
FIT5124 Advanced Topics in Security

Lecture 7: Hacking Techniques I – Side Channel
Attacks

Ron Steinfeld
Clayton School of IT

Monash University

April 2015

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 1/25

Hacking Techniques I

Side Channel Attacks: How to break strong cryptography using
implementation ‘side’ information?

Implementations of secure systems can leak secret information via
side channels. Hackers can exploit these leaks to break ‘secure’
systems!

Plan for this lecture: Exploitation techniques, examples, and
defenses for:

Timing side channels

Power side channels

Cache side channels

Other side channels (EM, sound,)

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 2/25

Timing Side Channels

Q: How can timing the length of computations help an attacker to
break a system?
A: In many implementations, time of execution leaks sensitive
information!
We will look at several examples and attack techniques:

Password verification

RSA signature generation

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 3/25

Timing Side Channels: Password verification

Consider following algorithm for verifying passwords at login:
Inputs:

P̃ = (P̃[0], . . . , P̃[7]): Login 8 char. password

P = (P[0], . . . ,P[7]): Registered 8 char. password

Output: ’True’ if P̃ = P, ’False’ otherwise.

Q1: Is there an execution time leakage vulnerability?
Q2: How could an attacker exploit it?

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 4/25

Timing Side Channels: Password verification

A1: Execution time leakage vulnerability:

‘for’ loop terminates as soon as as a byte mismatch is found!

Number of executed iterations of ‘for’ loop = smallest j such
that P̃[j] 6= P[j].

A2: Timing attack exploitation:

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 5/25

Timing Side Channels: RSA Signature Generation

Q: How to break a system where total execution time depends on
all parts of the secret?
Example: RSA Signature Generation
Consider following ‘square and multiply’ algorithm for RSA ‘hash
and sign’ signature generation:
Inputs:

m: Message to be signed

N: RSA signature public key modulus

d = (dk−1, . . . , d0): RSA signature private key exponent

µ: hash function to hash message into ZN = Z/NZ before signing.

Output: RSA signature σ = µ(m)d mod N.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 6/25

Timing Side Channels: RSA Signature Generation
First execution time leakage vulnerability:

Multiply step R0 ← R0 · R1 mod N in line 4 only executed if dj = 1.

But... attacker can only measure total execution time:
Total time depends on all secret bits dk−1, . . . , d0.

Seems to reveals only number of 1s (Hamming weight) of d!

What can attacker do?
A: Look for dependence of a local computation on just one secret
bit and attacker’s input!
Second execution time leakage vulnerability:

Look inside implementation of line 4 Multiply R0 ← R0 · R1 mod N
Performed using efficient ‘Montgomery multiplication’ method.
Montgomery method outputs the correct result but as integer y in
interval [0, 2N − 1] (not [0, . . . ,N − 1]).
Hence, introduces input-dependent execution time:

If y ∈ [N, . . . , 2N − 1] need to reduce mod N with a subtraction: y ← y − N.

Else, if y ∈ [0, . . . ,N − 1], don’t perform subtraction.

Time of R0 ← R0 ·R1 mod N in line 4 depends on R0 and R1 values!
Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 7/25

Timing Side Channels: RSA Signature Generation

Timing attack exploitation idea:
Time signature generation on many random input messages m1, . . . ,mt

For each message mi , inputs R0, R1 to line 4 Montg. Multiply for first loop iteration j = k − 1) are known

to attacker (using mi)!

Hence, attacker can divide the messages mi into two types:
Type 0 (‘no’) mi : y subtraction in line 4 multiply will NOT be performed at first loop iteration (j = k− 1).

Type 1 (‘yes’) mi : y subtraction in line 4 multiply will be performed at first loop iteration (j = k − 1).

Attack Method (‘Differential attack’): Compare average measured
total exec. time τ̄0 for mi ’s where subtraction will not be
performed, to average total run-time τ̄1 for remaining mi ’s (with
subtraction performed).

If dk−1 = 1 (line 4 executed at iteration j = k − 1), expect τ̄0 shorter than τ̄1 by average time of
substraction.

Else, if dk−1 = 0, (line 4 not executed at iteration j = k − 1), expect τ̄0 ≈ τ̄1.

Then repeat method for line 4 at iteration j = k − 2, . . . , 0, to
obtain rest of bits of d , bit-by-bit!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 8/25

Timing Side Channels: RSA Signature Generation

A: Timing attack (Summary):

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 9/25

Power Side Channels: Simple Power Analysis
In some situations, attacker is able to measure electrical power
consumption of attacked device versus time.

Common example: Attacker controlled Smartcard reader.

Fact: Instantaneous Power consumption of CPUs depends on
instruction and data manipulated!

Basis for power consumption side channel attacks!

Exact dependence depends on chip technology.
Common example (CMOS technology): Significant power is
consumed by a bit register only when bit state is flipped from 0 to
1 or 1 to 0.

Consequence: Hamming-Distance (HD) power consumption
model: power consumption in computation from statei−1 to
statei depends on HW (statei−1 ⊕ statei) (where HW denotes
Hamming Weight).

