
A Distributed Public Key Infrastructure for the Web Backed by a
Blockchain

Bastian Fredriksson
PrimeKey Solutions AB

Lundagatan 16
171 63 Solna, Stockholm
bastian@primekey.com

July 10, 2017

Abstract

The binding between a physical identity and a public key is an important building
block in computer security. This is typically done through digital documents
following the X.509 standard, named X.509 certificates. These certificates are
signed with the private key of a trusted intermediary called a certificate authority,
who is responsible for checking the identity of the customer before issuing the
certificate. Unfortunately, certificate authorities sometimes fail in their duty and
issue fraudulent certificates. This violates the centralised trust model and makes
it hard to trust any certificates issued by such certificate authority. One way of
solving this problem is to adapt a decentralised model, where each user cross-
signs their certificate with their private key. In such a system, a problem of
consensus arises: How can we know which key is associated with a certain user?
The emergence of the blockchain, originally used to store transactions for the
Bitcoin cryptocurrency, offers a possibility to solve this problem without relying
solely on a certificate authority. The aim of the thesis is to investigate how a
blockchain can be used to build a decentralised public key infrastructure for the
web, by proposing a custom federation blockchain which stores digital identities
in an authenticated tree structure. Our main contribution is the design of a Proof
of Stake protocol based on a stake tree which builds upon an idea called follow-
the-satoshi used in previous papers. Our back-of-the-envelope calculations based
on the size of the domain name system suggest a block size of at least 5.2 MB,
while each blockchain node with a one-month transaction history need to store
about 243 GB. Thin clients would have to synchronise about 13.6 MB of block
headers per year, and download an additional 3.7 KB of proof data for every leaf
certificate which is to be checked.

1

Contents

1 Introduction 3
1.1 Problem Statement 4
1.2 Motivation and Aim 4
1.3 Delimitation . 4
1.4 Thesis Content and Contribution 4
1.5 Choice of Methodology 4
1.6 Related Work 5

1.6.1 Namecoin 5
1.6.2 Blockstack 5
1.6.3 Instant Karma PKI 5
1.6.4 Coloured Coins 5
1.6.5 Limitations of Existing Solutions 6

2 Background 7
2.1 Merkle Trees 7

2.1.1 Dynamic Merkle Trees 7
2.2 Public Key Infrastructure 7

2.2.1 Certificate Authorities 8
2.2.2 Certificate Issuance 8
2.2.3 Revoking Certificates 9
2.2.4 Certificate Chains 9
2.2.5 X.509 Certificates 9

2.3 Pinning and Certificate Transparency 10
2.3.1 Public Key Pinning 10
2.3.2 Certificate Transparency 12

2.4 Blockchains . 12
2.4.1 Financial Transactions on a Blockchain 13
2.4.2 Simple Payment Verification 13
2.4.3 Proof of Work 13
2.4.4 Proof of Stake 15
2.4.5 Blockchain Security 16
2.4.6 Scalability Concerns 16

3 Methodology 19
3.1 Design Goals 19
3.2 Our Approach 19
3.3 System Model 19
3.4 Choice of signature scheme 20

4 Blockchain Design 21
4.1 Overview . 21
4.2 Naming System 21
4.3 Stakeholders . 21
4.4 Accounts . 22
4.5 The Stake Tree 22

4.5.1 Follow-the-satoshi in the Stake Tree . . 22
4.5.2 Operations on the Stake Tree 24

4.6 The Account Tree 24

4.6.1 Operations on the Account Tree 24
4.7 The Blockchain Truststore 24
4.8 Keyblocks and Microblocks 26

4.8.1 Dynamic Block Size 26
4.9 Epochs, Timeslots and Block Leaders 26
4.10 Co-signing Keyblocks 26

5 Identity Management 28
5.1 Manage Accounts in the Account Tree 28
5.2 Issuing and Revoking Certificates 28
5.3 Certificate Verification 28

6 Evaluation 30
6.1 Security Analysis 30

6.1.1 Threat Model 30
6.1.2 51%-attack 30
6.1.3 Censor Transactions 30
6.1.4 Signing a Counterfeit Keyblock 30
6.1.5 Stake Grinding 31
6.1.6 Compromised Stakeholder 31
6.1.7 Compromised Domain Owner 31

6.2 Performance Analysis 31
6.2.1 Block Size 31
6.2.2 Storage Requirements for Validators

and Stakeholders 32
6.2.3 Bandwidth Requirements for Thin Clients 32
6.2.4 Bootstrap Time for New Nodes 33

7 Discussion 34
7.1 Conclusion . 34

Appendices 38

A Follow-the-satoshi 39

B Operations on the Stake Tree 40

C Operations on the Account Tree 42

D Operations on the Blockchain Truststore 43

E Microblocks and Keyblocks 44

F Operation of a Blockchain Node 45
F.1 Blockchain Maintenance 45

G Verify a Certificate 48

2

Chapter 1

Introduction

There are countless of electronic devices around us, ranging
from desktop computers and servers to smartphones and e-
Passports. Many of these devices need a digital identity
which can be verified as legitimate. Without a trusted
digital identity, there is no way of authenticating the
remote party, and it becomes impossible to establish a
secure communication channel. Digital identity is most
commonly managed using something called certificates, a
digital document containing an identifier, a public key and
a digital signature created by a trusted Certificate Authority
(CA). If the communication is facilitated over the Internet,
the identifier is usually an IP-address or a domain name which
can be resolved through DNS. The validity of the information
in the certificate can be checked by inspecting the signature
of the CA using the CA’s public key. The CA’s public key is
stored in a file (which is typically bundled with the operating
system or the web browser) containing a list of trusted CAs
and their corresponding public keys.

There are some problems with this centralised trust model.
The use of a CA introduces a single point of failure, and
history has shown us that we put too much trust in the
CAs. A CA might issue the wrong type of certificate by
mistake, as shown by the TürkTrust incident in mid 2011,
where the Turkish certificate authority TürkTrust issued two
intermediary CA certificates instead of regular certificates.
One of these certificates was revoked immediately after a
request from the customer, but the other certificate issued
to EGO, a public transport company in Ankara, was not
revoked. EGO now had the power to act as a CA by signing
certificates on behalf of TürkTrust. At the end of 2012, EGO
implemented an HTTP proxy for outgoing HTTPS traffic,
where they used their intermediary certificate for key bridging.
The fraudulent intermediary certificate was detected after
users started to get warnings when visiting google.com, a
domain which used public key pinning, a technique which
allows a web browser to detect if the public key used by a
domain has changed [49].

A CA might also be compromised by an adversary, which
happened in March 2011 when a self-proclaimed Iranian
hacker compromised two resellers of Comodo certificates. The
hacker successfully signed nine different certificates for seven
different domains, including Skype, Yahoo, Mozilla’s web
store and Google’s Gmail [28]. In September the same year,
the Dutch CA DigiNotar was declared bankrupt after at least

531 fraudulent certificates had been issued. The fraudulent
certificates were used to perform man-in-the-middle attacks
on Google’s services [21].

