
applet which can be checked before being loaded. Therefore, protocols that
do need smartcards with some special-purpose functionality can be used, but
are slightly less desirable.

For more discussion regarding this model of using smartcards in crypto-
graphic protocols, see [44].

9.4.2 Implementing FCPRP with Smartcards

We model the smartcard as an additional entity that interacts with the par-
ties, where in the ideal model, the ideal adversary/simulator plays the role
of the smartcard for the adversary. This means that the simulator receives
the messages that the adversary sends to the smartcard and returns the re-
sponses that the adversary expects to receive from the smartcard. This is the
standard way of carrying out simulation, where the simulator plays the role
of the honest parties interacting with the adversary. Importantly, we model
this entity as an incorruptible trusted party (albeit with functionality that
is limited to what standard smartcards can do). Alternatively, we model the
smartcard as an ideal functionality FSC which receives commands from only
one party at a time. Formally, the party that initializes the smartcard has
access until it sends a transfer message to the functionality, after which only
the other party can interact with the trusted party computing the smartcard
functionality.

In order to securely compute FCPRP we need to show how to implement
the initialization and evaluation stages. An important feature of our im-
plementation is that it suffices for P1 (which owns the key k) to send a single

9.4 Implementing Functionality FCPRP with Smartcards 247

smartcard to P2, and this smartcard can be used for multiple invocations of
FCPRP with independent keys. In addition, this can be done before P1 and
P2 have their inputs. This is crucial because although we argue that it is
realistic for parties in non-transient relationships to send smartcards to each
other, it is not very practical for them to do this every time they wish to run
a protocol. Rather, they should be able to do this only once, and then run
their protocol many times.

PROTOCOL 9.4.1 (Implementing FCPRP with Smartcards)

• Preprocessing: P1 initializes a smartcard so that a key for a pseudorandom
permutation can be imported, while encrypted under a secure messaging key
ksm. P1 sends the smartcard to P2. This preprocessing step is run once in the

smartcard lifetime.
• The protocol:

– Initialize: Party P1 chooses a key k ← {0, 1}n and imports it into the
smartcard for use for a pseudorandom permutation. The imported key is

encrypted and authenticated using the secure messaging key ksm. In ad-
dition, P1 imports a key ktest as a test object that protects the key k by
challenge/response. Finally, P1 sets the access-granted counter of k to 1.
Again, these operations are carried out using secure messaging with encryp-

tion and message authentication.
– Evaluation:

1. Upon input (retrieve, x), party P2 queries the smartcard for a random
challenge, and receives back r. P2 sends (challenge, r) to P1.

2. Upon receiving (challenge, r), if party P1 allows the computation, it com-
putes s = FPRP(ktest, r) and sends (response, s) to P2. Otherwise, it sends
reject to P2.

3. If P2 receives reject, then it outputs reject. Otherwise, upon receiving

(response, s), party P2 hands it to the smartcard in order to pass the test.
If s is incorrect and thus the test is not passed, then P2 outputs reject.
Otherwise, P2 uses the smartcard to compute FPRP(k, x) and outputs

the result.

We prove the security of Protocol 9.4.1 by modeling the smartcard as an
ideal functionality FSC.

Theorem 9.4.2 Let FSC be a functionality implementing the smartcard
functionality described above. Then, Protocol 9.4.1 securely computes FCPRP

in the FSC-hybrid model.

Proof (sketch). Let A be an adversary controlling P1. Observe that P1

receives no messages from P2 in the protocol. Therefore, A can learn nothing.
In addition, a simulator S can learn k because A imports k into the smartcard
by sending it to FSC. Note that if A provides an illegal k (e.g., a string that
is not of length n), then S can replace it with a default key k because a
real smartcard will refuse to work with incorrect input and will output an
error message that P2 will see. Finally, observe that if A provides P2 with an

248 9 Search Problems

incorrect response, then this is equivalent to it sending reject, which is what
P2 outputs in this case.

Regarding the case where P2 is corrupted and controlled by an adversary
A, the security stems from the fact that unless A can guess a correct response
s to a challenge r, it is unable to access the smartcard and use FPRP(k, ·) un-
less authorized by P1. We stress that A cannot change the keys imported
during the initialize step or learn their value except with negligible probabil-
ity, because all messages sent by P1 for the smartcard functionality FSC are
encrypted and authenticated. Thus, A can only not import the keys at all,
in which case it receives no information about k and so the execution can be
easily simulated.

This completes the proof sketch.

Efficiency. Protocol 9.4.1 achieves extraordinary efficiency. Only two rounds
of communication are needed between the parties and then P2 interacts with
the smartcard only in order to carry out the computations.

9.5 Secure Text Search (Pattern Matching)

The basic problem of text search is the following: given a text T of length N
(for simplicity we assume that N is a power of 2) and a pattern p of length m,
find all the locations in the text where pattern p appears in the text. Stated
differently, for every i = 1, . . . , N −m+1, let Ti be the substring of length m
that begins at the ith position in T . Then, the basic problem of text search
is to return the set {i | Ti = p}. This problem has been intensively studied
and can be solved optimally in time that is linear in size of the text [10, 53].

In this section, we address the question of how to securely compute the
above basic text search functionality. The functionality, denoted FTS, is de-
fined by

((T,m), p) 7→
{
(λ, {i | Ti = p}) if |p| = m
(⊥,⊥) otherwise

where Ti is defined as above, and T and p are binary strings. Note that S,
which holds the text, learns nothing about the pattern held by C, and the
only thing that C learns about the text held by S is the locations where its
pattern appears.

