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Introduction

First Module In a Nutshell

Lattice-Based Cryptography is a cutting-edge cryptographic
‘technology’. Has several interesting properties:

Very fast Public-Key Cryptographic Operations (useful for
performance-critical applications).

Provable Security Guarantees

Believed ‘Post Quantum Computer’ Security

Allows more powerful cryptographic functionalities (in some
cases not previously possible), e.g.

Fully Homomorphic Encryption (FHE):
communication-efficient privacy-preserving computation
protocols (later in unit!)

This Lecture: Brief introduction to lattices, hard computational
problems, and some related mathematics (more to be introduced
gradually in following lectures).
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Introduction

Lecture Outline

Lecture Outline: Motivation and Intro. to Lattice-Based
Cryptography

Lattice-Based Crypto: Brief History

Lattices: Concepts and intro. to the mathematics

Lattices: Hard Computational Problems – SVP

Random Crypto. Lattices: SIS Problem

SIS Application: Collision-Resistant Hash Function

Following Lectures:

Cryptanalysis: How Secure is lattice-based crypto? How to
choose parameters?

How to use Lattice-based crypto to build encryption and
signature schemes?

How to make lattice-based crypto. efficient?
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Introduction

Motivation: Why study Lattice-Based Crypto?

Lattice-Based Cryptography has several interesting properties:

Computational Efficiency: High-speed crypto algorithms

Novel and Powerful Cryptographic Functionalities (e.g. Fully
Homomorphic Encryption – FHE)

Strong Provable Security Guarantees

Believed Post Quantum Security
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Introduction

Motivation: Post Quantum World

Today:

Public-key crypto is essential for secure web transactions.

Deployed public-key cryptosystems based on Factorization or
Discrete-Logarithm problems.

But:

Shor (1994) showed Fact/DL solvable efficiently on large scale
quantum computer.

Quantum computer technology is currently primitive
(15 = 3× 5), but for how long?

Lattice-based crypto seems to resist quantum attacks!
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Introduction

Motivation: Efficiency

Popular cryptosystems are relatively inefficient;
For security level 2n:

RSA – key length Õ(n3), computation Õ(n6).

ECC – key length Õ(n), computation Õ(n2).

Structured (‘Ring based’) Lattices – key length and
computation Õ(n) asymptotically, as n grows towards infinity.

In Practice, for typical security parameter n ≈ 100, with best
current schemes, typically have:

Structured Lattice crypto. Computation ≈ 100 times faster
than RSA

Structured Lattice crypto. ciphertext/key length ≈ RSA
key/ciphertext length
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Motivation: Provable Security Guarantees

Brief History of Lattice-Based Crypto

1978: Knapsack public-key cryptosystem (Merkle-Hellman).

Trapdoor One-way Function: f (x1, . . . , xn) =
∑

i≤n gi · xi .
Public: persumably hard knapsack set (g1, . . . , gn).
Secret Trapdoor: easy knapsack (g ′1, . . . , g

′
n), g ′i > 2 · g ′i−1.

Public-Secret Relation: gi = a · g ′i mod q, i = 1, . . . , n.

1982: Poly-time secret recovery attack (Shamir).

1980s:
for(i = 1; i < N; i + +) {
repair;

attack;

}
Problem with Heuristic Designs: Special random instances –
shortcut attacks can exist!
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Introduction

Motivation: Provable Security Guarantees

1996: One-Way Func./Encryption with worst case to average case
security proof (Ajtai/Ajtai-Dwork) – Introduction of SIS problem.

Proof that no shortcut attacks exist – any attack implies
solving hard worst-case instances of lattice problems!

1996: Efficient (Õ(n) time/space) and Practical but heuristic
security NTRU encryption (Hoffstein et al) – ideal lattices.

2002: Efficient lattice-based one-way function with security proof –
ideal lattices (Micciancio).

2005: Lattice-Based public-key encryption with security proof –
Introduction of LWE Problem (Regev).

2005-2015: Many Developments, e.g.

Improved Techniques/Proofs (Fourier analysis, Gaussians), Crypto. Hash Functions, Trapdoor

signatures, ID-Based Encryption (IBE), Attribute-Based Encryption (ABE), Zero-Knowledge

Proofs, Oblivious Transfer, Fully-Homomorphic Encryption (FHE), Cryptographic Multilinear

Maps, Program Obfuscation,...
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Introduction

Lattices: Basic Concepts
Point lattices: an area of math. combinining matrix/vector algebra
(linear algebra) and integer variables. Both geometry ad algebra
play a role.
Before we begin: Notations
Z: Set of integers, : R: Set of real numbers Zq: Ring of integers
modulo q

vectors – by default columns: ~b =


b1

b2
...

bn

, with coordinates bi ,

i = 1, . . . , n. Convert to a row vector using transpose:
~bT = [b1b2 · · · bn].
Measures of length (aka norm) for vectors:

Euclidean norm (aka ‘length’, ‘2-norm’): ‖~b‖ =
√∑n

i=1 b2
i .