A server can be linked to several digital identities, which
makes it more difficult to differentiate between a legitimate
identity and a counterfeit one. Several attempts to fix this
problem has been made. One such attempt is public key
pinning where a server sends a fingerprint of its public key,
or the public key of the CA certificate to the client. The
fingerprint is stored by the client, which makes it possible
to detect if the key changes in the future. Pinning has
unfortunately not been widely adopted, possibly because it
requires configuration of the web server, and because pinning
poses a risk to domain holder. Customers who are not visiting
the domain for the first time expects the certificate to contain
a previously pinned key. If the domain holder loses access to
these keys, or if the keys become compromised, the browser
rejects the connection, and the customer is unable to visit
the site. Similarly, pinning the public key of the CA acts as
a lock-in mechanism since it makes it more difficult for the
domain holder to switch CA.

Another approach is Certificate Transparency (CT), which
aims to detect fraudulently issued certificates by forcing
CAs to append certificates being issued to a certificate
transparency log. These logs can then be monitored
by a third party such as the domain holder. While
certificate transparency has indeed helped to detect malicious
certificates in some cases, the lack of incentive for third parties
to audit the logs raises concerns for how efficient certificate
logs are for average users. But more importantly, Certificate
Transparency does not prevent a fraudulent certificate from
being issued in the first place.

An alternative to a Public Key Infrastructure (PKI) based
on CAs is Web of Trust. In Web of Trust, there is no central
authority which is vouching for an identity, and thus there is
no central point of failure. Instead, users are responsible for
verifying the identity of the people they want to communicate
with or trust other people to do so. After asserting the validity
of a certain public key, it is imported to the user’s keyring.
Keys might be posted on the web or exchanged in person.
Web of Trust is standardised in the OpenPGP standard [12]
and is integrated into Linux package managers and some
email programs. Unfortunately, Web Of Trust might be
somewhat cumbersome to use. Each key must be verified

3

before being inserted into the keyring, and a compromised
key must be manually removed. Similar to public key pinning,
Web of Trust also fails to offer any built-in mechanism for key
recovery and lacks some restriction metadata that certificates
can provide like extended key usages and name constraints.

A blockchain, an append-only, public ledger, originally
designed to store transactions for the Bitcoin cryptocurrency
[46], has been used to implement a wide variety of
decentralised applications, such as smart contracts [59],
decentralised cloud storage [58], asset tracking [50], and
distributed databases [40]. Another potential use case for
blockchains could be as a distributed PKI, and this is what
is investigated in this thesis. A blockchain could offer built-
in certificate transparency, and allow pinning of both public
keys and certificates. Each computer in a large P2P-network
has its own copy of the blockchain, which allows each client
to independently verify each transaction, removing the single
point of failure.

1.1 Problem Statement

Are blockchains suitable as a building block for a
distributed public key infrastructure and what could such
a public key infrastructure look like?

1.2 Motivation and Aim

The motivation behind this thesis is to secure digital
communications by improving identity retention in the
current PKI. This is an important problem, since the
current PKI based on CAs is the technology underpinning
many security critical applications on the Internet, such as
electronic commerce, online banking and software updates.
Improvement in this area is of great interest for anyone
relying on, or otherwise dealing with certificates, perhaps
most notably CAs and domain owners. We believe that the
problem of fraudulent certificates, which has been plaguing
users for years, stems from the inherent centralisation of the
current system based on trusted certificate authorities, which
have the power to issue certificates on behalf of users without
their consent. Although the need for trusted entities which
bind a physical identity to a digital one is recognised, we
believe CAs have been given an unfavourable role with too
much responsibility. With this in mind, a complementary
solution is proposed where identities are stored in a public
ledger, which is maintained by an honest majority instead of
a central authority, with the aim of creating a versatile and
more robust PKI.

We believe a blockchain in a P2P-setting, similar to Bitcoin,
to be a suitable building block for a public ledger, for multiple
reasons:

X Tamper-proof Transactions performed on the
blockchain are hard to reverse, making it difficult
to impersonate someone.

X Offers consensus It provides a robust mechanism for
consensus, even in the presence of malicious adversaries.

X Incentive based There is a possibility for incentivising
participation in the network.

X Transparent All transactions are public and can be
verified independently by all nodes in the network.

X Programmable Built-in support for scripts, which
allows for advanced key recovery mechanisms.

X Censorship resistant Direct node communication
makes the network resilient against denial of service.

1.3 Delimitation

This thesis is supposed to act as a blueprint, similar to that
of an Internet draft, for the design of a distributed PKI aimed
for the web. As such, our work is mostly theoretical. Focus
is on the design of the blockchain, the consensus process
and the format of transactions. Procedures for issuance and
revocation of digital identities, and how clients can verify
certificates in our system, are only covered very briefly. The
blockchain network protocol is not be discussed. The choice
of stakeholders (the entities responsible for maintaining the
blockchain), or under what circumstances stakeholders should
be excluded from the consensus process is considered beyond
the scope of this thesis.

1.4 Thesis Content and Contribution

Chapter 2 contains a background study about PKIs and
blockchains. Chapters 3 and 4 describes the design of the
blockchain, including a two-phase Proof of Stake protocol
which selects block leaders from a stake tree, and the use
of an account tree which stores the public keys of domain
owners. Chapter 5 focuses on approval and issuance of new
identities. To achieve our goal, two new certificate extensions
are proposed. The first certificate extension, the CA proof,
contains the information needed by blockchain nodes to verify
new accounts which should be added to the account tree.
The second certificate extension contains a server signature
produced by the domain owner’s public key, and is used by
compatible clients to verify certificates presented to them.
Chapter 6 contains a security and performance analysis of
this blockchain scheme, where we look at different security
threats and how our scheme would scale if deployed on the
same scale as DNS. Finally, we conclude and identify future
work in Chapter 7.

1.5 Choice of Methodology

Our methodology is roughly based on the following four
activities:

4

• Problem identification Define the problem to be solved
and explain why this problem is important. This step is
conducted by a background study.

• Define objectives for a solution This is done by
identifying limitations of existing solutions based on the
background study.

• Design a solution Propose a distributed PKI which aims
to satisfy the previously defined objectives.

• Evaluate the solution Discuss and analyse the solution
and identify weaknesses and areas of future work.

1.6 Related Work

Previous work on the use of blockchains in distributed PKIs
is sparse, although there are several approaches to log-based
certificate management without an underlying blockchain
[6, 32, 61, 37]. The works discussed in this section are
Namecoin - a distributed DNS based on Bitcoin, Blockstack -
a blockchain-agnostic PKI and DNS currently running on top
of the Bitcoin blockchain, Instant Karma PKI - a certificate
transparency log powered by smart contracts, and coloured
coins - a way of tracking digital assets on a blockchain.