In this section, we present a protocol for securely computing FTS with one-
sided simulation. The basic idea of the protocol is for S and C to run a single
execution of πPRF for securely computing a pseudorandom function with one-
sided simulatability; let f = FPRF(k, p) be the output received by C. Then,
S locally computes the pseudorandom function on Ti for every i and sends
the results {FPRF(k, Ti)} to C. C can then find all the matches by just seeing
where f appears in the series sent by S. Unfortunately, within itself, this is
insufficient because C can then detect repetitions in T . That is, if Ti = Tj ,

9.5 Secure Text Search (Pattern Matching) 249

C will learn this because it implies that FPRF(k, Ti) = FPRF(k, Tj). However,
if Ti ̸= p, this should not be revealed. We therefore include the index i of
the subtext Ti in the computation and have S send the values FPRF(k, Ti∥⟨i⟩)
where ⟨i⟩ denotes the binary representation of i. This in turn generates an-
other problem because now it is not possible for C to see where p appears,
given only FPRF(k, p). This is solved by having C obtain FPRF(k, p∥⟨i⟩) for
every i, while ensuring that the same p appears in all of the FPRF(k, p∥⟨i⟩)
computations. We utilize specific properties of the Naor-Reingold pseudo-
random function, and the protocol πPRF for computing it (see Section 7.6),
in order to have C obtain all of these values, while running only a single
execution of πPRF and while ensuring that the same p appears in all the
computations.

We remark that we cannot use a generic protocol for committed secure
pseudorandom evaluation FCPRP, and so in particular cannot use the smart-
card methodology of Section 9.4.2. In order to see this, the FCPRP functional-
ity does not ensure any consistency between evaluations, and so nothing pre-
vents the client C from obtaining values FPRF(k, p∥⟨i⟩) and FPRF(k, p

′∥⟨j⟩),
where p ̸= p′. We also remark that the above methodology does not seem
to readily yield protocols that are fully secure with simulation even in the
case where the server S is corrupted. This is due to the fact that in the text
search problem the Ti substrings are related ; in particular, Ti almost equals
Ti+1 (with most values overlapping). Thus, in order to obtain full simulation,
the protocol must force a corrupt server S to use values T1, T2, . . . that are
consistent with each other, and with a single well-defined text T . This seems
to be difficult to achieve efficiently.

9.5.1 Indexed Implementation for Naor-Reingold

Following our discussion above, we continue with a modified version of πPRF

for computing the Naor-Reingold function such that C’s output is the set
{FPRF(k, x∥⟨i⟩)}N−m+1

i=1 , rather than just the single value FPRF(k, x). We
call this functionality indexed pseudorandom function evaluation, denoted
by FIND, and define it by(

(k, 1N), x
)
7→

(
λ, {FPRF(k, x ∥⟨i⟩)}N−m+1

i=1

)
.

Observe that when computing FIND, the input to FPRF is of length m+logN ,
where m is the length of the pattern p and logN is the length of the index
i (because it is an index into the text of length N). Recall that the Naor-
Reingold pseudorandom function is defined by

FPRF(k, x) = ga0·
∏m

j=1 a
xj
j .

250 9 Search Problems

where the key k is defined by the vector (ga0 , a1, . . . , am) and the aj values are
random; see Section 7.6 for more details. Furthermore, the protocol for secure
pseudorandom evaluation that is based on this function works by running an
oblivious transfer for each bit xi of the receiver’s input. We assume familiarity
with this construction here; see Section 7.6.1.

The idea behind securely computing FIND is due to the following observa-
tion. Let x = (x1∥x2) where |x1| = m and |x2| = ℓ (i.e., |x1|+ |x2| = m+ ℓ),
and let k = (ga0 , a1, . . . , am+ℓ). Then, by the definition of the Naor-Reingold
function, we have

FPRF(k, x) = FPRF((g
a0 , a1, . . . , am+ℓ), (x1∥x2))

= FPRF((g
a0 , a1, . . . , am), x1)

∏m+ℓ
j=m+1 a

xj
j .

Thus, it follows that

FPRF(k, x ∥⟨i⟩) = FPRF((g
a0 , a1, . . . , am, x)

∏m+log N
j=m+1 a

⟨i⟩j
j ,

where ⟨i⟩j denotes the jth bit in ⟨i⟩. We use this in order to securely
compute FIND as follows. First, S uses a pseudorandom function key k =
(ga0 , a1, . . . , am+logN) for inputs of length m + logN , as we have in this
case. Next, S and R essentially run Protocol πPRF in Section 7.6 in order
to compute FPRF((g

a0 , a1, . . . , am), x). Recall that in this protocol, after the

oblivious transfers the server S holds a value g̃ = g
a0·

∏m
j=1

1
rj and the client

C holds values y1x1
, . . . , ymxm

such that

g̃
∏m

j=1 yj
xj = FPRF((g

a0 , a1, . . . , am), x).

Thus, for every i, the server S can locally compute g̃⟨i⟩ = g̃
∏m+log N

j=m+1 a
⟨i⟩j
j and

it then follows that

g̃

∏m
j=1 yj

xj

⟨i⟩ = FPRF(k, x ∥⟨i⟩).

After having computed all of these values (for every i), S can send the set
to C, which can then compute FPRF(k, x ∥⟨i⟩) for every i, as required. See
Protocol 9.5.1 for a full description.

We now prove that Protocol 9.5.1 securely computes the indexed pseudo-
random function evaluation functionality. Due to the similarity to the proof
of security of Protocol 7.6.5 in Section 7.6, we present a proof sketch only.

