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Plan for this lecture

@ How to construct lattice-based encryption schemes?

o Learning with Errors (LWE) Problem
e Symmetric-key encryption from LWE
o Public-key encryption from LWE: Regev's cryptosystem (2005).
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Learning with Errors (LWE) Problem

Small Integer Solution (SIS) problem useful for hash functions and
digital signatures, but seems not sufficient for encryption

@ Many to one function — not invertible!
Q: What lattice-based problem can we use for encryption?

@ A: Learning with Errors (LWE) Problem (Regev, 2005) —
one-to-one and invertible!

o Idea: add some ‘small’ noise to a lattice point.
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Learning with Errors (LWE) Problem - Search Variant

LWE - Setup:

@ Fix integer g, and integers m, n.

@ Let
a1l a2 ottt Al
a1 a2 - A
A— . . .
an,1 an,2 an,n
am,1 am,2 ot am,n

be an m X n matrix with entries independent and uniformly random in Zg (as in SIS).
@ Let 5T =[s15 - - - 5] be a vector of independent uniformly random elements of Zgq. (the “secret”).

@ Lete’ = [erer - - - en - - - em] be a vector of independent ‘small’ integers, each sampled from a probablity
distribution x «q (the “error”).

‘ 1
What does ‘small’ ¢; mean?
@ |e| < - g with high probability, for some parameter a < 1.
@ Typically, Xag = Normal (Gaussian) distribution with standard deviation ~ « - g, rounded to Z.
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Learning with Errors (LWE) Problem - Search Variant

LWE — Setup (cont.)

o Let
[a11 a1 -+ aun] e |
a1 a2 - an s1 €2
) ) . ) 5
Y= an,1 an2 - dn,n . T €n mod q
Sn
|dm,1 dmy2 " dmn ]| | €m |

Problem

Search Learning with Errors (Search-LWE) Problem —
Search — LWEq m na: Given q,m,n,a, a matrix A <= U(Z7*")
andy = A-5+&mod q (with € <= x, and 5 <> U(Zg)), find s.
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Learning with Errors (LWE) Problem - Decision Variant

To construct efficient cryptosystems, search variant is not
sufficient. Need a decision variant of LWE.

Problem

Decision Learning with Errors (Decision-LWE) Problem —
Decision — LWEq m no: Given q, m,n, o, A <= U(Zg*"), ¥,
distinguish between the following two scenarios:
© ‘Real’ Scenario: y = A-35+ € mod q (with € <= xz, and
§ < U(Zg)) (exactly as in search LWE).

@ ‘Random’ Scenario: y <= U(Zg).

Q: What 2* security level mean?

Possible Ans: No Decision-LWE algorithm D exists that runs in
time T(D) < 2* and has distinguishing advantage Adv(D) > 272,
where:

def — —
@ Adv(D) ' |PrypealD(A, 7) = Real] = Pry . Random|D(A,7) = Reall|.
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Symmetric-Key Encryption from LWE

As a first step, we construct symmetric-key encryption from LWE.

LWE-based Symmetric-Key Encryption:

e Key Generation — KG: Fix integers g, n. Pick secret key
§ < U(Zg).

@ Encryption — Enc: Fix integers t, . Given message m € Zt,
o Pick A+ U(Zf,x") and ‘small’ noise € < Xfl.q-
o Compute c=A-5+ €+ [g/t] - mmod q.
o Return ciphertext (A, ¢).

@ Decryption — Dec: Given ciphertext (A, ¢) and secret key s,
o Compute ¢/ = &— A-5mod gq.
o Compute ¢’ by rounding coordinates of ¢’ to the nearest

multiple of [gq/t| mod q.

C//
o Return plaintext m = o]

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 3: Lattice-Based Crypto. Il Mar 2014



Symmetric-Key Encryption from LWE: Correctness

Decryption recovers d=g8+ [q/t] - mmod g. Rounding succeeds
to recover the ith coordinate m; of m if the ith noise coordinate ¢;
is sufficiently small:

1 q
P = t] ~ —.