1.6.1 Namecoin

The use of a blockchain as a storage medium for digital
identities was introduced together with Namecoin [29], which
became the first fork of the Bitcoin software. It was the first
secure, distributed naming system to offer human-memorable
names, which was conjectured to be impossible1. Namecoin
runs its own blockchain using Proof of Work as consensus
mechanism, but lends some of its hashing power from other
Bitcoin miners via a mechanism called merged mining.

Namecoin administers its own .bit top domain indepen-
dently from The Internet Corporation for Assigned Names
and Numbers (ICANN). New names are registered in this
namespace by posting a message to the Namecoin blockchain.
Names expire after 36000 blocks (about 250 days) but once
a name is registered, it can only be transferred or renewed
by the person or organisation who currently owns it. Thus,
Namecoin is completely censor-resistant and no central au-
thority has the power to remove existing names. Blockchain
nodes enforce fees associated with name registration and re-
newals, and any name can be registered as long as it is vacant.

1.6.2 Blockstack

Blockstack [1] works as both a PKI and a DNS, and allows
users to register zonefiles which contains a public key and
a pointer to the user’s profile. The profile is a signed
JSON document which can contain any type of information
associated with the specific user. The profile can be stored at

1See Zooko’s triangle: https://en.wikipedia.org/wiki/Zooko%27s_
triangle.

a cloud service provider, or on a server administered by the
user. The hash of the zonefile is written in an OP_RETURN
transaction on the Bitcoin blockchain, while the zonefiles
themselves are stored in a distributed filesystem maintained
by Blockstack nodes. Blockstack is blockchain-agnostic which
means that it is possible to migrate to another blockchain if
required. Blockstack achieves this by the use of a virtualchain,
created by Blockstack nodes by filtering and parsing the
underlying blockchain.

1.6.3 Instant Karma PKI

Instant-Karma PKI (IKP) [39] is an attempt to improve
Certificate Transparency by incentivising participants to look
for and report fraudulent certificates. The goal of IKP
is to incentivise, decentralise and automate processes for
handling CA misbehaviour. This is done by leveraging the
Ethereum’s support for smart contracts2. An IKP contract
takes a certificate as input, provided by a monitor, and
checks this certificate against a Domain Certificate Policy
which specifies a list of CAs allowed to issue certificates for
this particular domain. If the certificate is issued by a CA
not present in this list, a Reaction Policy is executed which
performs the escrow operation transferring Ether (Ethereum’s
cryptocurrency) from the misbehaving CA to the affected user
and the monitor who reported the violation.

1.6.4 Coloured Coins

Coloured coins is a family of protocols used for tracking
ownership of digital or physical assets on a blockchain.
Coloured coins can be used to build tamper-proof land
registers [22], reduce counterfeits in for example the sneaker,
wine and medical industries, track ownership of diamonds,
and secure the integrity of trade documents [8]. There are
several implementations of the coloured coins concept, for
example Open Assets, ChromaWallet, CoinSpark and Colu.

The idea behind coloured coins is as follows: An asset
is represented by a set of coins on the blockchain which
are equipped with some metadata, or more specifically by
a transaction output as described in Section 2.4.1. By
traversing the blockchain, one can follow the chain of
ownership for these coins, and establish consensus for the
current owner of an asset.

The asset can then be transferred between owners by
spending the coins. This transaction of ownership can be done
without involving any central authority, since the blockchain
is completely decentralised. If the transfer of ownership is
made between two people who do not trust each other, one
typically employs a trusted intermediary, such as a broker
which carries out an escrow. However, blockchains do not
require an intermediary to facilitate a trusted escrow, even
if the participants are malicious. Bitcoin’s script support,
or the use of more sophisticated smart contracts allows the

2Ethereum is a blockchain-based platform for building decentralised
applications. More information is available at: https://www.ethereum.
org/

5

https://en.wikipedia.org/wiki/Zooko%27s_triangle
https://en.wikipedia.org/wiki/Zooko%27s_triangle
https://www.ethereum.org/
https://www.ethereum.org/

transfer of ownership to be executed in a single atomic
transaction, which makes it impossible to cheat [50]. If a
physical asset is to be associated with a digital identity,
one typically needs a trusted authority, for example a CA,
responsible for maintaining a mapping between an asset and
the corresponding output on the blockchain. This mapping
can be stored in a file, signed with a notary’s private key, and
the integrity of the file can be ensured by storing a hash of
the file on the blockchain [43].

1.6.5 Limitations of Existing Solutions
Existing blockchain-based PKIs such as Namecoin and
Blockstack have their shortcomings: they lack integration
with the existing PKI and are not ownership consistent with
DNS which makes them difficult to adapt. It is also doubtful
whether a system such as Namecoin or IKP could be deployed
on a global scale due to scalability issues. The team behind
Blockstack has considered the use of autonomous subdomains
maintained off-chain to improve scalability, but this is may
not be a viable solution for many domain holders. Existing
blockchains based on Proof of Work are also facing issues with
poor distribution of hashing power in the network. Blockstack
was originally deployed on top of the Namecoin blockchain,
but they switched to the Bitcoin blockchain after a security
problem was detected where a single miner controlled more
than half the hashing power in the network for an extended
period of time [1]. Although coloured coins can be used to
track certificates or domain name ownership, they require a
client to verify the transaction history of the coin which can
be impractical for low-powered devices.

6

Chapter 2

Background

This chapter establishes a firm theoretical foundation for
the rest of the thesis. Topics covered include Merkle trees,
the basics of X.509 certificates, as well as the role of CAs
in the PKI ecosystem and some attempts to improve the
transparency and security of the current PKI.

Finally we move on to the main topic of this thesis,
namely blockchains, where Bitcoin’s transaction model, some
consensus algorithms, and proposals for improving the
scalability and efficiency of the blockchain are explained. Our
starting point is the Bitcoin blockchain, which is the most
influential blockchain today.

2.1 Merkle Trees
Merkle trees, also known as Merkle hash trees or binary hash
trees, were first described in [42] in the context of digital
signatures. A Merkle tree is a useful cryptographic primitive
when one wants to prove the existence of a record within a
set. One can construct a (static) Merkle tree from a set of
records by hashing each record in the set and let these hashes
be the leafs in a binary tree. Each parent node is constructed
by combining the hashes of its two child nodes, usually by
hashing the concatenation of the two.

Thus, the hash of each parent node comprises a compact
representation of its two child nodes. Given a (trusted) hash
for the root of the Merkle tree, known as a Merkle root hash,
one can prove that a certain leaf node is present in the tree
by providing the O(log n) hashes needed to reconstruct the
Merkle root hash. To give a proof for a leaf node not in the
tree is as hard as finding a collision in the underlying hash
function [14]. Figure 2.1 shows an example of a static Merkle
tree.