Proposition 9.5.2 Assume that πBOT securely computes FBOT with one-
sided simulation. Then Protocol 9.5.1 securely computes FIND with one-sided
simulation.

Proof (sketch). Note first that the messages that S receives in Proto-
col 9.5.1 and πOS

PRF (see Theorem 7.6.8) are identical. Therefore, the proof of

9.5 Secure Text Search (Pattern Matching) 251

PROTOCOL 9.5.1 (Indexed Pseudorandom Function Evaluation πOS
IND)

• Inputs: The input of S is k = (ga0 , a1, . . . , am+logN) and a value 1N , and the
input of C is a value x of length m.

• Auxiliary inputs: Both parties have the security parameter 1n and are given
a description of the group G, its order q and a generator g.

• The protocol:

1. S chooses m random values r1, . . . , rm ←R Z∗
q .

2. The parties run a 1-out-2 batch oblivious transfer protocol πBOT. In the ith
iteration, S inputs yi0 = ri and yi1 = ri · ai (with multiplication in Z∗

q), and
C enters the bit σi = xi where x = x1, . . . , xn. If the output of any of the

oblivious transfers is ⊥, then both parties output ⊥ and halt. Otherwise:
3. C’s output from the m executions is a series of values y1x1

, . . . , ymxm
. If any

value yixi
is not in Z∗

q , then C redefines it to equal 1.

4. S sets g̃ = g
a0·

∏n
i=1

1
ri and sends C the set{(

i, g⟨i⟩ = g̃
Π

log N
j=1 a

⟨i⟩j
m+j

)}N−m+1

i=1

where ⟨i⟩j denotes the jth bit of the binary representation of i.
5. C aborts if the order of any g⟨i⟩ is not equal to q. Otherwise, C computes

and outputs the set{(
i, y⟨i⟩ = g

∏n
j=1 yj

xj

⟨i⟩

)}N−m+1

i=1

= {(i, FPRF(k, p ∥⟨i⟩))}N−m+1
i=1 .

privacy in the case where the server is corrupted follows from the proof in
Section 7.6.

In the case where C is corrupted, we prove security in the πBOT-hybrid
model. Let A be an adversary that controls C; we construct a simulator
SCL as follows. SCL receives A’s input x′ ∈ {0, 1}m for the batch oblivious
transfer execution, sends it to the trusted party computing FIND and receives
the output set Z = {zi}N−m+1

i=1 . Then, in each oblivious transfer SCL hands

A a random value ri ←R Z∗q . Next, SCL sets z̃i = z

∏m
j=1

1
rj

i for every zi ∈ Z
and sends (i, z̃i) to A. This completes the simulation.

The proof that A’s view is identical in both the simulated and hybrid
executions and that A returns the same value in both executions is the same
as in the proof of Theorem 7.6.6. This is because the only difference between
the executions is due to the fact that the intermediate value g̃ is raised to

the power of
∏logN

j=1 a
⟨i⟩j
m+j for every i. Since the initial g̃ value is distributed

identically in the hybrid and simulated executions, it follows that raising
either value to the power of the same set of constants yields exactly the same
distribution.

252 9 Search Problems

Full simulation. Protocol 9.5.1 does not achieve full security with sim-
ulation in both corruption cases, even if a fully secure oblivious transfer
subprotocol is used. This is due to the fact that a corrupt P1 may not carry
out the computation of all the g⟨i⟩ values from g̃ correctly. Thus, correctness
is not guaranteed.

Efficiency. πOS
IND has six rounds of communication. In addition, using the

batch oblivious transfer of Section 7.5, the number of exponentiations com-
puted is 11(m+logN)+15+2(N −m) since the parties run πOS

IND with input
length m+ logN and the additional 2(N −m) values are needed to compute
the set of N −m values in the last message.

9.5.2 The Protocol for Secure Text Search

We are now ready to present our main result for this section, which uses πOS
IND

as a subprotocol.

PROTOCOL 9.5.3 (Secure Text Search πOS
TS)

• Inputs: The input of S is a binary string T of size N , and the input of C is a

binary pattern p of size m.
• Auxiliary Inputs: The security parameter 1n, the input sizes N and m, and

(G, q, g) for the Naor-Reingold function.
• The protocol:

1. S chooses a random key for computing the Naor-Reingold function on inputs
of length m+ logN ; let the key k = (ga0 , a1, . . . , am+logN).

2. The parties execute πOS
IND where S enters the key k and C enters its pattern p

of length m. The output of C from this execution is the set {(i, fi)}N−m+1
i=1 .

3. For every i, let ti = FPRF(k, Ti∥⟨i⟩), where Ti is the m-length substring of
T beginning at location i. Then, S sends C the set {(i, ti)}N−m+1

i=1 .
4. C outputs the set of indices {i} for which fi = ti.

Note that S can choose the parameters (G, q, g) as long as their validity
can be verified (which is typically the case), and they do not need to be
auxiliary inputs.

Theorem 9.5.4 Let FPRF denote the Naor-Reingold function and assume
that the DDH assumption holds in G. Furthermore, assume that protocol
πOS

IND securely computes FIND with one-sided simulation. Then Protocol 9.5.3
securely computes FTS with one-sided simulation.

Proof. We separately consider the cases that S and C are corrupted.

The server S is corrupted. Since we are only proving one-sided simu-
latability here, all we need to show is that S learns nothing about C’s input.

