FIT5124 Advanced Topics in Security

Lecture 9: Malware — Functionality and Analysis
Techniques

Ron Steinfeld
Clayton School of IT
Monash University

April 2015

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware — Functionality and Analysis Techniques

Malware:

Today: A look at malware functionality and techniques for
analysing malware.

Plan for this lecture:

@ Malware Functionality:
e Common Malware Function Overview: Backdoors, Credential
Stealers, Persistence mechanisms, Covert methods
e Look at common Covert techniques:
o Covert Code Execution (Launchers): Process injection,
Process hiding
o Covert Data Interception: Hook injection
o Malware Analysis Techniques and Tools:
o Malware Behaviour Analysis
e Malware Code Analysis
o Anti-analysis techniques

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Functionality

Malware comes in various flavours, depending on attacker’s goal.
We mention a few common types.
Backdoor: Allows attacker to remotely access target machine

@ Usually communicate to attacker over HTTP (port 80).

e Often support many OS functions (e.g. enumerate displayed
windows, create/open files, ...).
@ Other variants:

o Reverse shell connections: Provide attacker with full shell
access to target machine. (e.g. use netcat to remotely run
cmd.exe)

o Remote Administration Tools (RATS), e.g. poisonivy

e Botnets

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Functionality

Credential Stealers:
@ Hash dumping (e.g. pwdump)
@ keystroke logging:

@ kernel-based keylogging: Modify keyboard driver of OS

@ User-space keylogging: Use Windows API services
i How the Fraud Works

e Global Reach

malware coder/exploiters
Y]

N .
N 7

y AN

victims

Law Enforcement
Response To Date:

Total FBI cases: 390
Attempted loss: $220 million
Actual loss: $70 million

Unit jod 2t
Urited Kingdom: 20 arrested and eight s ants

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and

Mar 2014

Malware Functionality

Common types of Malware Functionality (cont.)
Persistence Mechanisms:
e Modify the Windows Registry (e.g. HKEY_LOCAL_MACHINE -
global settings section (key) of registry).
@ Modify Dynamic Link Libraries (DLLs): add malicious code to
empty part of DLL, jump back to original code.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Functionality

Common types of Malware Functionality (cont.)
Covert Techniques:
@ 'Rootkit’ techniques: Hiding existence and actions of attacker
code:

e Process hiding
e Process injection

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014 6/29

Malware Functionality — Covert Techniques

Covert Code Execution: Process Hiding Windows OS
background:
@ Dynamic Link Libraries (DLLs) contain executable code (like .exe
files), but can be shared among processes
@ Typical memory map of a Windows process:

MmHighestUserAddress

Dynamic DLLs

Environment variables.

PEB

Process heap

Thread 1 stack
Thread 2 stack

Mapped file(s)
Application data.

Executable

0

Figure 7-1: A high-level diagram of the typical
contents of process memory

@ The Process Environment Block (PEB) stores information on the
location of items like DLLs, heaps, ...

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Functionality — Covert Techniques
Covert Code Execution: Process Hiding
Hiding DLLS via unlinking DLL list:

@ The PEB contains 3 linked lists of loaded DLLs

e Standard Windows system calls/utilities (e.g. listdlls) use

those lists
o Idea: Attacker unlinks the list to skip entry for attacker's DLL

ssssssss

Peb
Kernel mode
s User mode

r G
ol szl Kernel32.l
PEB_LDR DATA LoadLinks LoadLinks LoadlLinks

Tondode
MemonyOrertis ks e Initinks =] nitinks
o |

LDR DATA TABLE ENTRY.

Figure 8:3: A diagram showing how the PEB points to three doubly linked lists of DLLs

Countermeasure: Volatility tool can find trace of unlinked DLL
from kernel table. (harder to modify).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014 8/29

Malware Functionality — Covert Techniques

Covert Code Execution: Process Injection
Often, security software (such as Firewalls) blocks access to

resources (e.g. Internet access) except from authorized processes.
Q: How can malicious process gain access to blocked
resource?

Possible A: Process injection — Malicious process injects code into

authorized process.

b phor e

NE=

Hard Drive Memory
Lounches Louncher
Mabaera Mabarra Blocked
Micious DIL

iexplora axs
Moo B 1|

Figure 12-1: DI injechon—ife lavncher malware conmnol occess the nfeme wnfil i
injects info lexplore axs.

