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Malware — Functionality and Analysis Techniques

Malware:

Today: A look at malware functionality and techniques for
analysing malware.

Plan for this lecture:

@ Malware Functionality:
e Common Malware Function Overview: Backdoors, Credential
Stealers, Persistence mechanisms, Covert methods
e Look at common Covert techniques:
o Covert Code Execution (Launchers): Process injection,
Process hiding
o Covert Data Interception: Hook injection
o Malware Analysis Techniques and Tools:
o Malware Behaviour Analysis
e Malware Code Analysis
o Anti-analysis techniques
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Malware Functionality

Malware comes in various flavours, depending on attacker’s goal.
We mention a few common types.
Backdoor: Allows attacker to remotely access target machine

@ Usually communicate to attacker over HTTP (port 80).

e Often support many OS functions (e.g. enumerate displayed
windows, create/open files, ...).
@ Other variants:

o Reverse shell connections: Provide attacker with full shell
access to target machine. (e.g. use netcat to remotely run
cmd.exe)

o Remote Administration Tools (RATS), e.g. poisonivy

e Botnets
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Malware Functionality

Credential Stealers:
@ Hash dumping (e.g. pwdump)
@ keystroke logging:

@ kernel-based keylogging: Modify keyboard driver of OS

@ User-space keylogging: Use Windows API services
i How the Fraud Works
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Malware Functionality

Common types of Malware Functionality (cont.)
Persistence Mechanisms:
e Modify the Windows Registry (e.g. HKEY_LOCAL_MACHINE -
global settings section (key) of registry).
@ Modify Dynamic Link Libraries (DLLs): add malicious code to
empty part of DLL, jump back to original code.
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Malware Functionality

Common types of Malware Functionality (cont.)
Covert Techniques:
@ 'Rootkit’ techniques: Hiding existence and actions of attacker
code:

e Process hiding
e Process injection
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Malware Functionality — Covert Techniques

Covert Code Execution: Process Hiding Windows OS
background:
@ Dynamic Link Libraries (DLLs) contain executable code (like .exe
files), but can be shared among processes
@ Typical memory map of a Windows process:

MmHighestUserAddress

Dynamic DLLs

Environment variables.

PEB

Process heap

Thread 1 stack
Thread 2 stack

Mapped file(s)
Application data.

Executable

0

Figure 7-1: A high-level diagram of the typical
contents of process memory

@ The Process Environment Block (PEB) stores information on the
location of items like DLLs, heaps, ...
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Malware Functionality — Covert Techniques
Covert Code Execution: Process Hiding
Hiding DLLS via unlinking DLL list:

@ The PEB contains 3 linked lists of loaded DLLs

e Standard Windows system calls/utilities (e.g. listdlls) use

those lists
o Idea: Attacker unlinks the list to skip entry for attacker's DLL
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Figure 8:3: A diagram showing how the PEB points to three doubly linked lists of DLLs

Countermeasure: Volatility tool can find trace of unlinked DLL
from kernel table. (harder to modify).
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Malware Functionality — Covert Techniques

Covert Code Execution: Process Injection
Often, security software (such as Firewalls) blocks access to

resources (e.g. Internet access) except from authorized processes.
Q: How can malicious process gain access to blocked
resource?

Possible A: Process injection — Malicious process injects code into

authorized process.
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Malware Functionality — Covert Techniques

Covert Code Execution: Process Injection (cont.)
Several known variants of Process Injection:

@ DLL injection: malware DLL exists on disk, get target process
to load it (e.g. using Windows LoadLibrary API call).

@ Direct Injection: Malware code written directly into target
process memory and executed within target.

@ Reflective DLL injection: Malware DLL written directly into
target process memory (no Windows loader API call).

