FIT5124 Advanced Topics in Security

Lecture 6: Secure Computation Protocols II – Private Computation

> Ron Steinfeld Clayton School of IT Monash University

> > April 2015

Secure Computation Protocols: How to achieve more complex security requirements beyond basic confidentiality or integrity? We will look at two topics:

- Privacy in authentication and protocol integrity (prev. lecture): Zero-Knowledge protocols and applications to, e.g.
 - **Non-Transferability** of authentication: How to prove my identity without leaving a verifiable trace?
 - **Anonymity** in authentication: How to prove I belong to a group without revealing my identity?
 - Catching Misbehaviour in General Protocols: How to detect that a user doesn't follow a protocol?
- **Privacy in computation** (this lecture and next): general secure computation without a trusted party:, e.g.
 - Private data retrieval
 - Private data mining
 - Private e-voting...

General Secure Computation and Applications:

- Example Motivation: Private data retrieval
- First example of a Private Computation protocol: Diffie-Hellman Based Oblivious Transfer (OT)
 - Completeness
 - 'Honest but curious' Privacy for client and server- based on simulation
 - Second example: strengthened Diffie-Hellman OT protocol
- Generalization: Private computation for any function
 - Definition
 - General protocol: Yao's protocol for secure 2-party computation of any function
- Efficient Implementation Frameworks and applications (mainly in tutorial / assignment)

Example Motivation: Private data retrieval

How to privately retrieve data?

- Server has *N* data items for sale (all same price).
- Client wants to buy and obtain one of them.

Security?

- **Privacy** for server: Don't reveal to client the items it didn't buy.
- **Privacy** for client: Don't reveal to server which item I retrieved/bought.

Q.: How to satisfy both of those (apparently contradictory) requirements simultaneously?

Possible A.: Use a private information retrieval (PIR) protocol!

First example of a Private Computation protocol: Diffie-Hellman Based Oblivious Transfer (OT)

1-of-2 Oblivious Transfer (OT): Most basic variant of PIR -

- Server has N = 2 items x_0, x_1 .
- Client has a bit $s \in \{0,1\}$ that selects one item, i.e. x_s .
- Each item $x_i \in \{0, 1\}$ is a single bit.

Setup of Diffie-Hellman OT protocol:

- Works in a cyclic group G =< g > where Discrete-Logarithm (DL) problem is hard
- Public parameters: generator g ∈ G for G, h ↔ U(G) (no one knows DL x of h to base g).
- Denote order (size) of G by n (assumed prime).
 - e.g. (as in DSA digital signature standard): G a mutliplicative subgroup of \mathbb{Z}_p^* (multiplicative group modulo p) for a prime p, where G is generated by $g \in \mathbb{Z}_p^*$, an element of prime order n, where n divides p 1.

First example of a Private Computation protocol: Diffie-Hellman Based OT

Diffie-Hellman Based Oblivious Transfer (OT) Protocol: Server (sender) has 2 items x_0, x_1 , client (receiver) has a bit *s* and wants item x_s .

 $\begin{array}{cccc} {\rm Sender} & {\rm Receiver} \\ (x_0, x_1 \in \{0, 1\}) & (s \in \{0, 1\}) \\ & u \in_R \mathbb{Z}_n \\ h_s \leftarrow g^u \\ h_{1-s} \leftarrow h/g^u \\ (A_0, B_0) \leftarrow (g^{u_0}, h_0^{u_0} g^{x_0}) \\ (A_1, B_1) \leftarrow (g^{u_1}, h_1^{u_1} g^{x_1}) \\ \end{array} \xrightarrow{(A_0, B_0), (A_1, B_1)} \\ & \underbrace{(A_0, B_0), (A_1, B_1)}_{x_s \leftarrow \log_g (B_s/A_s^u)} \end{array}$

FIGURE 7.2: $\binom{2}{1}$ -OT protocol

Diffie-Hellman Based OT: Properties

- Q: Why does it work?
- A: Properties -
 - Completeness: If Client and Server both follow protocol, Client will obtain desired item x_s.
 - Privacy for server: Why can't the client also obtain the other server's bit x_{1-s} ?
 - Assume first a honest but curious client follows protocol steps, but analyzes received messages.
 - Intuition: bit x_{1-s} is encrypted with key $h_{1-s} = h/g^u = g^{x-u}$; client knows u but not $x = log_g(h)$ (DL)...
 - How to make intuition precise and prove it is correct? (next).
 - What if the client is malicious client can change protocol steps to learn more? (later in this lecture.)
 - Privacy for client: Why can't the server learn the client's selection *s*?
 - Intuition: Client cannot distinguish which of h_0 , h_1 is g^u and which is h/g^u . Why?