If noise distribution Xaq is (rounded) normal distribution with std.
dev. agq, error probability per coordinate pe is & probability that a
standard normal distributed random variable (mean 0, std. dev 1)

exceeds 5~ in magnitude:

s (0(2)

where ® is the cumulative distribution function of normal

distribution. ] o
So: pe ‘small’ when the following correctness condition holds:

1
<< —.
e
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Symmetric-Key Encryption from LWE: Security

Q: Why is it secure, assuming that Decision-LWE is hard?
A: Security Reduction from Decision-LWE

Show how to build an efficient Dec-LWE algorithm D, given an efficient attack algorithm B breaking
encryption scheme.

Q: What do we mean by ‘B breaks the encryption scheme’?
Possible A: B breaks standard definition of Indistinguishability
security against Chosen Plaintext Attack (IND-CPA) IND-CPA
Attack model: A ‘game’ between a challenger and the attacker B
against the encryption scheme:

Definition
IND-CPA security (at 2* security level): Any attack algorithm B
with run-time T(B) < 2* wins game with prob. < 1/2 4+ 1/2*.

Challenger runs Key Gen. algorithm of encryption scheme, obtains a secret key .

Attacker B is given access to an ‘encryption oracle’: B can submit a query chosen plaintext m and receive
ciphertext (A, C) = Enc(5, m). After several queries, B outputs a pair of ‘challenge messages’ ﬁvg, rﬁf
Challenger picks a random bit b <= U({0, 1}), computes ‘challenge ciphertext’ (A*, C*) = Enc(s, mj)
for the challenge message selected by b, and gives (A*, C*) to B.

Attacker B continues running with query access to the ‘encryption oracle’.

Attacker B outputs a guess b’ for the bit b chosen by the challenger. Attacker ‘wins’ game if b’ = b.
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Symmetric-Key Encryption from LWE: Security

Security Reduction from hardness of Decision-LWE
Suppose there was an efficient IND-CPA attack B, breaking 2*
security of the LWE encryption scheme:

@ B runs in time Tg and wins IND-CPA game with probability 1/2 + e (with Tg < 2> and eg > 1/2*).

@ B makes Q encryption queries overall (including the challenge ciphertext).

Then, given a Decision — LWEg m—q.¢,n,« instance (q,n, A, y), we
build a Dec-LWE algorithm D that runs as follows:

@ D runs attacker B. When B makes its ith encryption oracle query m;, D uses the ith block A; € ngn of
£ consecutive rows of A and corresponding ith block y; € Zg of £ consecutive rows of ¥ to answer the
oracle query with (A;, ¢;) where:

& =5+ [a/t] - My mod q.

@ Similarly, when B makes its challenge query (rﬁg s ﬁ-rf) D chooses a random bit b and uses the next (not
yet used) blocks A;x , ¥+ of A and ¥ to respond with (A* = A;x, & = yx + [q/t]| - M} mod q).

@ Rest of encryption oracle queries of B answered as above.

@ When B returns a guess b’ for b, D returns ‘Real’ if b’ = b, and ‘Rand’ if b’ # b.
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Symmetric-Key Encryption from LWE: Security

Q: Why does D work? Consider two LWE scenarios for y:

@ 'Real’ LWE scenario, y = A-§+ & — all ciphertexts returned by D to
B are computed exactly as in the real IND-CPA game, so B wins
game with good probability 1/2 + eg, hence D returns ‘Real’ with
prob. 1/2+4¢p.

@ 'Random’ LWE scenario, y is independent and uniformly random in
Zg'o — in challenge ciphertext, ¢; is uniformly random in Zf,,
independent of bit b — B gets no information on b, and wins the
game with probability 1/2. Hence D returns ‘Real’ with prob. 1/2.

So: Distinguishing advantage of D = e > 1/2*.
Also, run-time of D is (approx.) run-time of B, i.e. < 2.
Conclusion: Contradiction with 2* security of Decision-LWE!