@ Process Replacement/Hollowing: Malicious process starts new
instance of legit. target process and replaces target code with
malware code.
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Malware Functionality — Covert Techniques

DLL injection: Malware DLL exists on disk, malware process A
gets target process B to run it
Outline of example implementation of process A in Windows:
@ Enable debug privilege (SE_.DEBUG_PRIVILEGE): Gives A right to
read and write Process B's memory.
@ Opens a handle to process B (OpenProcess): Get handle for
subsequent process B read/write operations.
@ Allocate memory inside Process B for malicious DLL
(VirtualAllocEx).
@ Write path Malpath to malicious DLL on disk into Process B
(WriteProcessMemory).
@ Start a new thread in Process B that loads malicious DLL into
memory (CreateRemoteThread):
o Pass to CreateRemoteThread ptr to LoadLibrary function
with argument ptr to Malpath.
o After malicious DLL is loaded, Windows automatically runs its
D11Main function — malicious code!
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Malware Functionality — Covert Techniques

DLL injection: Malware DLL exists on disk, malware process A
gets target process B to load it using Windows API call (e.g.
LoadLibrary).

Example Windows implementation code for process A:

hVictimProcess = OpenProcess(PROCESS ALL_ACCESS, 0, victimProcessID @);

pNameInVictimProcess = VirtualAllocEx(hVictimProcess,...,sizeof (maliciousLibraryName),...,...);
WriteProcessMemory (hVictimProcess, .. .,maliciousLibraryName, sizeof(maliciousLibraryName),...);
GetModuleHandle("Kernel32.d11");
GetProcAddress(.. ., "LoadLibraryA");

) CreateRemoteThread(hVictimProcess,...,...,LoadLibraryAddress,pNameInVictimProcess, ... ...);

Listing 12-1: C Pseudocode for DLL injection
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Malware Functionality — Covert Techniques

Direct Injection: Malware code written directly into target
process memory and executed within target.

@ Similar implementation to DLL injection, except process A
copies malicious code into process B and runs it with
CretateRemoteThread.

Reflective DLL Injection: Hybrid of DLL and direct injection.
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Malware Functionality — Covert Techniques

DLL/Direct Injection is tricky to implement without crashing
target process.
Alternative - Process Replacement/Hollowing: Malicious
process A starts new instance of legit. target process B and
replaces target code with malware code.
Outline of example implementation of process A in Windows:
@ Create instance of process B in suspended execution mode.
(CreateProcess with CREATE_SUSPENDED argument).
@ Release memory used by process B headers/code
(ZwUnmapViewofSection).
@ Allocate above memory in Process B for malicious headers/code
(VirtualAllocEx).
@ Write malicious headers/code into Process B
(WriteProcessMemory).
@ Set start address of suspended process B thread to start of
malicious code (SetThreadContext).
@ Resume suspended thread of process B - run malicious code!
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Malware Functionality — Covert Techniques

Process Replacement/Hollowing: Malicious process A starts
new instance of legit. target process B and replaces target code
with malware code.

Example Windows implementation code for process A:

CreateProcess(...,"svchost.exe",...,CREATE_SUSPEND,...);
ZwUnmapViewOfSection(...);
VirtualAllocEx(...,ImageBase, SizeOfImage,...);
WriteProcessMemory(...,headers,...);
for (i=0; i < NumberofSections; i++) {

© WriteProcessMemory(...,section,...);

}
SetThreadContext();

ResumeThread();

Listing 12-3: C pseudocode for process replacement
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Malware Functionality — Covert Techniques

Covert Data Interception: Hook injection
Uses Windows hooks to intercept messages from Windows
triggered by certain events (e.g. keystrokes).
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i
aiqe

Windows OS Windows OS
Messages Messages
Threads Malicious DLL
Proces/
Application

Process/
Application
Figure 12-3: Event and message flow in Windows
with and without hook injection
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Malware Functionality — Covert Techniques

Covert Data Interception: Hook injection Hooks usually
implemented in Windows with SetWindowsHookEx function Has 4

parameters:
@ idHook: type of hook procedure, e.g. WH_CBT for
keyboard/mouse events.

