
FIT5124 Advanced Topics in Security

Lecture 9: Malware – Functionality and Analysis
Techniques

Ron Steinfeld
Clayton School of IT

Monash University

April 2015

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 1/29



Malware – Functionality and Analysis Techniques

Malware:

Today: A look at malware functionality and techniques for
analysing malware.

Plan for this lecture:

Malware Functionality:
Common Malware Function Overview: Backdoors, Credential
Stealers, Persistence mechanisms, Covert methods
Look at common Covert techniques:

Covert Code Execution (Launchers): Process injection,
Process hiding
Covert Data Interception: Hook injection

Malware Analysis Techniques and Tools:
Malware Behaviour Analysis
Malware Code Analysis
Anti-analysis techniques

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 2/29



Malware Functionality

Malware comes in various flavours, depending on attacker’s goal.
We mention a few common types.
Backdoor: Allows attacker to remotely access target machine

Usually communicate to attacker over HTTP (port 80).

Often support many OS functions (e.g. enumerate displayed
windows, create/open files, ...).

Other variants:

Reverse shell connections: Provide attacker with full shell
access to target machine. (e.g. use netcat to remotely run
cmd.exe)
Remote Administration Tools (RATs), e.g. poisonivy
Botnets

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 3/29



Malware Functionality
Credential Stealers:

Hash dumping (e.g. pwdump)
keystroke logging:

kernel-based keylogging: Modify keyboard driver of OS

User-space keylogging: Use Windows API services

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 4/29



Malware Functionality

Common types of Malware Functionality (cont.)
Persistence Mechanisms:

Modify the Windows Registry (e.g. HKEY LOCAL MACHINE -
global settings section (key) of registry).

Modify Dynamic Link Libraries (DLLs): add malicious code to
empty part of DLL, jump back to original code.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 5/29



Malware Functionality

Common types of Malware Functionality (cont.)
Covert Techniques:

‘Rootkit’ techniques: Hiding existence and actions of attacker
code:

Process hiding
Process injection

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 6/29



Malware Functionality – Covert Techniques

Covert Code Execution: Process Hiding Windows OS
background:

Dynamic Link Libraries (DLLs) contain executable code (like .exe
files), but can be shared among processes

Typical memory map of a Windows process:

The Process Environment Block (PEB) stores information on the

location of items like DLLs, heaps, ...

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 7/29



Malware Functionality – Covert Techniques
Covert Code Execution: Process Hiding
Hiding DLLS via unlinking DLL list:

The PEB contains 3 linked lists of loaded DLLs
Standard Windows system calls/utilities (e.g. listdlls) use
those lists
Idea: Attacker unlinks the list to skip entry for attacker’s DLL

Countermeasure: Volatility tool can find trace of unlinked DLL
from kernel table. (harder to modify).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 8/29



Malware Functionality – Covert Techniques

Covert Code Execution: Process Injection
Often, security software (such as Firewalls) blocks access to
resources (e.g. Internet access) except from authorized processes.
Q: How can malicious process gain access to blocked
resource?
Possible A: Process injection – Malicious process injects code into
authorized process.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 9/29



Malware Functionality – Covert Techniques

Covert Code Execution: Process Injection (cont.)
Several known variants of Process Injection:

DLL injection: malware DLL exists on disk, get target process
to load it (e.g. using Windows LoadLibrary API call).

Direct Injection: Malware code written directly into target
process memory and executed within target.

Reflective DLL injection: Malware DLL written directly into
target process memory (no Windows loader API call).

Process Replacement/Hollowing: Malicious process starts new
instance of legit. target process and replaces target code with
malware code.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 10/29



Malware Functionality – Covert Techniques

DLL injection: Malware DLL exists on disk, malware process A
gets target process B to run it
Outline of example implementation of process A in Windows:

Enable debug privilege (SE DEBUG PRIVILEGE): Gives A right to
read and write Process B’s memory.
Opens a handle to process B (OpenProcess): Get handle for
subsequent process B read/write operations.
Allocate memory inside Process B for malicious DLL
(VirtualAllocEx).
Write path Malpath to malicious DLL on disk into Process B
(WriteProcessMemory).
Start a new thread in Process B that loads malicious DLL into
memory (CreateRemoteThread):

Pass to CreateRemoteThread ptr to LoadLibrary function
with argument ptr to Malpath.
After malicious DLL is loaded, Windows automatically runs its
DllMain function – malicious code!