9.5 Secure Text Search (Pattern Matching) 253

This follows from the fact that the only messages received by S in the proto-
col execution are those received within a single execution of the subprotocol
πOS

IND. Thus, the security in this case follows directly from the one-sided sim-
ulatability of πOS

IND.

The client C is corrupted. We prove security here in the FIND-hybrid
model. Let A be an adversary controlling C; we construct a simulator SCL as
follows:

1. SCL receives input p and auxiliary input z and invokes A on this input.
2. SCL receives from A the input p′ that it sends to FIND. Simulator SCL

sends p′ to its trusted party computing FTS and receives back the set of
text locations I for which there exists a match.

3. SCL chooses a random key k ← IPRF(1
m+logN) and sends A the set

{(i, FPRF(k, p
′∥⟨i⟩))}N−m+1

i=1 , as the trusted party that computes FIND

would.
4. Let k = (ga0 , a1, . . . , am+logN). Then for every 1 ≤ i ≤ N −m + 1, SCL

continues as follows:

• If i ∈ I, the simulator SCL defines ti = FPRF(k, p
′∥⟨i⟩).

• Otherwise, SCL defines ti = FPRF(k, p̂∥⟨i⟩) where p̂ ̸= p′ is an arbitrary
string of length m.

5. SCL hands A the set {(i, ti)} and outputs whatever A outputs.

Observe that the only difference between the hybrid and the simulated
executions is in the last step where for every text location i such that Ti ̸= p′,
the simulator SCL defines ti based on a fixed p̂ ̸= p′ instead of basing it on the
substring Ti (which is unknown to the simulator). Intuitively, this makes no
difference due to the pseudorandomness of the function. Formally, we prove
this by going through a series of hybrid experiments.

Game H1: We begin by modifying SCL so that it uses an oracle OFPRF for
computing the function FPRF. The modified simulator S1CL can use this oracle
by handing A the set F = {OFPRF(p

′∥⟨i⟩)}N−m+1
i=0 as its output from the

trusted party computing FIND. Furthermore, it can define ti = OFPRF(p
′∥⟨i⟩)

if i ∈ I, and ti = OFPRF(p̂∥⟨i⟩) otherwise. By the definition of FPRF, this is
exactly the same distribution as generated by SCL above. We stress that SCL

interacts with a trusted party that computes FTS, as in the ideal world.

Game H2: In this game, we replace OFPRF with an oracle OHFunc computing
a truly random function. Clearly, the resulting distributions in both games
are computationally indistinguishable. This can be proven via a reduction
to the pseudorandomness of the function FPRF. Informally, let DPRF denote a
distinguisher that attempts to distinguish FPRF from HFunc. Then DPRF, play-
ing the role of S1CL above, invokes its oracle on the sets {pi = p′∥⟨i⟩}N−m+1

i=0

and {ti}N−m+1
i=0 , where ti = pi∥⟨i⟩ when i ∈ I, and ti = p̂∥⟨i⟩ otherwise (note

that the difference is whether p′ or p̂ is used). Now, any distinguisher for

254 9 Search Problems

the distributions of games H1 and H2 can be utilized by DPRF to distinguish
between FPRF and HFunc.

Game H3: In this game, we define a modified simulator S3CL that computes
all of the ti values correctly using the honest S’s text T , instead of invoking
a trusted party. The resulting distribution is identical because the oracle
computes a truly random function and all inputs are distinct in both cases
(the fact that the inputs are distinct is due to the index i that is concatenated
each time).

Game H4: Here, we modify the oracle OHFunc back to an oracle OPRF com-
puting FPRF. Again, the fact that the distributions in games H3 and H4 are
computationally indistinguishable follows from a straightforward reduction.

Game H5: Finally, we compute the pseudorandom function instead of using
an oracle. This makes no difference whatsoever for the output distribution.

Noting that the last game is exactly the distribution generated in a hybrid
execution of Protocol 9.5.3 with a trusted party computing FIND, we have
that the hybrid and ideal executions are computationally indistinguishable,
completing the proof.

Efficiency. The cost of Protocol 9.5.3 equals a single execution of πOS
IND with

the additional exponentiations needed for S to compute the set {(i, ti)}N−m+1
i=1 .

One-sided versus full simulatability. Observe that Protocol 9.5.3 does
not achieve correctness when S is corrupted because S may construct the ti
values in a way that is not consistent with any text T . Specifically, for every
i, the last m−1 bits of Ti are supposed to be the first m−1 bits of Ti+1, but
S is not forced to construct the values in this way. Protocol 9.5.3 is therefore
not simulatable in this case, and it is not known how to enforce such behavior
efficiently.

References

[1] G. Aggarwal, N. Mishra and B. Pinkas. Secure Computation of the
k’th-ranked Element. In EUROCRYPT’04, Springer-Verlag (LNCS
3027), pages 40–55, 2004.

[2] W. Aiello, Y. Ishai and O. Reingold. Priced Oblivious Transfer: How
to Sell Digital Goods. In EUROCRYPT’01, Springer-Verlag (LNCS
2045), pages 110–135, 2001.

[3] Y. Aumann and Y. Lindell. Security Against Covert Adversaries:
Efficient Protocols for Realistic Adversaries. In 4th TCC, Springer-
Verlag (LNCS 4392), pages 137–156, 2007.

[4] D. Beaver. Multiparty Protocols Tolerating Half Faulty Processors.
In CRYPTO’89, Springer-Verlag (LNCS 435), pages 560–572, 1990.