Infinity norm (aka ‘max’ norm): ‖~b‖∞ = maxi |bi |.
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Introduction

Lattices: Basic Concepts

Definition

An n-dimensional (full-rank) lattice L(B) is the set of all integer
linear combinations of some basis set of linearly independent
vectors ~b1, . . . ,~bn ∈ Rn:

L(B) = {c1 · ~b1 + c2 · ~b2 + · · ·+ cn · ~bn : ci ∈ Z, i = 1, . . . , n}.

Call n × n matrix B = (~b1, . . . ,~bn) a basis for L(B).

Example in 2 Dimensions (n = 2)

~b1 =

[
1
0

]
,~b2 =

[
1.2
1

]
,

~b′1 =

[
−0.6

2

]
,~b′2 =

[
−0.4

3

]
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Introduction

Lattices: Basic Concepts

Definition

An n-dimensional (full-rank) lattice L(B) is the set of all integer
linear combinations of some basis set of linearly independent
vectors ~b1, . . . ,~bn ∈ Rn:

L(B) = {c1 · ~b1 + c2 · ~b2 + · · ·+ cn · ~bn : ci ∈ Z, i = 1, . . . , n}.

Call n × n matrix B = (~b1, . . . ,~bn) a basis for L(B).
L is discrete group in Rn, under addition.

Example in 2 Dimensions (n = 2)

~b1 =

[
1
0

]
,~b2 =

[
1.2
1

]
,

~b′1 =

[
−0.6

2

]
,~b′2 =

[
−0.4

3

]
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Introduction

Lattices: Basic Concepts

Definition

For an n-dim. lattice basis B = (~b1, . . . ,~bn) ∈ Rn×n, the
fundamental paralellepiped (FP) of B, denoted P(B), is the set of
all real-valued [0, 1)-linear combinations of some basis set of
linearly independent vectors ~b1, . . . ,~bn ∈ Rn:

P(B) = {c1 · ~b1 + c2 · ~b2 + · · ·+ cn · ~bn : 0 ≤ ci < 1, i = 1, . . . , n}.
The translated FPs (in grey
in example below) tile the
whole n-dim. real vector
space span(B) = Rn

spanned by B.

Example in 2 Dimensions (n = 2)

~b1 =

[
1
1

]
,~b2 =

[
2
1

]
.
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Lattices: Basic Concepts

There are (infinitely!) many different bases for a lattice.
Question: Given a lattice L with basis B, how can we tell if B ′

is another basis for L?
Geometric Ans.: count L points contained in P(B ′)

Lemma

There is exactly one L point contained in P(B ′) (the ~0 vector) if
and only if B ′ is a basis of L.

Algebraic Ans.: Look at determinant of the matrix relating B ′

to B

Lemma

B ′ is a basis of L(B) if and only if B ′ = B · U for some n × n
integer matrix U with det(U) = ±1 (we call such a U a
unimodular matrix).
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Lattices: Basic Concepts

Multiple Bases / FP Examples in 2 dim.
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Introduction

Lattices: Basic Concepts

Definition

For an n-dim. lattice L(B), the determinant of L(B), denoted
det L(B) is the n-dim. volume of the FP P(B).

Lemma (Equivalent algebraic def. of lattice determinant)

For an n-dim. lattice L(B), we have det(L(B)) = | det(B)|.
Example of algebraic-geometric
relation in 2-dim.:

B =

[
a c
b d

]
Consequence: For a large
n-dim ball S , number of L
points in S ≈ vol(S)/ det(L)
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Introduction

Lattices: Basic Concepts

Why is the determinant det(L(B)) = | det(B)| a property of the
lattice L and not dependent on the particular basis B? Recall:

Lemma (Relation of lattice bases)

Any two bases B,B ′ of a given lattice L are related by B ′ = B · U
for some matrix U ∈ Zn×n with det U ∈ {−1, 1}.

As a consequence, any two bases of L have the same (absolute)
determinant:

| det(B′)| = | det(B · U)| = | det(B) · det(U)| = | det(B)| · | det(U)| = | det(B)|.