Theorem

IND-CPA security of LWE encryption (Q encryption queries) is at
least as hard as Decision — LWEg m—qQ.¢,n,a-
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Public-Key Encryption from LWE

Now we convert from symmetric-key to public-key encryption -
Regev's cryptosystem (2005).
Ideas (take ¢ =1):
@ Observation: Enc(3, m) = Enc(5,0) + [07, m] mod q.
o Recall: [37,37 -4+ e+m|=[37,37 -5+ & +[07,m].

e Attempt 1: Publish p = Enc(s,0) in public key, add [5T,m]
during encryption.

e But... is it secure???

e Attempt 2: Publish several ; = Enc(5,0)’s in public key.
Combine them linearly with random coefficients r; during
encryption to a ‘fresh’ ¢ = Enc(s,0)!

o Observation: For small r;'s,
r1 - Enc(5,0) + rz - Enc(5,0) = Enc(5, 0)
on-[3,3 -S+el+n-[38,3 S+e]=[3",3" -5+,
where 3=n-31+n-a,e=n-e+n-e.
o Correctness: |e| > |e1], |ea], but ‘small" if r, r, ‘small’.
e Security: 3 is & uniformly random if r;'s have enough entropy!
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Public-Key Encryption from LWE

Regev’'s LWE-based Public-Key Encryption:

o Key Generation — KG: Fix integers g, m, n. Pick secret key
§ <> U(Zg). Publish public key (A, p), where:
@ A U(zrxm).

(] ﬁ:A-§+é’modqwithé’<—vx’;’q.

@ Encryption — Enc: Fix integers t, B,. Given message m € Z;
and public key (A, p),

@ Pick coefficient vector 7 <= U({—Bs, ..., B }").
@ Compute:

=T

T
a =r

-A,c:FT-ﬁ+ [g/t] - m mod q.

@ Return ciphertext (ZJ‘T, c).

@ Decryption — Dec: Given ciphertext (37, c) and secret key 3,

@ Compute ¢’ =c— 37 -5 mod q.
@ Compute ¢’’ € Zq by rounding c’ to the nearest multiple of [g/t] mod g.
@ Return plaintext m = -

q/t]"
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Public-Key Encryption from LWE: Correctness

T

@ In ciphertext, c = F CA-S4+F e+ [q/t] - m mod quT-§+e+ [g/t] - m mod q, where

e=7 &
@ Decryption recovers ¢/ = e + [q/t] - M mod q. As in symmetric-key scheme, rounding succeeds to

recover m if the ‘new’ noise e is sufficiently small:

< Taftind

e< — - ~ —.

2 q 2t

@ If noise distribution x g of € coordinates is (rounded) normal distribution with std. dev. ag, distribution
of ‘new’ noise e = 7! - & (neglecting rounding) is, for a fixed 7, also normal distributed with std. dev.
aq - ||F|]. And the expected value of ||7|| is & /Br(B + 1)m/3, which is a good approximation to ||7||
with high probability.

@ Hence error probability per coordinate pe is probability that a standard normal distributed random variable
(mean 0, std. dev 1) exceeds 5 - in magnitude:

1 3
2|1 =-O(— | —) |,
Pe ( (2ta B.(B, +1)m)>

where @ is the cumulative distribution function of normal distribution.

So: pe ‘small” when the following correctness condition holds:

Since By can be 1, lose a factor of O(y/m) in t (or g for a given t) versus the symmetric-key case.
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Public-Key Encryption from LWE: Security

Q: Why is it secure, assuming that Decision-LWE is hard?
A: As in symmetric-key case, a security reduction!

@ Build an efficient Dec-LWE algorithm D, given an efficient attack algorithm B breaking encryption scheme.

Q: What do we mean by 'B breaks the encryption scheme’?
Possible A: Similar to symmetric-key case — IND-CPA definition
for public-key encryption IND-CPA Attack model in the public-key
case for attacker B:

Challenger runs Key Gen. algorithm of encryption scheme, obtains a secret key 5 and a public key (A, p).
The public key is given to B.

@ No need to give B access to an ‘encryption oracle’: B can simulate such an oracle by itself, using the public
key. B outputs a pair of ‘challenge messages’ i , My .

@ Challenger picks a random bit b <= U({0, 1}), computes ‘challenge ciphertext’
(a* T, c*) = Enc((A, ), My ) for the challenge message selected by b, and gives (a* T, c*) to B.

@ Attacker B outputs a guess b’ for the bit b chosen by the challenger. Attacker ‘wins’ game if b’ = b.