[5] D. Beaver. Foundations of Secure Interactive Computing. In
CRYPTO’91, Springer-Verlag (LNCS 576), pages 377–391, 1991.

[6] D. Beaver and S. Goldwasser. Multiparty Computation with Faulty
Majority. In 30th FOCS, pages 468–473, 1989.

[7] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In
CRYPTO’92, Springer-Verlag (LNCS 740), pages 390–420, 1992.

[8] M. Bellare and O. Goldreich. On Probabilistic Versus Deterministic
Provers in the Definition of Proofs of Knowledge. Manuscript, 2006.

[9] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness The-
orems for Non-Cryptographic Fault-Tolerant Distributed Computa-
tions. In 20th STOC, pages 1-10, 1988.

[10] R.S. Boyer and J.S. Moore. A Fast String Searching Algorithm. Com-
munications of the Association for Computing Machinery, 20:762–
772, 1977.

[11] R. Canetti. Security and Composition of Multiparty Cryptographic
Protocols. Journal of Cryptology, 13(1):143–202, 2000.

[12] R. Canetti. Universally Composable Security: A New Paradigm for
Cryptographic Protocols. In 42nd FOCS, pages 136–145, 2001.

255C. Hazay, Y. Lindell, Efficient Secure Two-Party Protocols,
Information Security and Cryptography, DOI 10.1007/978-3-642-14303-8,
© Springer-Verlag Berlin Heidelberg 2010

256 References

[13] R. Canetti and A. Herzberg. Maintaining Security in the Presences
of Transient Faults. In CRYPTO’94, Springer-Verlag (LNCS 839),
pages 425–438, 1994.

[14] R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations of
Universal Composable Two-Party Computation Without Set-Up As-
sumptions. Journal of Cryptology, 19(2):135-167, 2006.

[15] D. Chaum, C. Crépeau and I. Damg̊ard. Multiparty Unconditionally
Secure Protocols. In 20th STOC, pages 11-19, 1988.

[16] B. Chor, N. Gilboa and M. Naor. Private Information Retrieval by
Keywords. Technical Report TR-CS0917, Department of Computer
Science, Technion, 1997.

[17] R. Cleve. Limits on the Security of Coin Flips When Half the Pro-
cessors Are Faulty. In 18th STOC, pages 364–369, 1986.

[18] R. Cramer and I. Damg̊ard. On the Amortized Complexity of Zero-
Knowledge Protocols. In CRYPTO’09. Springer-Verlag (LNCS 5677),
pages 177–191, 2009.

[19] R. Cramer, I. Damg̊ard and B. Schoenmakers. Proofs of Partial
Knowledge and Simplified Design of Witness Hiding Protocols. In
CRYPTO’94, Springer-Verlag (LNCS 839), pages 174–187, 1994.

[20] I. Damg̊ard. On Σ Protocols. http://www.daimi.au.dk/∼ivan/Sigma.pdf.
[21] I. Damg̊ard, T. P. Pedersen and B. Pfitzmann. On the Existence of

Statistically Hiding Bit Commitment Schemes and Fail-Stop Signa-
tures. In CRYPTO’93, Springer-Verlag (LNCS 773), pages 250–265,
1994.

[22] I. Damg̊ard and T. Toft. Trading Sugar Beet Quotas – Secure Multi-
party Computation in Practice. ERCIM News 2008(73), 2008.

[23] C. Dwork, M. Naor and O. Reingold. Immunizing Encryption Schemes
from Decryption Errors. In Eurocrypt’04, Springer-Verlag (LNCS
3027), pages 342–360, 2004.

[24] T. El-Gamal. A Public-Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. In CRYPTO’84, Springer-Verlag
(LNCS 196), pages 10–18, 1984.

[25] S. Even, O. Goldreich and A. Lempel. A Randomized Protocol for
Signing Contracts. In Communications of the ACM, 28(6):637–647,
1985.

[26] U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in
Two Rounds. In CRYPTO’89, Springer-Verlag (LNCS 435), pages
526–544, 1989.

[27] U. Feige and A. Shamir. Witness Indistinguishability and Witness
Hiding Protocols. In 22nd STOC, pages 416–426, 1990.

[28] M. J. Freedman, Y. Ishai, B. Pinkas and O. Reingold. Keyword Search
and Oblivious Pseudorandom Functions. In 2nd TCC, Springer-
Verlag (LNCS 3378), pages 303–324, 2005.

References 257

[29] Z. Galil, S. Haber and M. Yung. Cryptographic Computation: Secure
Fault-Tolerant Protocols and the Public Key Model. In CRYPTO’87,
Springer-Verlag (LNCS 293), pages 135–155, 1987.

[30] O. Goldreich. Foundations of Cryptography: Volume 1 – Basic Tools.
Cambridge University Press, 2001.

[31] O. Goldreich. Concurrent Zero-Knowledge with Timing, Revisited.
In 34th STOC, pages 332–340, 2002.

[32] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Appli-
cations. Cambridge University Press, 2004.

[33] O. Goldreich. On Expected Probabilistic Polynomial-Time Adver-
saries: A Suggestion for Restricted Definitions and Their Benefits. In
4th TCC, Springer-Verlag (LNCS 4392), pages 174–193, 2007.

[34] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-
Knowledge Proof Systems for NP. Journal of Cryptology, 9(3):167–
190, 1996.

[35] O. Goldreich, S. Micali and A. Wigderson. How to Play Any Mental
Game – A Completeness Theorem for Protocols with Honest Majority.
In 19th STOC, pages 218–229, 1987.