Diffie-Hellman Based OT: Defining and proving Privacy

Intuition: Client does not learn anything about server's data (x_0, x_1) beyond what is revealed by protocol output (x_s) . **Q:** How to define and prove privacy for server? **A:** Use simulation (similar to ZK) – Client can efficiently simulate the messages he sees in the protocol by itself, using only its input *s* and the protocol output x_s .

• Enough if client's simulation not exact but just computationally indistinguishable from the real protocol messages – i.e. computationally infeasible to distinguish simulation from real messages

Diffie-Hellman Based OT: Defining and proving Privacy

Efficient Simulator algorithm *S* for client's received messages in Diffie-Hellman OT protocol: Given $g, h \in G$, $s \in \{0, 1\}$ and $x_s \in \{0, 1\}$, *S* does following:

- Compute $h_s = g^u, h_{1-s} = h/g^u$, as in real protocol.
- Simulate (A_s, B_s) = (g^{us}, h^{us}_s ⋅ g^{xs}), for u_s ← U(Z_n), as in real protocol.
- Simulate (A_{1-s}, B_{1-s}) = (g<sup>u_{1-s}, h'), for random h' ↔ U(G) chosen independently.
 </sup>

Theorem (privacy for server). The above simulation of client's received messages is computationally indistinguishable from real protocol, assuming the hardness of Decision Diffie-Hellman (DDH) problem in *G*. (proof: see tute problem). **DDH Problem:** Given $(g, g^a, g^b, y) \in G^4$ for $a, b \leftarrow U(\mathbb{Z}_n)$, distinguish REAL scenario $(y = g^{ab})$ from RAND scenario $(y \leftarrow U(G)$ independently).

 Ron Steinfeld
 FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocol
 Mar 2014
 9/25

Second example – strengthened Diffie-Hellman OT protocol

But, what if client is malicious and doesn't follow protocol? It can learn both x_0, x_1 ! How to strengthen the protocol for privacy against malicious clients? General approach: Use ZK proofs to 'force' client to follow protocol!

• Problem: not very efficient in general.

Sometimes possible to get more efficient solutions...

Second example – strengthened Diffie-Hellman OT protocol

Strengthened Diffie-Hellman Based Oblivious Transfer (OT) Protocol (HL'10, Chapter 7): Server (sender) has 2 items x_0, x_1 , client (receiver) has a bit σ and wants item x_{σ} .

- The receiver R chooses α, β, γ ←_R {1,..., q} and computes ā as follows:
 a. If σ = 0 then ā = (g^α, g^β, g^{αβ}, g^γ).
 b. If σ = 1 then ā = (g^α, g^β, g^γ, g^{αβ}). R sends ā to S.
- 2. Denote the tuple \bar{a} received by S by (x, y, z_0, z_1) . Then, S checks that $x, y, z_0, z_1 \in \mathbb{G}$ and that $z_0 \neq z_1$. If not, it aborts outputting \bot . Otherwise, S chooses random $u_0, u_1, v_0, v_1 \leftarrow_R \{1, \ldots, q\}$ and computes the following four values:

$$\begin{split} w_0 &= x^{u_0} \cdot g^{v_0}, \qquad k_0 = (z_0)^{u_0} \cdot y^{v_0}, \\ w_1 &= x^{u_1} \cdot g^{v_1}, \qquad k_1 = (z_1)^{u_1} \cdot y^{v_1}. \end{split}$$

S then encrypts x_0 under k_0 and x_1 under k_1 . For the sake of simplicity, assume that one-time pad type encryption is used. That is, assume that x_0 and x_1 are mapped to elements of \mathbb{G} . Then, S computes $c_0 = x_0 \cdot k_0$ and $c_1 = x_1 \cdot k_1$ where multiplication is in the group \mathbb{G} .