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 11/29



Malware Functionality – Covert Techniques

DLL injection: Malware DLL exists on disk, malware process A
gets target process B to load it using Windows API call (e.g.
LoadLibrary).
Example Windows implementation code for process A:

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 12/29



Malware Functionality – Covert Techniques

Direct Injection: Malware code written directly into target
process memory and executed within target.

Similar implementation to DLL injection, except process A
copies malicious code into process B and runs it with
CretateRemoteThread.

Reflective DLL Injection: Hybrid of DLL and direct injection.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 13/29



Malware Functionality – Covert Techniques

DLL/Direct Injection is tricky to implement without crashing
target process.
Alternative - Process Replacement/Hollowing: Malicious
process A starts new instance of legit. target process B and
replaces target code with malware code.
Outline of example implementation of process A in Windows:

Create instance of process B in suspended execution mode.
(CreateProcess with CREATE SUSPENDED argument).
Release memory used by process B headers/code
(ZwUnmapViewofSection).
Allocate above memory in Process B for malicious headers/code
(VirtualAllocEx).
Write malicious headers/code into Process B
(WriteProcessMemory).
Set start address of suspended process B thread to start of
malicious code (SetThreadContext).

Resume suspended thread of process B - run malicious code!

(ResumeThread).
Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 14/29



Malware Functionality – Covert Techniques

Process Replacement/Hollowing: Malicious process A starts
new instance of legit. target process B and replaces target code
with malware code.
Example Windows implementation code for process A:

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 15/29



Malware Functionality – Covert Techniques

Covert Data Interception: Hook injection
Uses Windows hooks to intercept messages from Windows
triggered by certain events (e.g. keystrokes).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 16/29



Malware Functionality – Covert Techniques

Covert Data Interception: Hook injection Hooks usually
implemented in Windows with SetWindowsHookEx function Has 4
parameters:

idHook: type of hook procedure, e.g. WH CBT for
keyboard/mouse events.

lpfn: ptr to hook procedure.

hMod: handle for DLL containing hook procedure.

dwThreadId: identifier of thread associated with hook (if set
to 0, all threads running in same desktop!)

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 17/29



Malware Functionality – Covert Techniques

Covert Data Interception: Hook injection
Example SetWindowsHookEx call in Assembly:

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 18/29



Malware Analysis – Techniques and Tools

Behavioural (aka dynamic) analysis: What does the malware
do when it runs?

Input-output behaviour: system calls by malicious process, files
written/read, ...

Code-based (aka static) analysis: Understand the
disassembled/decompiled code

Combination of the two – reverse engineering.
Variety of tools to exist to help in those tasks (brief look).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 19/29



Malware Analysis – Techniques and Tools

‘Basic’ Static (code) analysis: Scan malware code for system
calls / imported DLLs

Header of executable file (Windows ‘PE’ Header) contains
useful information

Lists DLLs used by executable and functions imported for
each DLL

Often gives hints on usage: e.g. imported function
SetWindowsHookEx!

E.g. useful tool for extracting this info: Dependency Walker
(www.dependencywalker.com).

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 20/29



Malware Analysis – Techniques and Tools

‘Basic’ Static (code) analysis (cont.): Scan malware executable
file for other clues
Windows executable (PE) file contains several sections:

Tools such as PEview and Resource Hacker may extract more
useful clues

e.g. strings stored in PE ‘resource’ section.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 21/29



Malware Analysis – Techniques and Tools

‘Basic’ Dynamic (behaviour) analysis: Run malware in a Virtual
Machine (VM) and observe its behaviour
Some useful Windows tools:

rundll32.exe (comes with Windows): allows to easily run a
(suspected malicious) DLL to observe its behaviour

e.g. rundll32.exe mal.dll Install runs Install

function of mal.dll.
Can get a list of functions exported by DLL using PEview tool.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 22/29



Malware Analysis – Techniques and Tools
‘Basic’ Dynamic (behaviour) analysis: Run malware in a Virtual
Machine (VM) and observe its behaviour
Some useful Windows tools (cont.): procmon: Windows Process
Monitor – records process activity

Registry, File system activity

Network activity

Process, thread activity

Can filter to see only only relevant activity (e.g. interesting process).