Ron Steinfeld

FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and

Mar 2014

9/29

Malware Functionality — Covert Techniques

Covert Code Execution: Process Injection (cont.)
Several known variants of Process Injection:

@ DLL injection: malware DLL exists on disk, get target process
to load it (e.g. using Windows LoadLibrary API call).

@ Direct Injection: Malware code written directly into target
process memory and executed within target.

@ Reflective DLL injection: Malware DLL written directly into
target process memory (no Windows loader API call).

@ Process Replacement/Hollowing: Malicious process starts new
instance of legit. target process and replaces target code with
malware code.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014 10/29

Malware Functionality — Covert Techniques

DLL injection: Malware DLL exists on disk, malware process A
gets target process B to run it
Outline of example implementation of process A in Windows:
@ Enable debug privilege (SE_.DEBUG_PRIVILEGE): Gives A right to
read and write Process B's memory.
@ Opens a handle to process B (OpenProcess): Get handle for
subsequent process B read/write operations.
@ Allocate memory inside Process B for malicious DLL
(VirtualAllocEx).
@ Write path Malpath to malicious DLL on disk into Process B
(WriteProcessMemory).
@ Start a new thread in Process B that loads malicious DLL into
memory (CreateRemoteThread):
o Pass to CreateRemoteThread ptr to LoadLibrary function
with argument ptr to Malpath.
o After malicious DLL is loaded, Windows automatically runs its
D11Main function — malicious code!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014 11/29

Malware Functionality — Covert Techniques

DLL injection: Malware DLL exists on disk, malware process A
gets target process B to load it using Windows API call (e.g.
LoadLibrary).

Example Windows implementation code for process A:

hVictimProcess = OpenProcess(PROCESS ALL_ACCESS, 0, victimProcessID @);

pNameInVictimProcess = VirtualAllocEx(hVictimProcess,...,sizeof (maliciousLibraryName),...,...);
WriteProcessMemory (hVictimProcess, .. .,maliciousLibraryName, sizeof(maliciousLibraryName),...);
GetModuleHandle("Kernel32.d11");
GetProcAddress(.. ., "LoadLibraryA");

) CreateRemoteThread(hVictimProcess,...,...,LoadLibraryAddress,pNameInVictimProcess,);

Listing 12-1: C Pseudocode for DLL injection

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Functionality — Covert Techniques

Direct Injection: Malware code written directly into target
process memory and executed within target.

@ Similar implementation to DLL injection, except process A
copies malicious code into process B and runs it with
CretateRemoteThread.

Reflective DLL Injection: Hybrid of DLL and direct injection.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Functionality — Covert Techniques

DLL/Direct Injection is tricky to implement without crashing
target process.
Alternative - Process Replacement/Hollowing: Malicious
process A starts new instance of legit. target process B and
replaces target code with malware code.
Outline of example implementation of process A in Windows:
@ Create instance of process B in suspended execution mode.
(CreateProcess with CREATE_SUSPENDED argument).
@ Release memory used by process B headers/code
(ZwUnmapViewofSection).
@ Allocate above memory in Process B for malicious headers/code
(VirtualAllocEx).
@ Write malicious headers/code into Process B
(WriteProcessMemory).
@ Set start address of suspended process B thread to start of
malicious code (SetThreadContext).
@ Resume suspended thread of process B - run malicious code!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Functionality — Covert Techniques

Process Replacement/Hollowing: Malicious process A starts
new instance of legit. target process B and replaces target code
with malware code.

Example Windows implementation code for process A:

CreateProcess(...,"svchost.exe",...,CREATE_SUSPEND,...);
ZwUnmapViewOfSection(...);
VirtualAllocEx(...,ImageBase, SizeOfImage,...);
WriteProcessMemory(...,headers,...);
for (i=0; i < NumberofSections; i++) {

© WriteProcessMemory(...,section,...);

}
SetThreadContext();

ResumeThread();

Listing 12-3: C pseudocode for process replacement

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Functionality — Covert Techniques

Covert Data Interception: Hook injection
Uses Windows hooks to intercept messages from Windows
triggered by certain events (e.g. keystrokes).