- S sends R the pairs (w_0, c_0) and (w_1, c_1) .
- 3. R computes $k_{\sigma} = (w_{\sigma})^{\beta}$ and outputs $x_{\sigma} = c_{\sigma} \cdot (k_{\sigma})^{-1}$.

Generalization: Private computation for any function

Private computation protocols have been extensively investigated and generalized to cover almost any imaginable scenario! For instance, how to privately compute:

- Set Intersection: e.g. police investigators have a list of terrorist suspects, airline has a list of flight passengers.
- Comparison: e.g. e-auctions bidders submit bids to auctioneer, want to hide bid from auctioneer unless winning bid.
- Summation: e.g. e-voting voters submit bids, authority wants to add votes, voters don't want to reveal vote to authority.

Generalizing private comp. to any functionality $f = (f_1, f_2)$:

• Let $f = (f_1, f_2)$ be functions to be computed privately by parties P_1, P_2 resp. (e.g. $f_1(x = (x_0, x_1), y = s) = \text{null}, f_2(x = (x_0, x_1), y = s) = x_s$ for OT).

Goal: Given any functionality $f = (f_1, f_2)$, construct a secure computation protocol π for f.

Generalization: Private computation for any function

Generalizing the properties we want secure protocol π for $f = (f_1, f_2)$ to have:

Completeness: For any inputs (x, y), if parties P_1 and P_2 follow protocol π then at the end, P_1 has $f_1(x, y)$ and P_2 has $f_2(x, y)$. **Privacy against 'Honest but Curious' (aka 'semi-honest')** P_1 and P_2 : same simulation idea!

- Let view^π_i(x, y, n) denote the messages received by P_i in protocol π for inputs x, y and security parameter n, along with P_i's input (and any random inputs).
- e.g. in OT protocol, view₁^{OT} = $(g, h, x = (x_0, x_1), u_0, u_1, (h_0, h_1))$ and view₂^{OT} = $(g, h, y = s, u, (A_0, B_0), (A_1, B_1))$.
- Let $output^{\pi}(x, y, n)$ be the joint output of both parties in protocol π .

Definition 2.2.1 (security w.r.t. semi-honest behavior): Let $f = (f_1, f_2)$ be a functionality. We say that π securely computes f in the presence of static semi-honest adversaries if there exist probabilistic polynomial-time algorithms S_1 and S_2 such that

$$\begin{split} &\{(S_1(1^n, x, f_1(x, y)), f(x, y))\}_{x,y,n} \stackrel{c}{=} \{(\mathsf{view}_1^{\pi}(x, y, n), \mathsf{output}^{\pi}(x, y, n))\}_{x,y,n}, \\ &\{(S_2(1^n, y, f_2(x, y)), f(x, y))\}_{x,y,n} \stackrel{c}{=} \{(\mathsf{view}_2^{\pi}(x, y, n), \mathsf{output}^{\pi}(x, y, n))\}_{x,y,n}, \\ &x, y \in \{0, 1\}^* \text{ such that } |x| = |y|, \text{ and } n \in \mathbb{N}. \end{split}$$

Generalization: Private computation for any function – Malicious Attacks

Generalizing the properties we want secure protocol π for $f = (f_1, f_2)$ to have (cont.):

Malicious security definition more complex than 'honest but curious' (cannot directly adapt 'simulation') because:

- Malicious P_1 can ignore its input x_1 and substitute another x'_1 .
- Malicious P_1 might be able to choose its x'_1 to depend on y, then output may leak information on y!

Use alternative way of defining security: For security against malicious P_i , ideally want π protocol's security as good as security of an ideal OT protocol.

Q: What is the ideal protocol for functionality $f = (f_1, f_2)$? **Possible A:** Using a trusted party to do the computations privately!

Generalization: Private computation for any function – Malicious Attacks

Ideal protocol π_{ideal} for $f = (f_1, f_2)$, inputs (x, y), trusted party P^* :

- Honest P_1, P_2 send x', y' respectively to P^* .
- *P** computes and sends *f*₁(*x'*, *y'*) and *f*₂(*x'*, *y'*) to *P*₁ and *P*₂, respectively.
- Parties return outputs *z*₁, *z*₂ respectively.

Notation:

- Let REAL(x, y, n) denote output pair (z₁, z₂) in real protocol π with party inputs x, y and security parameter n.
- Let IDEAL(x, y, n) denote output pair (z₁, z₂) in ideal protocol π_{ideal} with party inputs x, y and security parameter n.