More formally, consider a tree of depth d, where each of
the Ni nodes contains a hash Ni.hash. Given a list of records
L with size |L| = 2d, d ∈ Z+ we create a static Merkle tree
from a collision resistant hash function H as follows: Create
a list of hashed records LH = [H(x), x ∈ L] and put these
hashes in the 2d leaf nodes N2d . . . N2d+1−1 of the tree. Then
construct the rest of the tree in a bottom-up fashion, using
the following rule:

Ni.hash = H(N2i.hash | N2i+1.hash) (2.1)

To prove the existence of a record, one should provide the

hashes stored in the sibling nodes for the nodes traversed
along the path down to a particular leaf. Additionally, one
needs to know whether each hash was stored in a left sibling
node (0) or a right sibling node (1). Thus, to prove the
existence of record whose hash is stored in the leaf node i ∈
[2d, 2d+1 − 1], compute the indices I = [sibling(b i2n c), n ∈ Zd]
and finally the tuples P = [(i mod 2, Ni.hash), i ∈ I].

sibling(i) =

{
i+ 1 when i is even
i− 1 when i is odd

The cryptographic proof P is called a Merkle proof and is
used to prove membership of a record without large storage
or bandwidth requirements. Some variants of Merkle trees,
such as Sparse Merkle trees [16] also allows for efficient non-
membership proofs.

2.1.1 Dynamic Merkle Trees
To obtain a Merkle tree which can be efficiently updated when
new nodes are added or removed, it may be advantageous to
associate not only the leaves, but also interior nodes of the
tree with a record. Each node Ni in this tree contains two
hashes instead of one, the Merkle hash Ni.merkleHash and the
hash Ni.dataHash of the associated data record. The Merkle
hash of every touched node is then recomputed when the tree
is rotated as follows:

Ni.merkleHash = H(Ni.dataHash |
Ni.leftChild.merkleHash |
Ni.rightChild.merkleHash)

(2.2)

The Merkle hash of a non-existent child node (for example if
Ni is a leaf) can be set to 0 or some other fixed hash denoting
the end of a branch. To prove the existence of a record in the
tree, one need to provide the dataHash and the merkleHash of
the correct child node for each level in the tree. An example
of a dynamic Merkle tree is the IAVL+ Tree which is rotated
on updates using a variant of the AVL algorithm [35].

2.2 Public Key Infrastructure
In this section we cover the basics of an X.509 public key
infrastructure (X.509 PKI), a PKI with one or more trusted

7

Figure 2.1: A Merkle tree with 15 transactions. The nodes in the Merkle proof used to verify the transaction hashed into node 11 are coloured
in green.

certificate authorities who are binding names to keys by
issuing certificates in the X.509 format. For clarity, we start
this chapter by repeating two definitions from the glossary.

Definition 1 (Public key infrastructure). A public key
infrastructure is a set of entities, policies and procedures
used to issue, manage and revoke (name, key) pairs used for
authentication.

Definition 2 (Certificate). A certificate is a signed digital
document which binds a name to a public key.

2.2.1 Certificate Authorities
The certificate authority (CA) is the entity responsible for
issuing certificates. These certificates are signed by the CA,
and relying parties can check the validity of the signature
using the corresponding public key stored in a file, called the
truststore. Certificate authorities can usually be either a root
CA or an intermediary CA. The root CA issues a certificate
to the intermediary CA, which allows the intermediary CA to
sign certificates on behalf of the root CA. This is a common
practice, and is done both for practical and security reasons.
There are typically many different intermediary certificate

authorities, with different trust levels, issuing different types
of certificates. For all intermediary CAs acting on behalf of
the same root CA, only one certificate needs to be stored
in the client’s truststore, namely the certificate of the root
CA, called the root certificate. The root CA is typically
kept offline, unless it is needed to create or revoke an
intermediary CA. This adds an extra layer of security, since if
the intermediary CA gets compromised, which could happen if
an adversary gets hold of their private key, the root CA can go
online and revoke trust in the intermediary CA, without each
client having to switch out a certificate in their truststore.

2.2.2 Certificate Issuance

When a certificate is to be issued, the client creates a
Certificate Signing Request (CSR) containing the information
which is to be signed by the CA, such as Common Name
(CN), email address, company name, department, address
and public key, and sends this information to a Registration
Authority (RA). The RA is an entity approved by the
CA, which helps to apply for, approve, reject and revoke
certificates [20].

There are different types of certificates, each having its

8

own policy. A Domain Validated (DV) certificate, sometimes
known as a class 1 or class 2 certificate, involves the least
scrutiny and typically requires the client to prove control
over the domain specified in the CSR, usually by responding
to a request sent via email to the domain owner [20]. This
process can be automated using a protocol called Automatic
Certificate Management Environment (ACME) [5].
Organisation Validated (OV) certificates and Extended

Validation (EV) certificates, sometimes known as class 3
certificates, involve more scrutiny and are linked to a physical
entity, such as a company. In order to get an EV or an OV
certificate, the RA may ensure that the company is registered
in the country specified, is active and is available at the
specified address. If an EV certificate is requested, the RA is
also responsible for ensuring that the CSR is authorised by the
company, typically by requesting paperwork, making a phone
call or perform some other “out-of-band communication”.
Once the RA has asserted the validity of the information
in the CSR, it contacts the CA which in turn stamps the
certificate with a date of expiry and signs the certificate with
its private key. The certificate is then sent back to the client
[20].

2.2.3 Revoking Certificates

A certificate can be revoked by the CA who issued the
certificate after a request from an authorised person, such as
the domain owner. A certificate can be revoked for multiple
reasons, for example if the certificate belongs to a company
which has gone out of business, or if the private key of
the certificate has leaked. A certificate can also be revoked
without authorisation from the owner of the certificate, which
might happen if the certificate was issued by accident. When
a certificate has been revoked, it is important to notify clients
to no longer trust the certificate. This is usually done through
one of two mechanisms: a Certificate Revocation List (CRL)
[13] or through the Online Certificate Status Protocol (OCSP)
[51]. Revocation services are provided directly by the CA or
by contacting an external entity called a Validation Authority
(VA), authorised to inform about the revocation status of
certificates on behalf of the CA.

A CRL is a time-stamped list of revoked certificates signed
by a CA. The list is uploaded to a public repository, such
as an FTP directory. Certificates in the CRL are identified
using their serial numbers. When a client wants to check if
a certificate is revoked, it obtains a recent CRL and checks
if the serial number of the certificate is in this list. The
drawback with CRLs is their size, some CRLs can be very
large since they are directly proportional to the number of
revoked certificates.

OCSP is a protocol which is used to ask for the revocation
status of a particular certificate. A server, called OCSP
responder answers with an OCSP response, a time-stamped
data structure signed by the CA, which reveals the revocation
status of the certificate at a given point in time. This response
can be sent with the certificate during the TLS handshake,
called OCSP stapling. This eliminates the need for a client to

contact the OCSP responder, speeding up the establishment
of a secure connection.