Definition

IND-CPA security (at 2* security level): Any attack B with
run-time T(B) < 2* wins game with prob. < 1/2 +1/2*.
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Public-Key Encryption from LWE: Security

In security reduction, we need a way of measuring closeness of
probability distributions. In crypto., usually use statistical distance
between distributions.

Definition

For two probability distributions D; and D, on a discrete set S, the statistical distance A(D;, Dy) is defined as:

AD102) % 2 10100 — 2.
XES

@ A is always between 0 (D; = D5) and 1 (D1 and Dy never output the same value).

Why is stat. distance useful? Because no attack algorithm
(function) can increase it!

Let D1, Dy be any two distributions, and A be any algorithm. Then:

|, P 4G =11 = Pr[AG) = 11| < A(Dy, Dy).
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Public-Key Encryption from LWE: Security
Security Reduction from Decision-LWE
Suppose there was an efficient IND-CPA attack algorithm B,

breaking 2* security of Regev's encryption scheme:
@ B runs in time Tg and wins IND-CPA game with probability 1/2 + g (with Tg < 2> and eg > 1/2).

Then, given a Decision — LWEy m n.o instance (q, n, A, y),
Dec-LWE algorithm D works as follows:
@ D runs attacker B on input public key (A, p = ).

e When B makes its challenge query (mg, m;), D behaves like
the real challenger: chooses a random bit b, picks coefficient

vector ¥ <= U({—B,,...,B,}™) and computes:
& = FToA =7 -y +[q/t] - mpmod q.

, =T
D returns challenge ciphertext (a* , c*).

@ When B returns a guess b’ for b, D returns ‘Real’ if b’ = b,
and ‘Rand’ if b’ # b.
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Public-Key Encryption from LWE: Security

Security Reduction from Decision-LWE (cont.)
Q: Why does D work? Consider two LWE scenarios for y:
@ 'Real’ LWE scenario, y = A- 5+ € — public key and challenge
ciphertext returned by D to B are computed exactly as in the
real IND-CPA game, so B wins game with good probability

1/2 + e, hence D returns ‘Real’ with prob. 1/2 + ¢5.
@ 'Random’ LWE scenario, p = ¥ is independent and uniformly
random in Zg'. Use following ‘Leftover Hash Lemma’ (LHL):

Lemma

Let C <> UE* ") and 7 > U({=B,, . .., B;}™). If the following LHL condition holds:
2B, +1)7 >> q"tt (more precisely:(2B, + 1) > 22+ q”+1)

then the probability distribution P of the pair (C, 7T . C mod q) is statistically indistinguishable from the uniform
distribution U = U(qux" X Zg+1), More precisely, the statistical distance A(P, U) between the probability
distributions P, U is at most

1 qn+1

2 (2B, +1)m’
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Public-Key Encryption from LWE: Security

‘Random’ LWE scenario (cont.): p =y is independent and
uniformly random in Zg'

T

@ If the distribution P of (A, 7, a* ' =7 . A7 . 7) was exactly U = U(quX" X Zg*l), then (as in

symmetric-key case), ciphertext (a—* T, =7 ¥+ [q/t] - mp) is independent of b and public key y
(contains no information on b), and hence D returns ‘Real’ with prob. 1/2.

@ ByLHL AP, U)< - \/% = §. By LHL condition, § < 1/2**1 is negligible, so from
property of statistical distance (wk 4 tute), D returns 'Real’ with probability < 1/2 + & < 1/2 4 1/2* 1.
So: Distinguishing advantage of D
> e — 1/2)\+1 > 1/2/\ _ 1/2)\+1 > 1/2/\+1_
Also, run-time of D is (approx.) run-time of B, i.e. < 22,
Conclusion: Contradiction with 2**1 security of Decision-LWE!

If LHL condition holds, IND-CPA security of Regev's encryption
scheme is at least as hard as Decision — LWEg m n «-
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Public-Key Encryption from LWE: Security

Choice of Parameters for Regev’s Encryption Scheme
The LHL condition tells us how large m should be chosen:

(n+1)-logg+2-(A+1)

2B 1 m 22()\4’1)‘ n+1 - li >
(2B, +1)™ > q implies m > log(2B, + 1)

Q: How to choose the other parameters of Regev's scheme?

A: Based on the security level and LWE problem’s relation to
lattice problems (next lecture!)
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