Malicious Security for π : For all x, y, for every efficient malicious attacker A_{real} corrupting either P_1 or P_2 in real protocol π , there is an efficient malicious attacker S_{ideal} in ideal protocol π_{ideal} such that the output pair REAL(x, y, n) and IDEAL(x, y, n) are computationally indistinguishable.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocol Mar 2014 15/25

Generalization: Private computation for any function

Generalizing the construction of OT to any function *f*:

General theoretical result: Any efficiently computable function fcan also be efficiently computed privately!

Theorem [Yao82]: For any function $f = (f_1, f_2)$, there is a secure computation protocol π_{Yao} for f, built from an OT protocol and a symmetric-key encryption scheme (satisfying some natural properties).

- π_{Yao} is known as Yao's Garbled Circuit Protocol.
- The communication cost for π_{Yao} is proportional to $(\ell_{svm} \cdot |C_f| + \ell_{in1} \cdot \ell_{OT})$, where
 - \$\ell_{sym}\$ is the ciphertext/key length for the encryption scheme,
 \$|C_f\$ is the size (number of gates) in the Boolean circuit for computing f,

 - ℓ_{in1} is the input (x) length for P_1 ,
 - ℓ_{OT} is the communication cost for the OT protocol.
- Using recent optimizations, can actually be practical for circuits up to thousands or even millions of gates, depending on security required (e.g. semi-honest or malicious).

Ron Steinfeld

Yao's Garbled Circuit Protocol

We will look at the basic variant of Yao's protocol: secure only against semi-honest attacks. Only briefly mention (less efficient) variants against malicious attacks.

Setup and Notation:

- P_1 has *n*-bit input $x = (x_1, \ldots, x_n)$, P_2 has *n*-bit input $y = (y_1, \ldots, y_n)$.
- P₂ wants to compute a bit f(x, y) ∈ {0,1}. (assume for now P₁ has no output).
- Assume that C_f is a Boolean circuit for function f.
- Let w₁,..., w_n denote input wires of C_f corresponding to input bits x₁,..., x_n.
- Let w_{n+1},..., w_{2n} denote inputs wires of C_f corresponding to input bits y₁,..., y_n.

We will use two ingredients:

- Symmetric-key encryption scheme (E, D) $(c = E_k(m)$ denotes ciphertext for m under key k, and
 - $D_k(c) = m$ denotes decryption of this c).
 - Secure under chosen plaintext attack (IND-CPA security).
 - Additional property (for correctness of π_{Yao}): D_K(c) outputs fail with high probability if c is a random string).
- I-of-2 Oblivious Transfer (OT) protocol secure against semi-honest attacks (e.g. Diffie-Hellman protocol).

Yao's Garbled Circuit Protocol

Basic Idea: P_1 computes and sends to P_2 a garbled ('encrypted') version $G(C_f)$ of circuit C_f .

- $G(C_f)$ is a special type of encryption for C_f that allows restricted computation.
- $G(C_f)$ has same number of gates and wires as C_f .
- To each wire w of $G(C_f)$, P_1 associates two random encryption keys k_w^0 and k_w^1 , corresponding to two possible values for this wire.
- For each gate g in C_f, P₁ produces a garbled gate G(g) for G(C_f).

Yao's Garbled Circuit Protocol

Basic property of Garbled gates G(g) and wire keys:

- Let g be a gate with input wires w_1, w_2 and output wire w_3 .
- Given keys k^a_{w1} and k^b_{w2} corresponding to values a, b for input wires w1, w2 of gate g and the garbled gate G(g), it is possible to decrypt the key k^{g(a,b)}_{w3} corresponding to value g(a, b) for gate output wire w3.

But – no information is revealed about relation between wire keys and wire values!

• Exception for the output wire $-G(C_f)$ reveals link between output wire w_o keys and values $(k_{w_o}^0 = 0 \text{ and } k_{w_o}^1 = 1)$.