A problem occurs when an OCSP responder is unrespon-
sive, since the status of the certificate cannot be checked.
This is a plausible scenario during a man-in-the-middle at-
tack since the adversary controls the traffic to the victim’s
computer and has the possibility to drop the connection to
the OCSP responder. Some clients simply ignore a failure to
check the revocation status of a certificate instead of termi-
nating the connection, which can be exploited by an adversary
to bypass revocation checks altogether. However, this prob-
lem can partly be solved with OCSP stapling, and a certificate
can enforce OCSP stapling through a X.509 v3 extension [25].
Another issue with OCSP is that there is no mechanism for
revoking trust in an OCSP responder. If an OCSP responder
becomes compromised by an adversary, each client relying on
this OCSP responder must be manually reconfigured [56].

2.2.4 Certificate Chains

A certificate chain, or chain of trust, is a list of certificates
provided by a server. To determine if the content of a
leaf certificate (the first certificate in the certificate chain)
can be trusted, the verifier needs to detect the chain (or
path) of issuance from the leaf certificate to a trusted issuer.
This is normally known as building a certificate chain and
the trusted certificate is normally (but does not have to
be) a root certificate in the computer’s local truststore. In
Mozilla’s truststore, shipped with the web browser Mozilla
Firefox, there are roughly 170 different root certificates [45]
corresponding to different root CAs, where each root CA has
the authority to sign certificates for any domain or create
additional intermediary CAs.

A certificate is validated by checking the signature of the
certificate against the public key of the next certificate in the
chain. An example of a certificate chain with one intermediary
CA is shown in Figure 2.2. To validate this certificate chain,
the client has to check the signature of the client certificate
using the public key of the intermediary CA, and check the
signature of the intermediary CA using the public key of the
root CA. The certificate of the root CA is always self-signed.

2.2.5 X.509 Certificates

The most common format for certificates is defined in the
X.509 standard and certificates following this format are
called X.509 certificates [20]. The format is shown in
Figure 2.3. The fields of a certificate are:

• Certificate Serial Number Uniquely identifies a
certificate issued by the CA.

• Signature Algorithm Identifier Contains the name
and parameters of the signature algorithm used by the
CA to construct the CA signature.

• Issuer The X.500 name of the certificate authority who
has signed the certificate.

9

Figure 2.2: A certificate chain with three certificates consisting of a root certificate (green), an intermediary certificate (blue) and a leaf certificate
(red). The public key for the Distinguished Name (DN) in the certificate is trusted 4© if the signatures in the chain are valid. To validate the
certificate chain, the client has to check the signature of the leaf certificate using the public key of the intermediary CA 1©, and check the signature
of the intermediary CA using the public key of the root CA 2©. The root certificate is self-signed 3©.

• Validity period Contains a start and expiry date
which defines the period where the certificate should be
considered valid.

• Subject The distinguished name (DN) of the entity who
owns the private key corresponding to the public key in
the certificate.

• Public key information Contains the public key of the
subject together with the algorithm and parameters used
to construct the key.

• Extensions Added in X.509 version 3 and contains a list
of certificate extensions.

For the purpose of this thesis, we are mostly be interested
in certificate extensions which allow us to add additional
functionality to a certificate. A certificate extension contains
three fields: the type field, a critical bit, and a value field.
The type field tells software, processing the certificate, what
kind of certificate extension it is. The critical bit (if set) tells
clients to reject the certificate, if support for the particular
certificate extension is not yet implemented, and the value
field contains the actual data of the certificate extension.
There are currently 14 standardised certificate extensions,
among them the basic constraints extension which allows a
certificate to be used as a CA certificate [56]. There is no
official limit on the size of a certificate extension, although
Windows imposes a 4 KB limit on the field value, due to
its CA database schema definition [53]. A CA typically does
not sign off on certificate extensions it does not understand,
which means that any new certificate extensions must be
implemented in the CA software.

2.3 Pinning and Certificate Trans-
parency

In this section we look at two mechanisms for improving
identity retention in the X.509 PKI and make it easier to
detect fraudulent or misissued certificates.

2.3.1 Public Key Pinning

While the purpose of the certificate is to bind a public key
to a name, if an adversary succeeds in issuing a fraudulent
certificate to themselves with their own key, they could mount
a man-in-the-middle attack and decrypt the traffic en route
before reencrypting and forwarding the traffic to the victim.
To prevent this from happening, a client could remember the
key which was used the last time it connected and terminate
the connection if the key suddenly changes. This is the
idea behind public key pinning, a mechanism implemented
in all major web browsers, used to enforce reuse of the same
keypair for a specific domain. A server with pinning enabled
sends SHA2 hashes of its public keys (pins) in a specially
crafted HTTP header, after a secure connection has been
established. The pins are cached the first time a site is visited,
and stored for the period of time specified in by the max− age
header value. The next time the site is visited, the browser
expects one of the pins to match one of the public keys in the
certificate chain.

According to the specification, two keys must be pinned for
security in case the first key gets lost. If both keys are lost,
clients are no longer able to connect [11]. It is possible to
pin either the public key of the certificate authority, or the
public key of the server certificate. Pinning the public key

10

Figure 2.3: An image depicting version 3 of the X.509 certificate format. The public key information is trusted for the specified subject (certificate
holder) if the CA signature is valid under the public key belonging to the issuer specified in the certificate, the certificate is presented within the
specified validity period, and certificate has not been revoked.

11

of the server certificate is safer, in the sense that it protects
against certificate misissuance, but its presumably easier to
accidentally lose the private key of the server certificate.

Public key pinning is a powerful weapon against a man-
in-the-middle attack if implemented correctly. However, it
has not gained much popularity. In a survey by Netcraft
from 2016 [47] only 0.09% of all websites had public key
pinning enabled and one third of those websites deployed
it incorrectly. One reason for why websites have been shy
to adopt public key pinning might be that it can backfire if
the server keys gets compromised. Since public key pinning
does not offer any key recovery mechanisms apart from a
backup key, it is almost impossible to recover from such
a situation. Pinning the key of the certificate authority
avoids this problem, but makes it harder to migrate from
one CA to another and does not prevent misissuance for
this CA. Public key pinning would also be unpractical in an
environment where there are multiple servers, each with its
own certificate and keypair, operating behind a load balancer
serving requests for a single domain.

2.3.2 Certificate Transparency

The CA was previously the only entity who knew which
certificates it had issued, which made it difficult to detect
fraudulent certificates. Google’s Certificate Transparency
(CT) project [37] tries to address this problem by providing
publicly auditable, append-only logs, called Certificate
Transparency logs (CT logs) which contain certificates issued
by a particular set of CAs. Third parties, called monitors and
auditors, are making sure new certificates are appended to the
log correctly, no certificates are being removed, and that logs
are consistent. If a fraudulent certificate is detected, it can
be reported by a monitor and revoked by the CA.

The logs are structured as Merkle trees, described in
Section 2.1. The use of Merkle trees allows log operators
to provide a succinct proof that a particular certificate is
present in the log, called an audit proof, and that a log has
been correctly updated with a new set of certificates, called a
consistency proof.

