
FIT5124 Advanced Topics in Security

Lecture 6: Secure Computation Protocols II –
Private Computation

Ron Steinfeld
Clayton School of IT

Monash University

April 2015

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 1/25

Secure Computation Protocols II

Secure Computation Protocols: How to achieve more complex
security requirements beyond basic confidentiality or integrity?
We will look at two topics:

Privacy in authentication and protocol integrity (prev.
lecture): Zero-Knowledge protocols and applications to, e.g.

Non-Transferability of authentication: How to prove my
identity without leaving a verifiable trace?
Anonymity in authentication: How to prove I belong to a
group without revealing my identity?
Catching Misbehaviour in General Protocols: How to
detect that a user doesn’t follow a protocol?

Privacy in computation (this lecture and next): general
secure computation without a trusted party:, e.g.

Private data retrieval
Private data mining
Private e-voting...

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 2/25

Plan for this lecture

General Secure Computation and Applications:

Example Motivation: Private data retrieval

First example of a Private Computation protocol:
Diffie-Hellman Based Oblivious Transfer (OT)

Completeness
‘Honest but curious’ Privacy for client and server– based on
simulation
Second example: strengthened Diffie-Hellman OT protocol

Generalization: Private computation for any function

Definition
General protocol: Yao’s protocol for secure 2-party
computation of any function

Efficient Implementation Frameworks and applications (mainly
in tutorial / assignment)

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 3/25

Example Motivation: Private data retrieval

How to privately retrieve data?

Server has N data items for sale (all same price).

Client wants to buy and obtain one of them.

Security?

Privacy for server: Don’t reveal to client the items it didn’t
buy.

Privacy for client: Don’t reveal to server which item I
retrieved/bought.

Q.: How to satisfy both of those (apparently contradictory)
requirements simultaneously?
Possible A.: Use a private information retrieval (PIR) protocol!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 4/25

First example of a Private Computation protocol:
Diffie-Hellman Based Oblivious Transfer (OT)

1-of-2 Oblivious Transfer (OT): Most basic variant of PIR –

Server has N = 2 items x0, x1.

Client has a bit s ∈ {0, 1} that selects one item, i.e. xs .

Each item xi ∈ {0, 1} is a single bit.

Setup of Diffie-Hellman OT protocol:

Works in a cyclic group G =< g > where Discrete-Logarithm
(DL) problem is hard

Public parameters: generator g ∈ G for G , h←↩ U(G) (no
one knows DL x of h to base g).
Denote order (size) of G by n (assumed prime).

e.g. (as in DSA digital signature standard): G a mutliplicative
subgroup of Z∗

p (multiplicative group modulo p) for a prime p,
where G is generated by g ∈ Z∗

p, an element of prime order n,
where n divides p − 1.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 5/25

First example of a Private Computation protocol:
Diffie-Hellman Based OT

Diffie-Hellman Based Oblivious Transfer (OT) Protocol:
Server (sender) has 2 items x0, x1, client (receiver) has a bit s and
wants item xs .

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 6/25

Diffie-Hellman Based OT: Properties
Q: Why does it work?
A: Properties –

Completeness: If Client and Server both follow protocol,
Client will obtain desired item xs .
Privacy for server: Why can’t the client also obtain the other
server’s bit x1−s?

Assume first a honest but curious client – follows protocol
steps, but analyzes received messages.
Intuition: bit x1−s is encrypted with key h1−s = h/gu = g x−u;
client knows u but not x = logg (h) (DL)...
How to make intuition precise and prove it is correct? (next).
What if the client is malicious – client can change protocol
steps to learn more? (later in this lecture.)

Privacy for client: Why can’t the server learn the client’s
selection s?

Intuition: Client cannot distinguish which of h0, h1 is gu and
which is h/gu. Why?

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 7/25

Diffie-Hellman Based OT: Defining and proving Privacy

Intuition: Client does not learn anything about server’s data
(x0, x1) beyond what is revealed by protocol output (xs).
Q: How to define and prove privacy for server?
A: Use simulation (similar to ZK) – Client can efficiently simulate
the messages he sees in the protocol by itself, using only its input s
and the protocol output xs .

Enough if client’s simulation not exact but just
computationally indistinguishable from the real protocol
messages – i.e. computationally infeasible to distinguish
simulation from real messages

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 8/25

Diffie-Hellman Based OT: Defining and proving Privacy

Efficient Simulator algorithm S for client’s received messages in
Diffie-Hellman OT protocol: Given g , h ∈ G , s ∈ {0, 1} and
xs ∈ {0, 1}, S does following:

Compute hs = gu, h1−s = h/gu, as in real protocol.