Hence, the determinant (FP volume) is a lattice property,
invariant of the basis used.
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Lattices: Basic Concepts
Sometimes, useful to remove from each basis vector its
components along the previous basis vectors:

Definition

For a lattice basis B = (~b1,~b2, . . . ,~bn), its Gram-Schmidt
Orthogonalization (GSO) is the matrix of vectors
B∗ = (~b∗1,

~b∗2, . . . ,
~b∗n) defined by ~b∗1 = ~b1 and for i ≥ 2,

~b∗i = ~bi −
i−1∑
j=1

µi ,j · ~b∗j , where µi ,j =
〈~bi ,~b

∗
j 〉

〈~b∗j ,~b∗j 〉
.

Example of GSOs in 2-Dimensions:

B =

[
1 2
1 1

]
, B̃ =

[
1 0.5
1 0.5

]
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Lattices: Basic Concepts
Can view GSO transformation as re-writing the coordinates of ~b′i s

in a rotated coordinate system along ~b∗i s:
| · · · |

~b1

. . . ~bn
| · · · |

 =


| · · · |

~b∗1

. . . ~b∗n
| · · · |

 ·


1 µ2,1 · · · µn,1
0 1 · · · µn,2
0 0 · · · µn,3

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 1



=


| · · · |

~b∗1
‖~b∗

1
‖

. . .
~b∗n
‖~b∗n ‖

| · · · |

 ·


‖~b∗1 ‖ ‖~b∗1 ‖ · µ2,1 · · · ‖~b∗1 ‖ · µn,1

0 ‖~b∗2 ‖ · · · ‖~b∗2 ‖ · µn,2

0 0 · · · ‖~b∗3 ‖ · µn,3

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · ‖~b∗n ‖


ith column of Bottom RHS matrix = coordinates of ~bi in the
rotated coordinate system
From last row, every non-zero lattice vector has length
≥ ‖~b∗n‖.
Because ~b∗i ’s are orthogonal, the FP of B∗ is a n-dimensional

cube of side lengths ‖~b∗i ‖:
det L(B) = | det(B)| = | det(B∗)| =

∏n
i=1 ‖~b∗i ‖.
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Lattices Background: Shortest Vector Problem (SVP)

For crypto. security, need computationally hard lattice problems.
Many problems related to geometry of lattices seem to be hard!

The most basic geometric quantity about
a lattice is its minimum (aka Minkowski
first minimum).

Definition

For an n-dim. lattice L, its minimum
λ(L) is the length of the shortest
non-zero vector of L:
λ(L) = min(‖~b‖ : ~b ∈ L \ 0)
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Lattices Background: Minkowski’s Theorem

For a given lattice L, how large can the lattice minimum λ(L) be?

Theorem (Minkowski’s First Theorem)

For any n-dim. lattice L, we have λ(L) ≤
√

n · det L1/n.

Proof Idea: An analogue of the Pigeon-hole principle.
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Lattices Background: Shortest Vector Problem (SVP)

Finding a vector of approximately minimum length seems to be
hard, as the dimension n grows.

γ-Shortest Vector Problem (γ-SVP)

Given basis B for n-dim. lattice, find ~b ∈ L with:
0 < ‖~b‖ ≤ γ · λ(L).

Hardness of γ-SVP increases as approximation factor γ decreases:

For γ ≥ 2O(n): Easy – LLL algorithm solves in Poly(n) time.
For γ ≤ O(1): NP-Hard (under randomized reductions) – very
unlikely Poly(n) time algorithm exists.
For crypto, need γ = O(nc) for some constant c ≥ 1/2:

Best known attack algorithm time T = 2O(n) (even
‘quantumly’ !)
Best known γ-Time tradeoff: T = min(2O(n), 2O(n log n)/ log γ).
Seems harder than Integer Factorization and Discrete Log.
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Lattices Background: Cryptographic Lattices – q-ary
lattices and SVP

Hardness of γ-SVP problem instance strongly depends on the given
lattice basis B:

There are many easy instances of γ-SVP, even for γ = 1 (’NP
hard’ case). Simple example: B = I .

In crypto., need to generate random lattices bases for which γ-SVP
is hard to solve ‘on average’.

How to generate such ‘hard’ random lattices?

One possible answer (Ajtai, 1996): Generate a random q-ary
lattice!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 1: Lattice-Based Crypto. I Mar 2016 22/29



Introduction

Lattices Background: Cryptographic q-ary lattices and SIS
Problem

Hardness of γ-SVP problem instance strongly depends on the given
lattice basis B:

There are many easy instances of γ-SVP, even for γ = 1 (’NP
hard’ case). Simple example: B = I .