Hence, given keys for all input wire values x, y, P_2 can sequentially decrypt keys for gate output wire values, gate-by-gate. Until P_2 decrypts output wire key value – hence obtains output bit $f_2(x, y)!$

Ron Steinfeld FI

Generalization: Private computation for any function – Yao's Protocol

Yao's Garbled Circuit Protocol – **How to garble a circuit?** Given circuit C_f , P_1 produces garbled circuit $G(C_f)$ as follows:

- For each wire *w* of *C_f* (and *G*(*C_f*)) pick two random keys k_w^0 and k_w^1 corresponding to values 0 and 1 resp. for *w*. (keys for symmetric encryption scheme (*E*, *D*)).
- For each gate g of C_f with input wires w_1, w_2 and output wire w_3 , compute a garbled gate G(g) consisting of the four 'garbled gate truth table' values (in a random order):

$$\mathsf{E}_{\mathsf{k}_{\mathsf{w}_1}^0} \left(\mathsf{E}_{\mathsf{k}_{\mathsf{w}_2}^0} \left(\mathsf{k}_{\mathsf{w}_3}^{g(0,0)} \right) \right), \mathsf{E}_{\mathsf{k}_{\mathsf{w}_1}^0} \left(\mathsf{E}_{\mathsf{k}_{\mathsf{w}_2}^1} \left(\mathsf{k}_{\mathsf{w}_3}^{g(0,1)} \right) \right), \mathsf{E}_{\mathsf{k}_{\mathsf{w}_1}^1} \left(\mathsf{E}_{\mathsf{k}_{\mathsf{w}_2}^0} \left(\mathsf{k}_{\mathsf{w}_3}^{g(1,0)} \right) \right), \mathsf{E}_{\mathsf{k}_{\mathsf{w}_1}^1} \left(\mathsf{E}_{\mathsf{k}_{\mathsf{w}_2}^1} \left(\mathsf{k}_{\mathsf{w}_3}^{g(1,1)} \right) \right), \mathsf{E}_{\mathsf{k}_{\mathsf{w}_3}^1} \left(\mathsf{E}_{\mathsf{k}_{\mathsf{w}_3}^1} \left($$

• For output gate g in C_f , set $k_{w_3}^0 = 0$ and $k_{w_3}^1 = 1$.

Example garbled gate table G(g) for an OR gate g:

input wire w_1	input wire w_2	output wire w_3	garbled computation table
k_1^0	k_{2}^{0}	k_3^0	$E_{k_1^0}(E_{k_2^0}(k_3^0))$
k_{1}^{0}	k_2^1	k_3^1	$E_{k_1^0}(E_{k_2^1}(k_3^1))$
k_1^1	k_{2}^{0}	k_3^1	$E_{k_1^1}(E_{k_2^0}(k_3^1))$
k_1^1	k_2^1	k_3^1	$E_{k_1^1}(E_{k_2^1}(k_3^1))$

FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocol

Mar 2014

Yao's Garbled Circuit Protocol – **How to use garbled circuit?** So far, P_1 sent P_2 the garbled circuit $G(C_f)$. If P_2 would have

- keys $k_{w_1}^{x_1}, \ldots, k_{w_n}^{x_n}$ corresponding to P_1 's input x, and
- keys $k_{w_{n+1}}^{y_1}, \ldots, k_{w_{2n}}^{y_n}$ corresponding to P_2 's input y,

then P_1 can compute with $G(C_f)$ the desired output value $f_2(x, y)$. **Q:** How does P_2 get those keys?

A: In the case of $k_{w_1}^{x_1}, \ldots, k_{w_n}^{x_n}$: P_1 just sends them to P_2 .

• Does not reveal anything on x since $k_{w_i}^{x_i}$ chosen randomly by P_1 .

What about $k_{w_{n+1}}^{y_1}, \ldots, k_{w_{2n}}^{y_n}$ corresponding to P_2 's input y?

- P_1 cannot directly send them, as he doesn't know y_j 's.
- P_1 could send both keys $k_{w_j}^0, k_{w_j}^1$ for all j = n + 1, ..., 2n, but this would allow P_2 to compute $f_2(x, y')$ for any y'...

We already know a solution: 1-of-2 OT for each y_i !