@ lpfn: ptr to hook procedure.
@ hMod: handle for DLL containing hook procedure.

e dwThreadId: identifier of thread associated with hook (if set
to 0, all threads running in same desktop!)
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Malware Functionality — Covert Techniques

Covert Data Interception: Hook injection
Example SetWindowsHookEx call in Assembly:

00401100 push esi

00401101 push edi

00401102 push offset LibFileName ; "hook.d1l"
00401107 call LoadLibraryA

0040110D mov esi, eax

0040110F push offset ProcName ; "MalwareProc”
00401114 push esi ; hModule
00401115 call GetProcAddress

0040111B mov edi, eax

0040111D call GetNotepadThreadId

00401122 push eax ; dwThreadId
00401123 push esi ; hmod
00401124 push edi ; 1pfn

00401125 push WH_CBT  ; idHook

00401127 call SetWindowsHookExA

Listing 12-4: Hook injection, assembly code
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Malware Analysis — Techniques and Tools

@ Behavioural (aka dynamic) analysis: What does the malware
do when it runs?

e Input-output behaviour: system calls by malicious process, files
written/read, ...
@ Code-based (aka static) analysis: Understand the
disassembled /decompiled code

Combination of the two — reverse engineering.
Variety of tools to exist to help in those tasks (brief look).
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Malware Analysis — Techniques and Tools

‘Basic’ Static (code) analysis: Scan malware code for system
calls / imported DLLs

@ Header of executable file (Windows ‘PE’ Header) contains
useful information

@ Lists DLLs used by executable and functions imported for
each DLL

o Often gives hints on usage: e.g. imported function
SetWindowsHookEx!

@ E.g. useful tool for extracting this info: Dependency Walker
(www.dependencywalker.com).
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Malware Analysis — Techniques and Tools

‘Basic’ Static (code) analysis (cont.): Scan malware executable
file for other clues
Windows executable (PE) file contains several sections:

Table 1-4: Sections of a PE File for a Windows Executable

Executable Description

.text Contains the executable code

.rdata Holds read-only data that is globally accessible within the program

.data Stores global data accessed throughout the program

.idata Sometimes present and stores the import function information; if this section is
not present, the import function information is stored in the .rdata section

.edata Sometimes present and stores the export function information; if this section is not
present, the export function information is stored in the .rdata section

.pdata Present only in 64-bit executables and stores exception-handling information

.ISTC Stores resources needed by the executable

.reloc Contains information for relocation of library files

Tools such as PEview and Resource Hacker may extract more
useful clues

@ e.g. strings stored in PE ‘resource’ section.
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Malware Analysis — Techniques and Tools

‘Basic’ Dynamic (behaviour) analysis: Run malware in a Virtual
Machine (VM) and observe its behaviour
Some useful Windows tools:
e rundl132.exe (comes with Windows): allows to easily run a
(suspected malicious) DLL to observe its behaviour

e e.g. rundl1l32.exe mal.dll Install runs Install
function of mal.d1l.
o Can get a list of functions exported by DLL using PEview tool.
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Malware Analysis — Techniques and Tools
‘Basic’ Dynamic (behaviour) analysis: Run malware in a Virtual

Machine (VM) and observe its behaviour

Some useful Windows tools (cont.): procmon: Windows Process

Monitor — records process activity

@ Registry, File system activity

@ Network activity

@ Process, thread activity

@ Can filter to see only only relevant activity (e.g. interesting process).
@ Limitation: Doesn’t capture everything, e.g. misses

SetWindowsHookEx calls.

Seq Time _ Process Name  Operaion
exe

oftiWindows NT\CurrentVersioniimaae File Exe

Figure 3-2: Procmon mm32.exe example
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Malware Analysis — Techniques and Tools

‘Basic’ Dynamic (behaviour) analysis: Run malware in a Virtual
Machine (VM) and observe its behaviour
Some useful Windows tools (cont.):
@ Process Explorer (Microsoft): Shows processes in a tree
structure, DLLs loaded in memory, ...
@ Regshot: Compare registry and file system state before and
after malware running
e Shows changes to registry made between two snapshots