Limitation: Doesn’t capture everything, e.g. misses

SetWindowsHookEx calls.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 23/29



Malware Analysis – Techniques and Tools

‘Basic’ Dynamic (behaviour) analysis: Run malware in a Virtual
Machine (VM) and observe its behaviour
Some useful Windows tools (cont.):

Process Explorer (Microsoft): Shows processes in a tree
structure, DLLs loaded in memory, ...
Regshot: Compare registry and file system state before and
after malware running

Shows changes to registry made between two snapshots

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 24/29



Malware Analysis – Techniques and Tools

‘Basic’ Dynamic (behaviour) analysis: Run malware in a Virtual
Machine (VM) and observe its behaviour
Some useful Windows tools (cont.):

ApateDNS (Mandiant): Simulates a DNS server and spoofs a
specified response IP address

Useful for seeing how malware tries to communicate with
external servers (e.g. command and control).
Captures malware’s DNS requests

netcat: Simulate a server/client to malware and capture
Inetsim: Simulate many services, e.g. http, https, ftp, dns,...

wireshark: capture network packets from malware to server.
Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 25/29



Malware Analysis – Techniques and Tools

‘Advanced’ Dynamic (behaviour) analysis: Run malware in a
debugger within a Virtual Machine (VM) and step through its
running code
Some common Windows debugger tools:

OllyDbg (aka ImmDbg): Useful debugger for malware analysis

Usual debugger facilities: breakpoints, step, etc.
Can search for all referenced strings in code (e.g. file name).
Can search process memory for a given string
Can set memory access breakpoints

Windbg: Can also debug kernel code – device drivers.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 26/29



Malware Analysis – Techniques and Tools
Anti-Analysis Techniques: Anti-Disassembly
Malware goal: Fool disassembler to output incorrect disassembly
Common anti-disassembly techniques:

Jump instructions with same target address:
Two sequential conditional jumps equivalent to an unconditional jump: jz addr x followed by jnz

addr x.
Address after jnz will never be executed, but disassembler does not realize this

Causes incorrect byte alignment for disassembly of following code, e.g:

Fix with IDA Pro disassembler: tell disassembler that byte
following jnz is data byte:

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 27/29



Malware Analysis – Techniques and Tools

Anti-Analysis Techniques: Anti-Disassembly
Malware goal: Confuse the disassembler – incorrect disassembly
Common anti-disassembly techniques (cont.):

Inward-pointing jump instruction:
A 2-byte jmp instruction that jumps into its own second byte
Second byte of jmp is first byte of an INC instruction
Causes incorrect byte alignment for disassembly of following
code, e.g:

Fix with IDA Pro disassembler: replace 4 bytes with 4 NOP (1
byte) instructions.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 28/29



Malware Analysis – Techniques and Tools

Anti-Analysis Techniques: Anti-Debugging
Malware goal: Detect a debugger and alter behaviour
Common anti-debugger techniques:

Using Windows API functions, e.g.:
IsDebuggerPresent: direct flag (stored in Process Environment Block – PEB).

OutputDebugString: indirect – output a string to debugger for display (returns error if no

debugger present).

Manually checking for a debugger, e.g.:
BeingDebugged flag in PEB: flag stored in Process Environment Block.
ProcessHeap flag: an undocumented flag within PEB ‘reserved’ area (tells kernel if heap created
by debugger).
Searching registry/filesystem for debugger id string (e.g. ‘OLLYDBG’).
Searching own code for software interrupt (debugger breakpoint mechanism) instruction opcode
(0xCC).

Timing check of computation to detect slowdown due to debugging.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware – Functionality and Analysis TechniquesMar 2014 29/29