In crypto., need to generate random lattices bases for which γ-SVP
is hard to solve ‘on average’.

How to generate such ‘hard’ random lattices?

One possible answer (Ajtai ’96): a random q-ary lattice!

Ajtai’s Random q-ary ‘perp’ lattices

Given an integer q and a uniformly random matrix A ∈ Zn×m
q , the

q-ary perp lattice L⊥q (A) is defined by:

L⊥q (A) = {~v ∈ Zm : A · ~v = ~0 mod q}.
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Lattices Background: Cryptographic q-ary lattices and SIS
Problem

γ-SVP problem for random q-ary perp lattices seems to be
hard on average

Ajtai proved it, assuming γ-SVP is hard in the worst-case – see
end of this module!

Hardness of this computational problem is security basis for
most of lattice-based cryptography.

Known in lattice-based cryptography as the Small Integer
Solution (SIS) Problem.

Problem

Small Integer Solution Problem – SISq,m,n,β: Given n and a

matrix A sampled uniformly in Zn×m
q , find ~v ∈ Zm \ {~0} such

that A~v = ~0 mod q and ‖~v‖ ≤ β.
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Relation between SIS and γ-SVP

Problem

Small Integer Solution Problem – SISq,m,n,β: Given n and a

matrix A sampled uniformly in Zn×m
q , find ~v ∈ Zm \ {~0} such

that A~v = ~0 mod q and ‖~v‖ ≤ β.

Explicit relation of to γ-SVP:

We have det(L⊥q (A)) = qn (see week 2 tutorial).

By Minkowski’s Theorem, λ(L⊥q (A)) ≤
√

mqn/m ≈
√

m for
m ≥ n log q.

If Minkowski bound is good, then SISq,m,β = γ-SVP for
L⊥q (A), with γ ≈ β/

√
mqn/m (practical refinement to

Minkowski bound to be discussed next week).
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Crypto. Application: Ajtai’s Cryptographic Hash Function
How to use the hardness of SIS problem in cryptography?
First application: Collision-Resistant Hash Function (CRHF).

Definition

Ajtai’s Hash Function gq,m,n,d ,A: Pick A = (ai ,j) uniformly
random n ×m matrix over Zq (A = function ‘public key’). Given
input ~x ∈ Zm having ‘small’ coordinates (‖~x‖∞ ≤ d), hash
function output is defined as

gq,m,n,d ,A(~x) = A · ~x mod q.

g(~x) =


a1,1 a1,2 · · · a1,n · · · a1,m

a2,1 a2,2 · · · a2,n · · · a2,m
...

...
...

...
...

...
an,1 an,2 · · · an,n · · · an,m

 ·


x1

x2
...

xn
...

xm


mod q
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Collision Resistance Security from SIS Problem

Choose parameters such that domain is larger than range –
collisions for f exist: (2d + 1)m > qn.

e.g., for compression ratio 2, may have d = 1,
m = 2 · n log q/ log(3).

Q: Why is it collision-resistant, assuming that SIS is a hard
problem?
A: Collision-Resistance Security Reduction from SIS

We show how to build an efficient SIS algorithm S, given an
efficient collision-finder algorithm CF for function g .
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Collision Resistance Security from SIS Problem
Suppose there was an efficient collision-finder attack algorithm CF
for function g :

Given random key (A, q) for function gA, CF runs in time TB and
outputs a collision pair ~x1 6= ~x2.

Then, given a SIS instance (A, q), SIS algorithm S:

Runs collision-finder CF on input (A, q). CF outputs ~x1 6= ~x2.

S outputs SIS problem solution ~v = ~x1 − ~x2.

Why does S work?

A collision ~x1 6= ~x2 gives a ‘short’ non-zero vector in L⊥q (A):

A~x1 = A~x2 mod q ⇒ ~v = ~x1 − ~x2 ∈ L⊥q (A) \ {~0}, ‖~v‖ ≤ β,
where β = 2

√
m · d .

S is efficient (run-time TS ≈ TCF) if CF is efficient.

We proved Theorem: Collision-Resistance of g is (at least) as
hard as SISq,m,n,β with β = 2

√
m · d .
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Security of Lattice-Based Cryptography

Q1: How should we choose the parameters q,m, n, d of
Ajtai’s hash function?

Q2: How hard (secure) is SIS Problem and related γ-SVP
problem?

Next week: We attempt to answer these questions.
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