Another Common Example: Hamming-Weight (HW) power consumption model: power consumption of
computation with output datai depends on HW (datai) (where HW denotes Hamming Weight).

e.g. HD model with datai loaded into an (initially zero) output CPU register.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 10/25

Power Side Channels: Simple Power Analysis

Power Analysis: first example – Reverse Engineering Code
Suppose an 8-bit smartcard CPU loads card input byte
x ∈ {0, . . . , 255} and applies some unknown instruction δ to
process x .
Attacker goal: recover δ ∈ {0, . . . , 255} (reverse engineering).
Attack Idea:

CPU accumulator state changes from statei−1 = x to
statei = δ when processing x with δ.

Hence (assuming HW model), expect power consumption
during processing to depend on HW (x ⊕ δ)

Q1: How to determine at what instances of time the CPU is
processing input x?

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 11/25

Power Side Channels: Simple Power Analysis

Power Analysis: first example – Reverse Engineering Code
A1: Attack Method to determine at what instances of time
the CPU is processing input x :

Run smartcard on different inputs x ∈ {0, . . . , 255}.
For each input x , record power consumption vs. time curve.

Plot power-time graphs for different x ’s, observe times where
graphs differ – hence identify times when x (or function
thereof) is processed.

Example measured Power-Time graphs for several inputs x :

Q2: How to use measured power at instants when x is processed
by instruction δ to determine δ?

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 12/25

Power Side Channels: Simple Power Analysis

Power Analysis: first example – Reverse Engineering Code - part 2
Recall: (assuming HD model), expect power consumption during
processing to depend on HW (x ⊕ δ).
Hence: Graph of HW (x ⊕ δ) versus x should be correlated with
Power (at processing instants) versus x :
A2: Attack Method to determine instruction δ from power
at instant when x processed:

Run smartcard on different inputs x ∈ {0, . . . , 255}.
Plot graph of P(x): power versus x at instant of processing x
(as indentified from part 1).

For each candidate instruction opcode δ ∈ {0, . . . , 255}, plot
HWδ(x) = HW (x ⊕ δ) versus x .

Pick as estimate for δ the value for which graphs HWδ(x) and
P(x) are most correlated (similar shape)!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 13/25

Power Side Channels: Simple Power Analysis

Power Analysis: first example – Reverse Engineering Code - part 2
Example measured P(x) (top) and most correlated
HWδ(x) = HW (x ⊕ δ) for δ = 184 (bottom):

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 14/25

Power Side Channels: Simple Power Analysis

Power Analysis: second example – RSA Signature Generation
In ‘square and multiply’ algorithm, presence or absence of multip.
step can be used to read off secret key from Power-Time graph!
Example measured Power-Time graph for smartcard running
‘square and multiply’ RSA signature generation:

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 15/25

Power Side Channels: Differential Power Analysis

Q: How to recover a secret key by power analysis if instruction
does not directly depend on secret?
A: Identify a place where computation depends on both key portion
and input, and use a ‘differential power analysis (DPA) attack’ !
Example – DPA Attack on AES: Recall AES-128:

Input 128-bit plaintext block mi and 128-bit key K are viewed as 4× 4 matrices of bytes:

mi = (s(i)
u,v)0≤u≤3,0≤v≤3,K = (ku,v)0≤u≤3,0≤v≤3.

Processing of plaintext block mi (repeated in 10 rounds):

AddRoundKey: Replaces each byte s
(i)
u,v with s

(i)
u,v ⊕ ku,v .

SubBytes: Replaces each byte s
(i)
u,v with SRD (s

(i)
u,v) where SRD is AES’s 8-bit non-linear S-box

permutation.
ShiftRows : Cyclic shifting of 32-bit state matrix rows.

MixColumns : Linear mixing of 32-bit columns of state matrix.

Focus in this attack on first two steps (bytewise)!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 16/25

Power Side Channels: Differential Power Analysis

Power Analysis: third example – Differential Power Analysis
of AES
DPA Attack idea:

Obtain Power-Time traces Pi (t) for AES encryption on many random input messages

mi = (s
(i)
u,v)0≤u≤3,0≤v≤3 for i = 1, . . . , t.

For each message mi , byte s̃
(i)
u,v of state after first AddRoundKey and SubBytes operations depends on key

byte ku,v and input byte s
(i)
u,v :

s̃(i)
u,v = SRD (s(i)

u,v ⊕ ku,v)

If attacker guesses ku,v correctly, he knows what the internal state byte s̃
(i)
u,v would be!

Hence attacker knows, e.g. for which mi ’s, hamming weight is ‘large’ (large Pi (t) in HW model at

computation instant) or ‘small’.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 17/25

Power Side Channels: Differential Power Analysis

Power Analysis: third example – Differential Power Analysis
of AES
Assume HW model. Using its guess for ku,v and based on value of

(say) LS bit of s̃
(i)
u,v , attacker can divide the messages mi into two

types:
i ∈ S0 – Type 0 (‘low’ average HW s̃

(i)
u,v) mi : LSbit(s̃

(i)
u,v)=0.

i ∈ S1 – Type 1 (‘high’ average HW s̃
(i)
u,v) mi : LSbit(s̃

(i)
u,v)=1.