Simulate (As ,Bs) = (gus , huss · g xs), for us ←↩ U(Zn), as in
real protocol.

Simulate (A1−s ,B1−s) = (gu1−s , h′), for random h′ ←↩ U(G)
chosen independently.

Theorem (privacy for server). The above simulation of client’s
received messages is computationally indistinguishable from real
protocol, assuming the hardness of Decision Diffie-Hellman (DDH)
problem in G . (proof: see tute problem).
DDH Problem: Given (g , ga, gb, y) ∈ G 4 for a, b ←↩ U(Zn),
distinguish REAL scenario (y = gab) from RAND scenario
(y ←↩ U(G) independently).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 9/25

Second example – strengthened Diffie-Hellman OT
protocol

But, what if client is malicious and doesn’t follow protocol? It can
learn both x0, x1! How to strengthen the protocol for privacy
against malicious clients?
General approach: Use ZK proofs to ‘force’ client to follow
protocol!

Problem: not very efficient in general.

Sometimes possible to get more efficient solutions...

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 10/25

Second example – strengthened Diffie-Hellman OT
protocol

Strengthened Diffie-Hellman Based Oblivious Transfer (OT)
Protocol (HL’10, Chapter 7): Server (sender) has 2 items x0, x1,
client (receiver) has a bit σ and wants item xσ.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 11/25

Generalization: Private computation for any function

Private computation protocols have been extensively investigated
and generalized to cover almost any imaginable scenario!
For instance, how to privately compute:

Set Intersection: e.g. police investigators have a list of terrorist
suspects, airline has a list of flight passengers.
Comparison: e.g. e-auctions – bidders submit bids to auctioneer,
want to hide bid from auctioneer unless winning bid.

Summation: e.g. e-voting – voters submit bids, authority wants to

add votes, voters don’t want to reveal vote to authority.

Generalizing private comp. to any functionality f = (f1, f2):

Let f = (f1, f2) be functions to be computed privately by
parties P1,P2 resp. (e.g.
f1(x = (x0, x1), y = s) = null,f2(x = (x0, x1), y = s) = xs for
OT).

Goal: Given any functionality f = (f1, f2), construct a secure
computation protocol π for f .

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 12/25

Generalization: Private computation for any function

Generalizing the properties we want secure protocol π for
f = (f1, f2) to have:
Completeness: For any inputs (x , y), if parties P1 and P2 follow
protocol π then at the end, P1 has f1(x , y) and P2 has f2(x , y).
Privacy against ‘Honest but Curious’ (aka ‘semi-honest’) P1

and P2: same simulation idea!
Let viewπi (x, y, n) denote the messages received by Pi in protocol π for inputs x, y and security parameter
n, along with Pi ’s input (and any random inputs).

e.g. in OT protocol, viewOT
1 = (g, h, x = (x0, x1), u0, u1, (h0, h1)) and

viewOT
2 = (g, h, y = s, u, (A0, B0), (A1, B1)).

Let outputπ(x, y, n) be the joint output of both parties in protocol π.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 13/25

Generalization: Private computation for any function –
Malicious Attacks

Generalizing the properties we want secure protocol π for
f = (f1, f2) to have (cont.):
Malicious security definition more complex than ‘honest but
curious’ (cannot directly adapt ‘simulation’) because:

Malicious P1 can ignore its input x1 and substitute another x ′1.

Malicious P1 might be able to choose its x ′1 to depend on y ,
then output may leak information on y !

Use alternative way of defining security: For security against
malicious Pi , ideally want π protocol’s security as good as security
of an ideal OT protocol.
Q: What is the ideal protocol for functionality f = (f1, f2)?
Possible A: Using a trusted party to do the computations
privately!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 14/25

Generalization: Private computation for any function –
Malicious Attacks

Ideal protocol πideal for f = (f1, f2), inputs (x , y), trusted party P∗:

Honest P1,P2 send x ′, y ′ respectively to P∗.
P∗ computes and sends f1(x ′, y ′) and f2(x ′, y ′) to P1 and P2,
respectively.
Parties return outputs z1, z2 respectively.

Notation:
Let REAL(x, y, n) denote output pair (z1, z2) in real protocol π with party inputs x, y and security
parameter n.

Let IDEAL(x, y, n) denote output pair (z1, z2) in ideal protocol πideal with party inputs x, y and security

parameter n.