The URL of the CT log is publicly advertised and anyone
can interact with the log server through a REST API. When
the CA posts a new certificate to the log, the log operator
responds with a Signed Certificate Timestamp (SCT), which
is a promise from the log operator to include the certificate
before the time indicated in the SCT. The SCT itself is
bundled with the certificate as a proof that the certificate
has been submitted to a CT log. This is done either by
requesting the SCT from the CA over OCSP using an OCSP
extension, and then stapling this response with the certificate
during the TLS handshake, or alternatively, the CA could
include the SCT in the certificate itself, using an X.509 v3
certificate extension. Another option is to let the domain
owner submit the certificate to the CT log, and then provide
the SCT through a TLS extension during the TLS handshake.

Although CT makes it easier to find fraudulent certificates,
it does not prevent fraudulent certificates from being issued

in the first place. Domain owners are typically responsible
for auditing and monitoring the logs themselves, which they
are forced to do since there is no incentive structure in place
for monitors to detect and report certificates for domains
they do not own. There are also no procedures in place
for automatically reporting fraudulent certificates, and it can
take up to 24 hours before a certificate appears in the log.
Domain owners relying on CT need to trust the log operator,
and the log operator is typically decided by the issuer.

2.4 Blockchains

A blockchain is an append-only public ledger replicated
among all nodes in a large P2P-network, originally designed
to store financial transactions for the Bitcoin cryptocurrency.
The design of the Bitcoin blockchain was proposed by a
pseudonym named Satoshi Nakamoto in 2009 [46], and since
then several blockchains designed for different purposes have
emerged. The blockchain offers consensus among entities in
a decentralised network, effectively solving the problem of
double spending explained in Section 2.4.5. Physical money,
such as bank notes, cannot be spent twice since they can
only be in one place at a time. With the introduction
of digital money in the form of credit cards, the double
spending problem was solved by a clearing house, a central
authority which approves transactions and keeps track of
the balances for each account. Blockchains solves the
double spending problem for digital money without a central
authority. Instead, the central authority is replaced by an
open, dynamic and decentralised P2P-network, where each
node in the network keeps its own copy of the blockchain.
Transactions are broadcast on this network and recorded on
the blockchain, which can be thought of as a digital billboard,
used by each participating party, to independently verify that
a person has coverage for their expenditures. Due to the way
blocks are added to the blockchain, once a block has been
added it cannot easily be removed, hence it is hard to revert
or change a transaction after it has been sent to the network.

A blockchain, in its original design, is a ledger which
consists of blocks, each block contains a block header and
a list of transactions. The list of transactions is linked to the
block header through the root hash of a Merkle tree with the
transactions as leaves. Each block header also contains a hash
of the previous block, which links blocks to its predecessor
in an ever-growing chain. Transactions are packaged and
included in a block which is appended to the chain by a node
in the network selected according to a consensus algorithm.
When a new block is created it is broadcast over the network,
and participating nodes update their own local copy of the
blockchain with the new block. Transactions are confirmed
by consecutive blocks being appended, and a fork may be
created if two blocks are added at approximately the same
time. How to resolve a fork is determined by the underlying
consensus algorithm.

More generally, a blockchain provides a practical solution to
the Byzantine Generals’ Problem [36] where a set of decision

12

makers try to a agree on a course of action through message-
passing over an unreliable medium. More informally, a
blockchain can be used to establish what “truth” is, which
in the context of a PKI is to agree on a mapping between
keys and their owners.

2.4.1 Financial Transactions on a Blockchain

Bitcoin features a sequential transaction model which is
used to transfer money between users in the system. Each
transaction contains of a list of inputs I, and a list of outputs
O. An output o ∈ O consists of an amount |o| of coins
bundled with a locking script σL which puts an encumbrance
on the output which has to be fulfilled in order to spend it.
The most common encumbrance is to present a public key
and signature with the corresponding private key, referred by
hash in the locking script, which is called a Pay to Public
Key Hash (P2PKH) transaction depicted in Figure 2.4. An
input i ∈ I consists of a reference to an output, and an
unlocking script σU which fulfills the encumbrance defined
in the referred locking script, more formally σL(σU) = TRUE.
The difference between the sum of coins in the input and the
sum of coins in the output

∑
i∈I |i| −

∑
o∈O |o|, is indirectly

interpreted as a transaction fee collected by the miner who
includes the transaction into the blockchain. An output is
considered spent if it has been referred by a valid input
a subsequent transaction. A node who keeps track of all
transactions on the blockchain maintains a set of outputs
which has not been spent yet, called Unspent Transaction
Outputs (UTXO), determining the distribution of money in
the system [3].

Amounts for inputs and outputs are specified in satoshi,
the smallest unit of money which can be transferred in the
system. Locking and unlocking scripts are typically written
in a special-purpose scripting language which only supports
the operations needed to perform a transaction. In Bitcoin,
this scripting language is called Script, a Forth-like reverse
polish notation stack-based execution language. Script has
two desirable properties which makes it suitable as a scripting
language for programmable money. Firstly, it is a very
simple language which requires little resources to execute, and
cannot get stuck in for example an infinite loop or otherwise
act maliciously, possibly crashing the host computer. As a
consequence, Script is not Turing complete and does not have
the expressiveness of a full programming language. Secondly,
Script offers stateless verification, meaning all the information
needed to execute the script is in the script itself. This
guarantees that the execution of a script is consistent among
all nodes participating in the network [3].

2.4.2 Simple Payment Verification

Simple Payment Verification (SPV) is a method used to verify
transactions without storing the whole blockchain. Clients
relying on SPV are called SPV clients or thin clients. SPV
is important for low-powered devices with limited processing
and storage capabilities such as smartphones and laptops. A

thin client typically only downloads and verifies the block
headers, which are small in size and can be verified quickly.
Block headers belonging to the longest chain are assumed to
be hard to fabricate since they require Proof of Work, and
are used as a trusted source of information, which is used to
verify transactions. A thin client verifies the existence of a set
of transactions T, by submitting a Bloom filter containing T to
the network. The network answers with a set of transactions
matching the Bloom filter, together with a set of Merkle
proofs, which proves that a transaction was included in a
specific block [26, 3].

Since a Merkle proof is as hard to fabricate as creating
a collision in the underlying hash function [14], a thin
client cannot be fooled into believing a transaction has been
confirmed by the network, when in fact it has not. However,
thin clients do have two other significant drawbacks in terms
of security: Firstly, it is possible to hide the existence of a
transaction, which has been confirmed by the network in a
subsequent block. The only way for a thin client to counteract
this, is to request Merkle proofs from many different nodes,
hoping they are not all malicious. This assumption may
prove problematic if a large portion of the network consists of
malicious nodes, which might be the case if the network falls
victim for a sybil attack. Secondly, since thin clients do not
verify transaction history, they cannot detect a double spend
in the past. Thin clients do instead rely on block leaders to
not confirm blocks with conflicting transactions.

2.4.3 Proof of Work

Proof of Work, also called Nakamoto consensus is the
consensus algorithm which is used by a number of blockchains
including Bitcoin, Lightcoin and Ethereum. In Proof of Work,
there are machines working on solving a time puzzle, called
miners. The next block leader becomes the machine who first
solves the puzzle.