[36] O. Goldreich, S. Micali and A. Wigderson. How to Prove all NP-
Statements in Zero-Knowledge, and a Methodology of Cryptographic
Protocol Design. In CRYPTO’86, Springer-Verlag (LNCS 263), pages
171–185, 1986.

[37] S. Goldwasser and L. Levin. Fair Computation of General Functions
in Presence of Immoral Majority. In CRYPTO’90, Springer-Verlag
(LNCS 537), pages 77–93, 1990.

[38] S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks. SIAM Journal on
Computing, 17(2):281–308, 1988.

[39] S. D. Gordon, C. Hazay, J. Katz and Y. Lindell. Complete Fairness
in Secure Two-Party Computation. In 40th STOC, pages 413–422,
2008.

[40] S. D. Gordon and J. Katz. Partial Fairness in Secure Two-Party
Computation. In EUROCRYPT’10, Springer-Verlag (LNCS 6110),
2010.

[41] S. Halevi and S. Micali. Practical and Provably-Secure Commit-
ment Schemes from Collision-Free Hashing, In CRYPTO’96, Springer-
Verlag (LNCS 1109), pages 201–215, 1996.

[42] S. Halevi and Y. Tauman-Kalai. Smooth Projective Hashing and
Two-Message Oblivious Transfer. Cryptology ePrint Archive, Report
2007/118, 2007.

[43] S. Har-Peled. Lecture Notes on Approximation Algorithms in Ge-
ometry, Chapter 27, Excercise 27.5.3, 2010. Currently found at
http://valis.cs.uiuc.edu/∼sariel/teach/notes/aprx/.

258 References

[44] C. Hazay and Y. Lindell. Constructions of Truly Practical Secure
Protocols Using Standard Smartcards. In ACM CCS, pages 491–500,
2008.

[45] Y. Ishai. Personal Communication, 2004.
[46] Y. Ishai, M. Prabhakaran and A. Sahai. Founding Cryptography

on Oblivious Transfer – Efficiently. In CRYPTO’08, Springer-Verlag
(LNCS 5157), pages 572–591, 2008.

[47] S. Jarecki and V. Shmatikov. Efficient Two-Party Secure Compu-
tation on Committed Inputs. In EUROCRYPT’07, Springer-Verlag
(LNCS 4515), pages 97–114, 2007.

[48] J. Katz and Y. Lindell. Handling Expected Polynomial-Time Strate-
gies in Simulation-Based Proofs. In Journal of Cryptology, 21(3):303-
349, 2008.

[49] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chap-
man and Hall/CRC Press, 2007.

[50] J. Katz, R. Ostrovsky and A. Smith. Round Efficiency of Multi-
party Computation with a Dishonest Majority. In EUROCRYPT’03,
Springer-Verlag (LNCS 2656), pages 578–595, 2003.

[51] J. Katz and R. Ostrovsky. Round-Optimal Secure Two-Party Compu-
tation. In CRYPTO’04, Springer-Verlag (LNCS 3152), pages 35–354,
2004.

[52] J. Kilian. Improved Efficient Arguments. In CRYPTO’95, Springer-
Verlag (LNCS 963), pages 311–324, 1995.

[53] D. E. Knuth, J. H. Morris and V. R. Pratt. Fast Pattern Matching
in Strings. SIAM Journal on Computing, 6(2): 323–350, 1977.

[54] Y. Lindell. Composition of Secure Multi-party Protocols – A Com-
prehensive Study. Lecture Notes in Computer Science Vol. 2815,
Springer-Verlag, 2003.

[55] Y. Lindell and B. Pinkas. An Efficient Protocol for Secure Two-Party
Computation in the Presence of Malicious Adversaries. In EURO-
CRYPT’07, Springer-Verlag (LNCS 4515), pages 52–78, 2007.

[56] Y. Lindell and B. Pinkas. A Proof of Security of Yao’s Protocol for
Two-Party Computation. Journal of Cryptology, 22(2):161–188, 2009.

[57] Y. Lindell and B. Pinkas. Secure Two-Party Computation via Cut-
and-Choose Oblivious Transfer. Manuscript, 2010.

[58] Y. Lindell, B. Pinkas and N. Smart. Implementing Two-Party Com-
putation Efficiently with Security Against Malicious Adversaries. In
Conference on Security and Cryptography for Networks, pages 2–20,
2008.

[59] S. Micali and P. Rogaway. Secure Computation. Unpublished
manuscript, 1992. Preliminary version in CRYPTO’91, Springer-
Verlag (LNCS 576), pages 392–404, 1991.

[60] M. Naor. Bit Commitment Using Pseudorandomness. Journal of
Cryptology, 4(2):151–158, 1991.

References 259

[61] M. Naor and K. Nissim. Communication Preserving Protocols for
Secure Function Evaluation. In 33rd STOC, pages 590–599, 2001.

[62] M. Naor and B. Pinkas. Efficient Oblivious Transfer Protocols. In
12th SODA, pages 448–457, 2001.

[63] M. Naor, B. Pinkas and R. Sumner. Privacy Preserving Auctions and
Mechanism Design. In the ACM Conference on Electronic Commerce,
pages 129–139, 1999.

[64] M. Naor and O. Reingold. Number-Theoretic Constructions of Effi-
cient Pseudo-Random Functions. In 38th FOCS, pages 231–262, 1997.

[65] J. B. Nielsen and C. Orlandi. LEGO for Two-Party Secure Compu-
tation. In 6th TCC, Springer-Verlag (LNCS 5444), pages 368–386,
2009.