Malicious Security for π: For all x , y , for every efficient malicious
attacker Areal corrupting either P1 or P2 in real protocol π, there is
an efficient malicious attacker Sideal in ideal protocol πideal such
that the output pair REAL(x , y , n) and IDEAL(x , y , n) are
computationally indistinguishable.
idea: whatever Areal can compute in real protocol π, Sideal can
compute in the ideal protocol πideal. And we cannot hope to get
better security than ideal protocol πideal.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 15/25

Generalization: Private computation for any function

Generalizing the construction of OT to any function f :
General theoretical result: Any efficiently computable function f
can also be efficiently computed privately!
Theorem [Yao82]: For any function f = (f1, f2), there is a secure
computation protocol πYao for f , built from an OT protocol and a
symmetric-key encryption scheme (satisfying some natural
properties).

πYao is known as Yao’s Garbled Circuit Protocol.
The communication cost for πYao is proportional to
(`sym · |Cf |+ `in1 · `OT), where

`sym is the ciphertext/key length for the encryption scheme,
|Cf is the size (number of gates) in the Boolean circuit for computing f ,
`in1 is the input (x) length for P1,

`OT is the communication cost for the OT protocol.

Using recent optimizations, can actually be practical for
circuits up to thousands or even millions of gates, depending
on security required (e.g. semi-honest or malicious).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 16/25

Private computation for any function – Yao’s Protocol

Yao’s Garbled Circuit Protocol
We will look at the basic variant of Yao’s protocol: secure only
against semi-honest attacks. Only briefly mention (less efficient)
variants against malicious attacks.
Setup and Notation:

P1 has n-bit input x = (x1, . . . , xn), P2 has n-bit input y = (y1, . . . , yn).

P2 wants to compute a bit f (x, y) ∈ {0, 1}. (assume for now P1 has no output).

Assume that Cf is a Boolean circuit for function f .

Let w1, . . . ,wn denote input wires of Cf corresponding to input bits x1, . . . , xn .

Let wn+1, . . .w2n denote inputs wires of Cf corresponding to input bits y1, . . . , yn .

We will use two ingredients:

Symmetric-key encryption scheme (E ,D) (c = Ek (m) denotes ciphertext for m under key k, and

Dk (c) = m denotes decryption of this c).

Secure under chosen plaintext attack (IND-CPA security).

Additional property (for correctness of πYao): DK (c) outputs fail with high probability if c is a

random string).

1-of-2 Oblivious Transfer (OT) protocol secure against semi-honest attacks (e.g. Diffie-Hellman protocol).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 17/25

Private computation for any function – Yao’s Protocol

Yao’s Garbled Circuit Protocol
Basic Idea: P1 computes and sends to P2 a garbled (‘encrypted’)
version G (Cf) of circuit Cf .

G (Cf) is a special type of encryption for Cf that allows
restricted computation.

G (Cf) has same number of gates and wires as Cf .

To each wire w of G (Cf), P1 associates two random
encryption keys k0

w and k1
w , corresponding to two possible

values for this wire.

For each gate g in Cf , P1 produces a garbled gate G (g) for
G (Cf).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 18/25

Private computation for any function – Yao’s Protocol

Yao’s Garbled Circuit Protocol
Basic property of Garbled gates G (g) and wire keys:

Let g be a gate with input wires w1,w2 and output wire w3.

Given keys kaw1
and kbw2

corresponding to values a, b for input
wires w1,w2 of gate g and the garbled gate G (g), it is

possible to decrypt the key k
g(a,b)
w3 corresponding to value

g(a, b) for gate output wire w3.

But – no information is revealed about relation between wire keys
and wire values!

Exception for the output wire – G (Cf) reveals link between
output wire wo keys and values (k0

wo
= 0 and k1

wo
= 1).

Hence, given keys for all input wire values x , y , P2 can sequentially
decrypt keys for gate output wire values, gate-by-gate. Until P2

decrypts output wire key value – hence obtains output bit f2(x , y)!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 19/25

Generalization: Private computation for any function –
Yao’s Protocol

Yao’s Garbled Circuit Protocol – How to garble a circuit?
Given circuit Cf , P1 produces garbled circuit G (Cf) as follows:

For each wire w of Cf (and G (Cf)) pick two random keys k0
w and

k1
w corresponding to values 0 and 1 resp. for w . (keys for symmetric

encryption scheme (E ,D)).
For each gate g of Cf with input wires w1,w2 and output wire w3,
compute a garbled gate G (g) consisting of the four ‘garbled gate
truth table’ values (in a random order):

E
k0
w1

(
E
k0
w2

(
kg(0,0)
w3

))
, E

k0
w1

(
E
k1
w2

(
kg(0,1)
w3

))
, E

k1
w1

(
E
k0
w2

(
kg(1,0)
w3

))
, E

k1
w1

(
E
k1
w2

(
kg(1,1)
w3

))
.