The puzzle is constructed in such a way that it is hard to
solve but easy to verify, which in cryptography is called a
trapdoor function. Bitcoin uses a variant of hashcash, which
originally was intended to be used to limit spam in email
systems. In Bitcoin, the puzzle to solve is to find a SHA2 hash
value SHA22(block header) such that SHA22(block header) <
2(n−k), where n = 256 is the number of output bits in the
SHA2 hash function and k is a difficulty factor, collectively
determined by the nodes in the network every 2016 blocks,
such that on average a new block in appended to the
blockchain every 10 minutes [3].

The longest chain in Bitcoin’s Proof of Work is considered
to be the blockchain with the most accumulated difficulty∑
k. When a fork is created, a copy of both chains are kept,

until the fork is resolved which typically happens when the
next block is added, making one of the chains longer than the
other [3].

Miners are incentivised to add new blocks to the blockchain
by collecting transaction costs, and by the block reward
which is paid to the address found in the first transaction
in the block, called the coinbase transaction. The coinbase

13

Figure 2.4: A Pay to Public Key Hash transaction from an address A to another address B in Bitcoin, created from one Unspent Transaction
Input with hash 0xf07b1 . . . containing a total of 5 · 105 satoshi locked with A′s private key. The transaction transfers 4 · 105 satoshi to B (through
the 0x39c2a . . . output), keeping 105 satoshi as change (through the 0x2eff5 . . . output) and giving another 105 to the miner who processes the
transaction and includes it into their block. The validation of the transaction can be checked by running the locking script of the 0xf07b1 . . .
transaction with the output of the unlocking script in the input transaction. Execution begins with the signature and the public key of the
unlocking script being pushed onto the stack. The DUP instruction duplicates the element on the top of the stack, and the HASH160 instruction
replaces the value on top of the stack with its hash. Next, the public key hash of the locking script is pushed on the stack and the EQUALVERIFY
instruction pops the two elements on top of the stack if they are equal. Finally CHECKSIG pops the public key and the signature from the stack
and pushes TRUE if the signature is correct.

14

transaction does not transfer money from anyone, but creates
new money which can be spent after the block has enough
confirmations [3].

Since consensus based on Proof of Work requires miners
to buy expensive hardware and consume large amount of
electricity, adding a new block to the blockchain becomes
economically expensive. Estimates shows a net cost between
$6 and $10 per transaction [17, 15], while the actual
transaction costs paid today are significantly lower. Bitcoin
users are currently shielded against these costs through the
block reward which pays for the electricity consumed by the
miners. But since this block reward is halved every 210000
blocks, there is a risk for transaction fees to going up over
time, or miners dropping out when mining no longer becomes
profitable [30].

Another problem with Proof of Work is its environmental
impact. A study from 2014 estimates the electricity
consumption of the whole Bitcoin network to be on par with
Ireland [48]. Furthermore, since chip manufacturers are in
a constant “electronics arms race” competing in producing
cheaper and more resource efficient ASICs, it forces miners
to constantly upgrade and replace their equipment to stay
competitive. This results in a large amount of electronic
waste. Highly specialised mining rigs such as ASICs used for
Bitcoin mining, are useless for anything else than computing
SHA2 hashes and has little to none second-hand value.
Some altcoins tries to combine or replace seemingly useless
hash computations with something more meaningful. As an
example, Gridcoin combines the hash function scrypt with
participation in the BOINC grid computing network, which
harnesses the computing resources of its participants for
scientific research, and Curecoin combines SHA2 with protein-
folding research through the Folding@Home project [3].

New blockchains based on Proof of Work would require a
large amount of hashing power to be secure. This would either
require a huge investment in equipment or persuading existing
miners to join the network. The latter could be addressed
with merged mining where a miner is able to mine on two
chains at the same time, without splitting their hashing power
in two. The idea is to piggyback an auxiliary chain onto
another parent chain (such as the Bitcoin blockchain). A
miner doing merged mining would create a block for the
auxiliary chain, hash the block header and include this hash in
the coinbase transaction of the parent chain. A block header
for the auxiliary chain contains some additional data, such as
the coinbase transaction of the parent chain, and a Merkle
proof which proves that the coinbase transaction is in the
parent block. This information can then be used to validate
the block in the auxiliary chain using the block headers of
the parent chain. There are financial incentives for miners
to do merged mining since they can get rewards from mining
on the auxiliary chain without additional expenses. However,
merged mining comes with a couple of caveats: Firstly, a large
mining pool which suddenly decides to start to merge mine
another blockchain can end up controlling a large part of the
chain’s hashing power. Secondly, merged mining requires a

hard fork1. While this might be a feature easy to add, it
might be harder to remove at a later stage if needed, since
the user base is more spread out and not likely to abandon
the additional revenue stream from the auxiliary blockchain.
Thirdly, due to size constraints on the coinbase transaction,
there is a limitation on the number of auxiliary chains which
can be merged mined at the same time [41].

2.4.4 Proof of Stake
Proof of Stake is another way of reaching consensus within
a decentralised network. Instead of utilising miners, Proof
of Stake based systems selects a block leader based on how
many coins they put at stake. The idea is that, someone
who is rich would have incentive to be benevolent, since any
malicious behaviour is undermining their own wealth. To take
control over the system, one needs to acquire a large portion
of the coins in circulation, which might be more expensive
than buying large amounts of mining equipment. Proof of
Stake is more cost effective than Proof of Work since it does
not rely on miners consuming large amount of electricity.

The first cryptocurrency based on Proof of Stake was
Peercoin [33] which uses a hybrid between Proof of Work and
Proof of Stake. Peercoin introduced the notion of coinage
which is the time a coin has been idle. A coin’s coinage is
being consumed and set to zero when the coin is put at stake
to generate a block or when transferred to another wallet.
The longest chain is then considered to be the chain with the
most coinage consumed, and forks are resolved in the same
way as in Bitcoin’s Proof of Work. To create a new block, one
needs to control a set S of unspent coins which have been idle
for a minimum time period, called minimum stake age, and
find a block header fulfilling the Peercoin mining formula:

H(block header) ≤ k
∑

coin∈S
age(coin) (2.3)

where k is a difficulty factor adjusted by the network after
every block and age(coin) is the coinage of a coin [17]. The
first transaction in the block, called coinstake transaction (the
equivalence to Bitcoin’s coinbase transaction), pays the miner
the coins at stake back to himself which effectively destroys
some (or all) of their coinage. In order to provide incentive
for stakeholders to stake money, they are awarded with 1%
interest rate per coin year consumed.

Proof of Activity [7] tries to extend the Proof of Work
scheme used in Bitcoin through a Proof of Stake mechanism
where a miner creates an “empty” block with no transactions
meeting the current Proof of Work difficulty target. A list of
N stakeholders is derived from this block header through a
process called follow-the-satoshi. The first N −1 stakeholders
signs the block with their private key and the last stakeholder
finalises the block by collecting a list of transactions, signing
the result and broadcasting it to the network.