[66] C. Orlandi. Personal communication, 2010.
[67] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks.

In 10th PODC, pages 51–59, 1991.
[68] P. Paillier. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In EUROCRYPT’99, Springer-Verlag (LNCS
1592), pages 223–238, 1999.

[69] T. P. Pedersen. Non-interactive and Information-Theoretical Secure
Verifiable Secret Sharing. In CRYPTO’91, Springer-Verlag (LNCS
576) pp. 129–140, 1991.

[70] C. Peikert, V. Vaikuntanathan and B. Waters. A Framework for Effi-
cient and Composable Oblivious Transfer. In CRYPTO’08, Springer-
Verlag (LNCS 5157), pages 554–571, 2008.

[71] B. Pinkas, T. Schneider, N. P. Smart and S. C. Williams. Secure Two-
Party Computation Is Practical. In ASIACRYPT 2009, Springer-
Verlag (LNCS 5912), pages 250–267, 2009.

[72] M. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech.
Memo TR-81, Aiken Computation Laboratory, Harvard University,
1981.

[73] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multi-party
Protocols with Honest Majority. In 21st STOC, pages 73–85, 1989.

[74] M. Rodeh. Finding the Median Distributively. Journal of Computer
and System Sciences, 24(2): 162–166, 1982.

[75] P. Schnorr. Efficient Identification and Signatures for Smart Cards.
In CRYPTO’89, Springer-Verlag (LNCS 435), pages 239–252, 1989.

[76] M. Witteman. Advances in Smartcard Security. In Information Se-
curity Bulletin, pages 11–22, July 2002.

[77] A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages
162–167, 1986.

Index

A

adversary

adaptive 7

malicious 8

semi-honest 8

static 7

augmented semi-honest adversary 22,
28–29, 36–37

C

commitment scheme 163

Σ-protocol 173–175

Pedersen’s commitment 163–164, 166

perfectly hiding 163

trapdoor commitment 165–166, 175

committed pseudorandom permutation
functionality 228

smartcards 242–248

computational indistinguishability 19

covert adversary 30–35

cut and choose 81

D

deterministic functionalities 39

double encryption

security 58–59

E

efficiency measures 78–80

encryption scheme

double-encryption security 58–59

efficiently verifiable range 57

elusive range 57

enhanced trapdoor permutation 61
Euclidean algorithm 185

F

fairness 5, 7, 35

G

garbled circuit
construction 63–66
description 53–55

GMW 11–13

malicious adversaries 11–12
semi-honest adversaries 11

H

hard relations 173
and commitments 174

homomorphic encryption 109–110
efficiently recognizable public keys 119
efficiently verifiable 183, 185
oblivious transfer (covert) 111–118

oblivious transfer (privacy only)
182–185

hybrid model 47–49

I

ideal ZKPOK functionality 167

ideal/real paradigm 14
independence of inputs 6
indexed PRF evaluation

one-sided simulation 249–252

K

kth element functionality 213

261

262 Index

M

malicious adversary 36, 40

median protocol

malicious adversaries 221–226

semi-honest adversaries 218–220

modular sequential composition 46–49

covert adversaries 48–49

hybrid model 47

malicious adversaries 48

O

oblivious transfer 211

batch 120, 196–200, 202, 212

covert 109–119

enhanced trapdoor permutation 61–62

full simulation 188–196, 201–202

homomorphic encryption 109–119

one-sided simulation 185–187

privacy only

based on DDH 178–182

based on homomorphic encryption

182–185

batch 205–206

security definition

privacy only 43–45

semi-honest 61–62

string oblivious transfer 119

one-sided simulation

indexed PRF evaluation 249–252

oblivious transfer 185–187

pseudorandom function evaluation 212

secure text search (254, 252–254

security definition 45–46

P

pairwise-independent hash function 41

privacy 5, 14, 212

privacy only

batch oblivious transfer 205–206

oblivious transfer

DDH 178–182

homomorphic encryption 182–185

pseudorandom function evaluation
203–209

security definition 42–43

proof of knowledge 153–154

Σ-protocol 154–158

pseudorandom function evaluation

batch 212–213

covert 211–212

full simulation 209–211

functionality 203

indexed PRF evaluation 249

one-sided simulation 212

privacy only 203–209

pseudorandom functions 202

the Naor-Reingold function 203

R

reactive functionalities 25–26, 41–42

malicious adversaries 42

semi-honest adversaries 42

S

secure search

database search 227, 229–238

database search basic functionality 231

database search full functionality 237

document search 228, 238–242

document search functionality 239

text search 228, 248–254

text search functionality 248

security definition

augmented semi-honest adversaries 22

covert adversaries 30–35

cheating versus aborting 35

detection accuracy 35

covert versus other models 36–38

ideal/real paradigm 6

malicious adversaries 23–25

malicious versus semi-honest 26–29

motivation 4–7

one-sided simulation 45–46

privacy only 42–43

oblivious transfer 43–45

reactive functionalities 25–26

relaxation

covert adversaries 14

one-sided simulation 14

privacy only 14

semi-honest adversaries 20–22

semi-honest adversary 36

sequential composition 46–49

covert adversaries 48–49

hybrid model 47

malicious adversaries 48

Σ-protocol 147–175

and proof of knowledge 154–158

constructing commitment schemes
173–175

constructing zero-knowledge 161–164

constructing zero-knowledge proof of
knowledge 164–166

Index 263

error reduction 152

for Diffie-Hellman Tuples 152
for discrete log 148
parallel repetition 152
proving compound statements 158–160