Yao's Garbled Circuit Protocol – Summary

PROTOCOL 3.4.1 (Yao's Two-Party Protocol)

- Inputs: P_1 has $x \in \{0, 1\}^n$ and P_2 has $y \in \{0, 1\}^n$.
- Auxiliary input: A boolean circuit C such that for every x, y ∈ {0,1}ⁿ it holds that C(x, y) = f(x, y), where f: {0,1}ⁿ × {0,1}ⁿ → {0,1}ⁿ. We require that C is such that if a circuit-output wire leaves some gate g, then gate g has no other wires leading from it into other gates (i.e., no circuit-output wire is also a gate-input wire). Likewise, a circuit-input wire that is also a circuit-output wire enters no gates.
- The protocol:
 - 1. P_1 constructs the garbled circuit G(C) as described in Section 3.3, and sends it to P_2 .
 - 2. Let w_1, \ldots, w_n be the circuit-input wires corresponding to x, and let w_{n+1}, \ldots, w_{2n} be the circuit-input wires corresponding to y. Then,
 - a. P_1 sends P_2 the strings $k_1^{x_1}, \ldots, k_n^{x_n}$.
 - b. For every i, P_1 and P_2 execute a 1-out-of-2 oblivious transfer protocol in which P_1 's input equals (k_{n+i}^0, k_{n+i}^1) and P_2 's input equals y_i . The above oblivious transfers can all be run in parallel.
 - 3. Following the above, P_2 has obtained the garbled circuit and 2n keys corresponding to the 2n input wires to C. Party P_2 then computes the circuit, as described in Section 3.3, obtaining f(x, y).

Yao's Garbled Circuit Protocol – Security

Possible to prove semi-honest security: **Theorem.** Yao's protocol achieves semi-honest security against client or server, assuming the OT is secure against semi-honest attack and the encryption scheme is secure under chosen plaintext attack (IND-CPA security). Will not cover proof in detail (see HL, Chapter 3).

Intuition:

- Security Against P₁: P₁ just sees the OT protocol message from P₂ security follows from OT protocol privacy for P₂ (use OT simulator for P₁'s view).
- Security Against P₂: P₂ receives garbled circuit G(C_f) and keys corresponding to P₁'s input x. Simulator for P₂'s view just sends fake garbled circuit (gates only encrypt same output key for all 4 input key combinations), and output gate encrypts f₂(x, y) for all 4 input combinations.
 - Idea: P₂ cannot distinguish fake from real garbled circuit, since it only gets keys for one input combination of each gate. Other gate outputs are indistinguishable by IND-CPA security of encryption scheme. Also need to rely on OT security against P₂.

Yao's Protocol – **How to secure against malicious parties?** Current techniques for strengthening Yao's protocol for security against malicious attacks generally add a significant cost overhead. We Will not cover in detail.

Basic idea of common approach (see [HL, Chapter 4]):

- Use a strengthened OT subprotocol
- P_2 verifies that P_1 garbled C_f correctly using cut and choose:
 - P₁ sends to P₂ multiple (independent) garbled circuits G(C_f)_i for i = 1,..., N.
 - P_2 asks P_1 to open (provide all keys) for a random half of the garbled $G(C_f)_i$'s, and checks them for correctness.
 - If all opened circuits are correct P₂ computes f(x, y) using all remaining unopened circuits and takes majority as output.
 - Idea: extremely unlikely that a majority of unopened circuits incorrect, yet all opened circuits correct!
 - But, other complications need to be handled, e.g. need to check that P_2, P_1 use same inputs for all garbled circuits!

Yao's Garbled Circuit Protocol – Implementation Frameworks Significant work on optimized implementations of Yao's protocol Several implementation frameworks available (more in tute/assignment), e.g.:

- Fairplay (2004): http://www.cs.huji.ac.il/project/Fairplay/Fairplay.html
 - Compiler from 'C style' function f specfication language (SFDL) to Boolean circuit language (SHDL)
 - Compiler from circuit language (SHDL) to a Yao protocol (semi-honest).
 - Sample performance: Comparing two 32-bit integers (254 gates) 1.25 sec on 2.4GHz machines.
- TASTY (2010): https://github.com/tastyproject/tasty
 - Improved performance in some applications, combining Yao with other techniques
 - Sample performance: 32k gates 6 sec setup, 1 sec online on 3GHz machines.
- Might Be Evil (2011): https://mightbeevil.org
 - Allow Combination of high level and circuit level Java code for f specification.
 - Optimize Yao approach
 - Sample performance: 100k gates/sec, Hamming distance on 900 bits: 50msec.