JISIES

Compare logs save as:
’76‘ Plain TXT  (~ HTML document

™ Scan dir 1[;dir 2;dir 3;...;dir nn]:

|
|

[c:wmoows 2| e
Output path: Quit |
’V| CrpOCUME~1hserLOCAl [ | —

’rAdd comment into the log:

E——
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Malware Analysis — Techniques and Tools

‘Basic’ Dynamic (behaviour) analysis: Run malware in a Virtual
Machine (VM) and observe its behaviour
Some useful Windows tools (cont.):
@ ApateDNS (Mandiant): Simulates a DNS server and spoofs a
specified response IP address
o Useful for seeing how malware tries to communicate with
external servers (e.g. command and control).
o Captures malware's DNS requests

Figure 3-9: ApateDNS responding to a request for evil.malwar3.com

@ netcat: Simulate a server/client to malware and capture
@ Inetsim: Simulate many services, e.g. http, https, ftp, dns,...

@ wireshark: capture network packets from malware to server.
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Malware Analysis — Techniques and Tools

‘Advanced’ Dynamic (behaviour) analysis: Run malware in a
debugger within a Virtual Machine (VM) and step through its
running code
Some common Windows debugger tools:

@ 011yDbg (aka ImmDbg): Useful debugger for malware analysis
Usual debugger facilities: breakpoints, step, etc.
Can search for all referenced strings in code (e.g. file name).

Can search process memory for a given string
Can set memory access breakpoints

@ Windbg: Can also debug kernel code — device drivers.

Ron Steinfeld FIT5124 Advanced Topics in SecurityLecture 9: Malware — Functionality and Mar 2014



Malware Analysis — Techniques and Tools
Anti-Analysis Techniques: Anti-Disassembly
Malware goal: Fool disassembler to output incorrect disassembly
Common anti-disassembly techniques:

° Jump instructions with same target address:

Two sequential conditional jumps equivalent to an unconditional jump: jz addr_x followed by jnz
addr_x.

@ Address after jnz will never be executed, but disassembler does not realize this
@ Causes incorrect byte alignment for disassembly of following code, e.g:
74 03 jz short near ptr loc_4011C4+1
75 01 jnz short near ptr loc_4011(4+1
loc_4011C4: ; CODE XREF: sub_4011C0
;5 @sub_4011C0+2j
E8 58 C3 90 90 Ocall near ptr 90DoD521h

Fix with IDA Pro disassembler: tell disassembler that byte
following jnz is data byte:

74 03 jz short near ptr loc_4011C5

75 01 jnz short near ptr loc_4011C5
5

E8

; sub 4011C0+2:|
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Malware Analysis — Techniques and Tools

Anti-Analysis Techniques: Anti-Disassembly

Malware goal: Confuse the disassembler — incorrect disassembly

Common anti-disassembly techniques (cont.):

@ Inward-pointing jump instruction:
e A 2-byte jmp instruction that jumps into its own second byte
e Second byte of jmp is first byte of an INC instruction
o Causes incorrect byte alignment for disassembly of following
code, e.g:

F o

IMP -1 ¢

B

{INC EAX | DEC EAX

Figure 15-4: Inward-pointing jmp instruction

Fix with IDA Pro disassembler: replace 4 bytes with 4 NOP (1
byte) instructions.
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Malware Analysis — Techniques and Tools

Anti-Analysis Techniques: Anti-Debugging
Malware goal: Detect a debugger and alter behaviour
Common anti-debugger techniques:

@ Using Windows API functions, e.g.:

IsDebuggerPresent: direct flag (stored in Process Environment Block — PEB).
OutputDebugString: indirect — output a string to debugger for display (returns error if no

debugger present).

° I\/Ianually checking for a debugger, e.g.:

Ron Steinfeld

BeingDebugged flag in PEB: flag stored in Process Environment Block.

ProcessHeap flag: an undocumented flag within PEB ‘reserved’ area (tells kernel if heap created
by debugger).

Searching registry/filesystem for debugger id string (e.g. ‘OLLYDBG').

Searching own code for software interrupt (debugger breakpoint mechanism) instruction opcode
(0xCC).

Timing check of computation to detect slowdown due to debugging.
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