the ideal ZKPOK functionality
167–173

single-output functionalities 39–41
malicious adversaries 40–41

semi-honest adversaries 40
smartcards 243–246

committed pseudorandom permutation
functionality 242–248

T

trapdoor commitment 165

Y

Yao’s protocol 53–56

Z

zero-knowledge

for Diffie-Hellman Tuples 152

for discrete log 148

Σ-protocol 161–164

zero-knowledge proof of knowledge

Σ-protocol 164–166

the ideal ZKPOK functionality

167–173

	Preface
	Contents
	Part I Introduction and Definitions
	Chapter 1 Introduction
	1.1 Secure Multiparty Computation – Background
	1.2 The GMW Protocol for Secure Computation
	1.3 A Roadmap to the Book
	1.3.1 Part I – Introduction and Defi nitions
	1.3.2 Part II – General Constructions
	1.3.3 Part III – Specific Constructions

	Chapter 2 Definitions
	2.1 Preliminaries
	2.2 Security in the Presence of Semi-honest Adversaries
	2.3 Security in the Presence of Malicious Adversaries
	2.3.1 The Definition

	2.3.2 Extension to Reactive Functionalities
	2.3.3 Malicious Versus Semi-honest Adversaries

	2.4 Security in the Presence of Covert Adversaries
	2.4.1 Motivation
	2.4.2 The Actual Definition

	2.4.3 Cheating and Aborting
	2.4.4 Relations Between Security Models
	2.5 Restricted Versus General Functionalities
	2.5.1 Deterministic Functionalities
	2.5.2 Single-Output Functionalities
	2.5.3 Non-reactive Functionalities

	2.6 Non-simulation-Based Definitions
	2.6.1 Privacy Only
	2.6.2 One-Sided Simulatability

	2.7 Sequential Composition – Simulation-BasedDefinitions

	Part II General Constructions
	Chapter 3 Semi-honest Adversaries
	3.1 An Overview of the Protocol
	3.2 Tools
	3.2.1 "
Special" Private-Key Encryption
	3.2.2 Oblivious
Transfer

	3.3 The Garbled-Circuit Construction
	3.4 Yao’s Two-Party Protocol
	3.5 Efficiency of the Protocol

	Chapter 4 Malicious Adversaries
	4.1 An Overview of the Protocol
	4.1.1 High-Level Protocol Description
	4.1.2 Checks for Correctness and Consistency

	4.2 The Protocol
	4.3 Proof of Security
	4.3.1 Security Against a Malicious P1
	4.3.2 Security Against a Malicious P2

	4.4 Efficient Implementation of the Different Primitives
	4.5 Efficiency of the Protocol
	4.6 Suggestions for Further Reading

	Chapter 5 Covert Adversaries
	5.1 Oblivious Transfer
	5.1.1 The Basic Protocol
	5.1.2 Extensions

	5.2 Secure Two-Party Computation
	5.2.1 Overview of the Protocol
	5.2.2 The Protocol for Two-Party Computation
	5.2.3 Non-halting Detection Accuracy

	5.3 Efficiency of the Protocol

	Part III Specific Constructions
	Chapter 6 Sigma Protocols and Efficient Zero-Knowledge1
	6.1 An Example
	6.2 Definitions and Properties
	6.3 Proofs of Knowledge
	6.4 Proving Compound Statements
	6.5 Zero-Knowledge from Σ-Protocols
	6.5.1 The Basic Zero-Knowledge Construction
	6.5.2 Zero-
Knowledge Proofs of Knowledge
	6.5.3 The ZKPOK Ideal Functionality

	6.6 Efficient Commitment Schemes from Σ-Protocols
	6.7 Summary

	Chapter 7 Oblivious Transfer and Applications
	7.1 Notational Conventions for Protocols
	7.2 Oblivious Transfer – Privacy Only
	7.2.1 A Protocol Based on the DDH Assumption
	7.2.2 A Protocol from Homomorphic Encryption

	7.3 Oblivious Transfer – One-Sided Simulation
	7.4 Oblivious Transfer – Full Simulation
	7.4.1 1-out-of-2 Oblivious Transfer

	7.4.2 Batch Oblivious Transfer

	7.5 Another Oblivious Transfer – Full Simulation
	7.6 Secure Pseudorandom Function Evaluation
	7.6.1 Pseudorandom Function – Privacy Only
	7.6.2 Pseudorandom Function – Full Simulation
	7.6.3 Covert
and One-Sided Simulation
	7.6.4 Batch Pseudorandom Function Evaluation

	Chapter 8 The kth-Ranked Element
	8.1 Background
	8.1.1 A Protocol for Finding the Median
	8.1.2 Reducing the kth-Ranked Element to the Median

	8.2 Computing the Median – Semi-honest
	8.3 Computing the Median – Malicious
	8.3.1 The Reactive Greater-Than Functionality
	8.3.2 The Protocol

	Chapter 9 Search Problems
	9.1 Background
	9.2 Secure Database Search
	9.2.1 Securely Realizing Basic Database Search
	9.2.2 Securely Realizing Full Database Search

	9.3 Secure Document Search
	9.4 Implementing Functionality FCPRP with Smartcards
	9.4.1 Standard Smartcard Functionality and Security
	9.4.2 Implementing FCPRP with Smartcards

	9.5 Secure Text Search (Pattern Matching)
	9.5.1 Indexed Implementation for Naor-Reingold
	9.5.2 The Protocol for Secure Text Search

	References
	Index