For output gate g in Cf , set k0
w3

= 0 and k1
w3

= 1.

Example garbled gate table G (g) for an OR gate g :

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 20/25

Private computation for any function – Yao’s Protocol

Yao’s Garbled Circuit Protocol – How to use garbled circuit?
So far, P1 sent P2 the garbled circuit G (Cf). If P2 would have

keys kx1
w1
, . . . , kxnwn

corresponding to P1’s input x , and

keys ky1
wn+1 , . . . , k

yn
w2n corresponding to P2’s input y ,

then P1 can compute with G (Cf) the desired output value f2(x , y).
Q: How does P2 get those keys?
A: In the case of kx1

w1
, . . . , kxnwn

: P1 just sends them to P2.

Does not reveal anything on x since kxiwi
chosen randomly by

P1.

What about ky1
wn+1 , . . . , k

yn
w2n corresponding to P2’s input y?

P1 cannot directly send them, as he doesn’t know yj ’s.

P1 could send both keys k0
wj
, k1

wj
for all j = n + 1, . . . , 2n, but

this would allow P2 to compute f2(x , y ′) for any y ′...

We already know a solution: 1-of-2 OT for each yj !
Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 21/25

Private computation for any function – Yao’s Protocol

Yao’s Garbled Circuit Protocol – Summary

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 22/25

Private computation for any function – Yao’s Protocol

Yao’s Garbled Circuit Protocol – Security
Possible to prove semi-honest security: Theorem. Yao’s protocol

achieves semi-honest security against client or server, assuming the OT is

secure against semi-honest attack and the encryption scheme is secure

under chosen plaintext attack (IND-CPA security).

Will not cover proof in detail (see HL, Chapter 3).
Intuition:

Security Against P1: P1 just sees the OT protocol message from P2 - security follows from OT protocol
privacy for P2 (use OT simulator for P1’s view).

Security Against P2: P2 receives garbled circuit G(Cf) and keys corresponding to P1’s input x . Simulator

for P2’s view just sends fake garbled circuit (gates only encrypt same output key for all 4 input key

combinations), and output gate encrypts f2(x, y) for all 4 input combinations.

Idea: P2 cannot distinguish fake from real garbled circuit, since it only gets keys for one input

combination of each gate. Other gate outputs are indistinguishable by IND-CPA security of

encryption scheme. Also need to rely on OT security against P2.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 23/25

Private computation for any function – Yao’s Protocol

Yao’s Protocol – How to secure against malicious parties?
Current techniques for strengthening Yao’s protocol for security
against malicious attacks generally add a significant cost overhead.
We Will not cover in detail.
Basic idea of common approach (see [HL, Chapter 4]):

Use a strengthened OT subprotocol
P2 verifies that P1 garbled Cf correctly using cut and choose:

P1 sends to P2 multiple (independent) garbled circuits G (Cf)i
for i = 1, . . . ,N.
P2 asks P1 to open (provide all keys) for a random half of the
garbled G (Cf)i ’s, and checks them for correctness.
If all opened circuits are correct P2 computes f (x , y) using all
remaining unopened circuits and takes majority as output.
Idea: extremely unlikely that a majority of unopened circuits
incorrect, yet all opened circuits correct!
But, other complications need to be handled, e.g. need to
check that P2,P1 use same inputs for all garbled circuits!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 24/25

Private computation for any function – Yao’s Protocol

Yao’s Garbled Circuit Protocol – Implementation Frameworks
Significant work on optimized implementations of Yao’s protocol
Several implementation frameworks available (more in
tute/assignment), e.g.:

Fairplay (2004): http://www.cs.huji.ac.il/project/Fairplay/Fairplay.html

Compiler from ‘C style’ function f specfication language (SFDL) to Boolean circuit language
(SHDL)
Compiler from circuit language (SHDL) to a Yao protocol (semi-honest).

Sample performance: Comparing two 32-bit integers (254 gates) – 1.25 sec on 2.4GHz machines.

TASTY (2010): https://github.com/tastyproject/tasty

Improved performance in some applications, combining Yao with other techniques

Sample performance: 32k gates – 6 sec setup, 1 sec online on 3GHz machines.

Might Be Evil (2011): https://mightbeevil.org

Allow Combination of high level and circuit level Java code for f specification.
Optimize Yao approach

Sample performance: 100k gates/sec, Hamming distance on 900 bits: 50msec.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 6: Secure Computation Protocols II – Private ComputationMar 2014 25/25