USER USER

i
aiqe

Windows OS Windows OS
Messages Messages
Threads Malicious DLL
Proces/
Application

Process/
Application
Figure 12-3: Event and message flow in Windows
with and without hook injection

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Functionality — Covert Techniques

Covert Data Interception: Hook injection Hooks usually
implemented in Windows with SetWindowsHookEx function Has 4

parameters:
@ idHook: type of hook procedure, e.g. WH_CBT for
keyboard/mouse events.

@ lpfn: ptr to hook procedure.
@ hMod: handle for DLL containing hook procedure.

e dwThreadId: identifier of thread associated with hook (if set
to 0, all threads running in same desktop!)

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Functionality — Covert Techniques

Covert Data Interception: Hook injection
Example SetWindowsHookEx call in Assembly:

00401100 push esi

00401101 push edi

00401102 push offset LibFileName ; "hook.d1l"
00401107 call LoadLibraryA

0040110D mov esi, eax

0040110F push offset ProcName ; "MalwareProc”
00401114 push esi ; hModule
00401115 call GetProcAddress

0040111B mov edi, eax

0040111D call GetNotepadThreadId

00401122 push eax ; dwThreadId
00401123 push esi ; hmod
00401124 push edi ; 1pfn

00401125 push WH_CBT ; idHook

00401127 call SetWindowsHookExA

Listing 12-4: Hook injection, assembly code

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Analysis — Techniques and Tools

@ Behavioural (aka dynamic) analysis: What does the malware
do when it runs?

e Input-output behaviour: system calls by malicious process, files
written/read, ...
@ Code-based (aka static) analysis: Understand the
disassembled /decompiled code

Combination of the two — reverse engineering.
Variety of tools to exist to help in those tasks (brief look).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014 19/29

Malware Analysis — Techniques and Tools

‘Basic’ Static (code) analysis: Scan malware code for system
calls / imported DLLs

@ Header of executable file (Windows ‘PE’ Header) contains
useful information

@ Lists DLLs used by executable and functions imported for
each DLL

o Often gives hints on usage: e.g. imported function
SetWindowsHookEx!

@ E.g. useful tool for extracting this info: Dependency Walker
(www.dependencywalker.com).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Analysis — Techniques and Tools

‘Basic’ Static (code) analysis (cont.): Scan malware executable
file for other clues
Windows executable (PE) file contains several sections:

Table 1-4: Sections of a PE File for a Windows Executable

Executable Description

.text Contains the executable code

.rdata Holds read-only data that is globally accessible within the program

.data Stores global data accessed throughout the program

.idata Sometimes present and stores the import function information; if this section is
not present, the import function information is stored in the .rdata section

.edata Sometimes present and stores the export function information; if this section is not
present, the export function information is stored in the .rdata section

.pdata Present only in 64-bit executables and stores exception-handling information

.ISTC Stores resources needed by the executable

.reloc Contains information for relocation of library files

Tools such as PEview and Resource Hacker may extract more
useful clues

@ e.g. strings stored in PE ‘resource’ section.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Analysis — Techniques and Tools

‘Basic’ Dynamic (behaviour) analysis: Run malware in a Virtual
Machine (VM) and observe its behaviour
Some useful Windows tools:
e rundl132.exe (comes with Windows): allows to easily run a
(suspected malicious) DLL to observe its behaviour

e e.g. rundl1l32.exe mal.dll Install runs Install
function of mal.d1l.
o Can get a list of functions exported by DLL using PEview tool.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014 22/29

Malware Analysis — Techniques and Tools
‘Basic’ Dynamic (behaviour) analysis: Run malware in a Virtual

Machine (VM) and observe its behaviour

Some useful Windows tools (cont.): procmon: Windows Process

Monitor — records process activity

@ Registry, File system activity

@ Network activity

@ Process, thread activity

@ Can filter to see only only relevant activity (e.g. interesting process).
@ Limitation: Doesn’t capture everything, e.g. misses

SetWindowsHookEx calls.