Attack Method (‘Differential attack’): Compare average P̄0(t) of
Power-time graphs Pi (t) over type 0 messages mi (i ∈ S0) to
average P̄1(t) of Power-time graphs Pi (t) over type 1 messages mi

(i ∈ S1):
If guess of key byte ku,v is correct, expect P̄0(t) smaller than P̄1(t) for t=instant of s̃

(i)
u,v computation,

whereas P̄0(t) ≈ P̄1(t) for other times t.

Else, if guess of key byte ku,v is NOT correct, expect P̄0(t) ≈ P̄1(t) for all times t (why?)

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 18/25

Power Side Channels: Differential Power Analysis

Power Analysis: third example – Differential Power Analysis
of AES
Attack summary: For each candidate ku,v for key byte, attacker

plots the power difference vs. time graph ∆P(t)
def
= P̄0(t)− P̄1(t)

and looks for peaks!

If no significant peaks in ∆P(t), reject candidate ku,v (wrong
guess) and move to next candidate.

When correct ku,v key byte found, repeat to find all other 15
key bytes (each key byte can be found with ≤ 256 trials).

Example Results:

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 19/25

Cache Side Channels
Idea: Exploit security vulnerabilities due to hardware architecture
efficiency features!
Example: Cache memory in modern CPUs (only briefly mention,
see Ch. 18 of CryptoEng Book for more).

Cache is relatively small but fast memory inside CPUs.
Used to speed up memory access for commonly used values.

Basic ideas:

When a main memory location is accessed, CPU copies it to
fast cache (replacing, e.g. least used old cache value).
Subsequent accesses of that memory address are fetched
quickly from cache copy – cache hit (instead of main
memory).
Memory accesses to addresses not in the cache are fetched
slowly from main memory – cache miss.

But this means... a timing side-channel!!
Q: How can it be exploited?

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 20/25

Cache Side Channels

Example A: Cache timing Attacks on AES with lookup table
implementation of SubBytes S-box.
Ideas:

Fast implementations of AES store 8-bit S-box as a lookup table in memory.

To evaluate SubBytes(x), query memory address x to fetch stored value of SubBytes(x).

Vulnerability: in AES first two rounds, x = su,v ⊕ ku,v , where su,v is input plaintext byte and ku,v is key
byte – depends on known input and unknown key byte!

Exploit to get info. on key: Consider two plaintext bytes su,v , su′,v′ and corresponding key bytes

ku,v , k
′
u,v . The corresponding memory lookup addresses are:

x = su,v ⊕ ku,v and x′ = su′,v′ ⊕ ku′,v′ .

Likely to have a cache hit in SubBytes lookup of x′ after SubBytes lookup x for adjacent byte if:
x′ = x, or su,v ⊕ su′,v′ = ku,v ⊕ ku′,v′ .

Attack: Guess a candidate value δk for ku,v ⊕ ku′,v′ . Compare average encryption run-time for many

inputs with su,v ⊕ su′,v′ = δk .

Correct choice of δk will show up as faster average run-time (one more cache hit than for incorrect choices

of δk on average!).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 21/25

Compression ‘Side Channel’

Compression and Encryption don’t naturally Mix!
To reduce communication, common to compress data before
sending it. To hide the compressed data, common to encrypt it.
But..., the length of compressed data reveals information on
original data.

Encryption (by default) does not hide message length.

Hence: length of encrypted compressed data leaks information
on original data!

Q: Can it be exploited in practice?
A [DR12]: In many cases, yes, especially if attacker can
mount a chosen plaintext attack!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 22/25

Compression ‘Side Channel’: CRIME/BREACH attack on
TLS/SSL

CRIME attack on HTTPS (TLS/SSL) ([Duong-Rizzo 2012]):

Attacker goal: Steals secret user’s cookie with twitter.com

Attacker installs Javascript on user’s browser (user visits
attacker’s website).

Attacker guesses first char. of user’s cookie, measures length
of user’s encrypted compressed request

If guess is correct, compression will reduce length of request
ciphertext, else will not!

Move to guess remaining chars, one by one!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 23/25

Compression ‘Side Channel’: CRIME/BREACH attack on
TLS/SSL

Countermeasure: Disable Compression in SSL/TLS!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 24/25

Side Channels: Countermeasures

Devising effective countermeasures against side channel attacks is
often non-trivial and subject of a large body of research. Will not
study in detail (See CryptoEng book for many pointers).
Common approaches:

Reduce/Eliminate side-channel leakage, e.g.:

Use constant time operations
Avoid secret-conditioned code execution/branching

Introducing noise/randomization, e.g.:

wait states in hardware
data ‘masking’/blinding in software, e.g. randomize RSA
signature generation as:

[(µ(m) + r1 · N)d+r2·φ(N) mod r3N] mod N,

with random integers r1, r2, r3 chosen independently for each
signature generation.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 7: Hacking Techniques I – Side Channel AttacksMar 2014 25/25