Seq Time _ Process Name Operaion
exe

oftiWindows NT\CurrentVersioniimaae File Exe

Figure 3-2: Procmon mm32.exe example

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and

Mar 2014

Malware Analysis — Techniques and Tools

‘Basic’ Dynamic (behaviour) analysis: Run malware in a Virtual
Machine (VM) and observe its behaviour
Some useful Windows tools (cont.):
@ Process Explorer (Microsoft): Shows processes in a tree
structure, DLLs loaded in memory, ...
@ Regshot: Compare registry and file system state before and
after malware running
e Shows changes to registry made between two snapshots

JISIES

Compare logs save as:
’76‘ Plain TXT (~ HTML document

™ Scan dir 1[;dir 2;dir 3;...;dir nn]:

|
|

[c:wmoows 2| e
Output path: Quit |
’V| CrpOCUME~1hserLOCAl [| —

’rAdd comment into the log:

E——

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Analysis — Techniques and Tools

‘Basic’ Dynamic (behaviour) analysis: Run malware in a Virtual
Machine (VM) and observe its behaviour
Some useful Windows tools (cont.):
@ ApateDNS (Mandiant): Simulates a DNS server and spoofs a
specified response IP address
o Useful for seeing how malware tries to communicate with
external servers (e.g. command and control).
o Captures malware's DNS requests

Figure 3-9: ApateDNS responding to a request for evil.malwar3.com

@ netcat: Simulate a server/client to malware and capture
@ Inetsim: Simulate many services, e.g. http, https, ftp, dns,...

@ wireshark: capture network packets from malware to server.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Analysis — Techniques and Tools

‘Advanced’ Dynamic (behaviour) analysis: Run malware in a
debugger within a Virtual Machine (VM) and step through its
running code
Some common Windows debugger tools:

@ 011yDbg (aka ImmDbg): Useful debugger for malware analysis
Usual debugger facilities: breakpoints, step, etc.
Can search for all referenced strings in code (e.g. file name).

Can search process memory for a given string
Can set memory access breakpoints

@ Windbg: Can also debug kernel code — device drivers.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Analysis — Techniques and Tools
Anti-Analysis Techniques: Anti-Disassembly
Malware goal: Fool disassembler to output incorrect disassembly
Common anti-disassembly techniques:

° Jump instructions with same target address:

Two sequential conditional jumps equivalent to an unconditional jump: jz addr_x followed by jnz
addr_x.

@ Address after jnz will never be executed, but disassembler does not realize this
@ Causes incorrect byte alignment for disassembly of following code, e.g:
74 03 jz short near ptr loc_4011C4+1
75 01 jnz short near ptr loc_4011(4+1
loc_4011C4: ; CODE XREF: sub_4011C0
;5 @sub_4011C0+2j
E8 58 C3 90 90 Ocall near ptr 90DoD521h

Fix with IDA Pro disassembler: tell disassembler that byte
following jnz is data byte:

74 03 jz short near ptr loc_4011C5

75 01 jnz short near ptr loc_4011C5
5

E8

; sub 4011C0+2:|

Ron Steinfeld

FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Analysis — Techniques and Tools

Anti-Analysis Techniques: Anti-Disassembly

Malware goal: Confuse the disassembler — incorrect disassembly

Common anti-disassembly techniques (cont.):

@ Inward-pointing jump instruction:
e A 2-byte jmp instruction that jumps into its own second byte
e Second byte of jmp is first byte of an INC instruction
o Causes incorrect byte alignment for disassembly of following
code, e.g:

F o

IMP -1 ¢

B

{INC EAX | DEC EAX

Figure 15-4: Inward-pointing jmp instruction

Fix with IDA Pro disassembler: replace 4 bytes with 4 NOP (1
byte) instructions.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

Malware Analysis — Techniques and Tools

Anti-Analysis Techniques: Anti-Debugging
Malware goal: Detect a debugger and alter behaviour
Common anti-debugger techniques:

@ Using Windows API functions, e.g.:

IsDebuggerPresent: direct flag (stored in Process Environment Block — PEB).
OutputDebugString: indirect — output a string to debugger for display (returns error if no

debugger present).

° I\/Ianually checking for a debugger, e.g.:

Ron Steinfeld

BeingDebugged flag in PEB: flag stored in Process Environment Block.

ProcessHeap flag: an undocumented flag within PEB ‘reserved’ area (tells kernel if heap created
by debugger).

Searching registry/filesystem for debugger id string (e.g. ‘OLLYDBG').

Searching own code for software interrupt (debugger breakpoint mechanism) instruction opcode
(0xCC).

Timing check of computation to detect slowdown due to debugging.

FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014