Follow-the-satoshi is a deterministic, psuedo-random
process which can be seen as a lottery, where the winner

1A hard fork is a software update which is not backward compatible
with previous versions of the software.

15

of the lottery is the owner of a satoshi chosen uniformly
at random using a cryptographically secure psuedo-random
number generator (CSPRNG) seeded with information found
on the blockchain. The seed can be derived from a secure
multiparty computation, for example by allowing each block
leader to put some randomness in the block header of their
block.

One such approach is Ouroboros [31] which is a provably
secure Proof of Stake model based on a commitment scheme.
In Ouroboros, time is divided into epochs, and an epoch
is divided into timeslots. The CSPRNG is reseeded after
every epoch, and used to derive a set of lucky stakeholders
which are allowed to generate a new block during their
designated timeslot. To generate the randomness, Ouroboros
features a coin flipping protocol with guaranteed output
delivery. Stakeholders participating in the coin tossing
protocol commits to a value using a commitment scheme.
Shares of the committed value are distributed to the other
entities using Verifiable Secret Sharing (VSS). When all
stakeholders have committed and received their shares, they
can reveal the committed value. The revealed values are then
mixed together and used to derive new stakeholders for the
next epoch using follow-the-satoshi. If a malicious stakeholder
refuses to reveal their commitment, the other stakeholders
can cooperate to reconstruct the committed value using the
shares they received when the commitment was made. The
longest chain is defined as the chain with the most blocks,
and accidental forks are not possible since follow-the-satoshi
uniquely determines the next stakeholder allowed to generate
a new block.

2.4.5 Blockchain Security

Blockchains used for financial transactions are designed to
mitigate double spending attacks where an adversary is trying
to spend the same coin twice, for example by buying different
goods using the same coin. To succeed with this attack,
an adversary A must create two conflicting transactions by
forking the main chain and then make the network accept
the fork. Suppose we have a merchant M who waits
for c confirmations before shipping a product. After the
product has been shipped, the blockchain looks as follows:
B1, B2 . . . Bi, Bi+1, Bi+2 . . . Bi+c where block Bi contains a
transaction which transfers money from A to M . Assuming
the computational difficulty k is equal for all blocks, an
adversary who wants to double spend this money, must (in
secret) create a fork B1, B2 . . . Bi−1, B

′
i, B
′
i+1 . . . B

′
i+c′ where

c′ > c and any of the blocks B′i, B
′
i+1, B

′
i+c′ contains a

conflicting transaction. When this fork is broadcast to the
network, it is accepted as the new main chain, overwriting all
transactions in the last c blocks. This scenario is depicted in
Figure 2.5.

Bitcoin and other cryptocurrencies based on Proof of
Work protects against this kind of attack by making it
computationally expensive to produce a new block. This
means that an adversary A have to spend a lot of money
on electricity and equipment to perform a double spend, and

if a merchant waits for enough confirmations, it becomes more
expensive to create a fork and double spend the money than
to simply spend the money twice. We say that Bitcoin is
economically secure.

With this in mind, a common argument against Bitcoin
and other blockchains based on Proof of Work, is that an
adversary can buy themselves power by purchasing mining
rigs. An adversary, or a colluding group of adversaries,
controlling a majority of the hashing power, can then execute
a 51%-attack, where an adversary can deny, or even double
spend some transactions. However, even an adversary
with a majority of the mining power will be unable to
revert transactions with enough confirmations, since the
probability of an adversary overwriting a transaction within a
block, drops exponentially with the number of confirmations
[46]. Any blockchain with an open consensus process might
potentially be a victim for a 51%-attack, since there is no
authority which can deny participation.

A perhaps more serious threat against blockchains based on
Proof of Work, is selfish mining [19] which dictates a strategy
for a colluding group of adversaries, controlling at least 25%
of the mining power in the network, to mine on their own
“private blockchain” and selectively publish blocks to decrease
the profits for the honest miners. Thus, honest miners are
incentivised to join the group of colluding adversaries, which
at some point might grow large enough to mount a 51%
attack.

Another type of attack is a denial of service attack where
an adversary tries to disrupt the operation of the network by
sending spam transactions with low transaction fees, called
dust. We refer the reader to [4] for more information.

Blockchains based on Proof of Stake, such as Peercoin,
raises some additional security concerns which has to be
addressed. Firstly, an adversary could build on its own fork
without additional mining equipment, which can undermine
the ability for the network to reach consensus. Secondly, an
adversary could try to use the private keys acquired from old
wallets to rewrite the transaction history. Such wallets could
presumably be bought cheaply from people who no longer
have any stake in the system. Thirdly, an attacker could try to
use their computing power to grind through a lot of different
block headers until they find a block header which improves
the performance of their stakes, called stake grinding. These
issues are investigated in more detail in [17]. To provide an
additional security guarantee against these kind of attacks,
the Peercoin blockchain offers regular checkpoints, where the
Peercoin creator Sunny King digitally signs the blockchain
[33].

2.4.6 Scalability Concerns

A system which intends to be global and process a
large amount of transactions needs to scale in order to
function correctly. Unfortunately, most blockchains are
quite inefficient in terms of transaction throughput and
storage requirements. As an example, consider the Bitcoin
blockchain, which is the most popular blockchain to date.

16

Figure 2.5: A double spending attack against a merchant M1 waiting for c confirmations. A double spending adversary A creates a fork
B1, B2 . . . Bi−1, B

′
i, B
′
i+1 . . . B

′
i+c+1 with larger accumulated difficulty, which is accepted as the new main chain by the network, overwriting the

transaction A→M1 with the conflicting transaction A→M2.

It processes on average 1.57 transactions per second with a
theoretical maximum throughput of 3.3 to 7 transactions per
second [15]. This is about as many transactions per second,
as processed by Let’s Encrypt CA, which issued on average
4 certificates per second in December 2016 [38]. Considering
Let’s Encrypt had a market share of 0.1% during this time
period [57] it is clear, that in order to use blockchains for a
distributed PKI on a large scale, major improvements are
needed. Furthermore, the Bitcoin blockchain had a total
ledger size of about 96 GB as per Februari 2017, growing
linearly over time at a rate of about 4 GB per month [9].
Although a node could prune the transactions after they have
been buried under enough blocks and only store the UTXO
permanently (which is about 1.6 GB in size [52]), a new node
needs to download and validate all transactions before booting
up. This process, called bootstrap time takes about four days
[15], and increases with time as new blocks are appended to
the blockchain.

Transaction Throughput

In a peer to peer setting, where all participating nodes are
validating and broadcasting the transactions in the network,
the number of transactions per second |T| which can be
confirmed by the network is limited by the block size Bs and
the block interval B∆ in seconds according to |T| = Bs

B∆·µt

where µt is the average transaction size for the block B.
Thus, the only way to increase the throughput of the

blockchain is to increase the block size, decrease the average
transaction size or lower the block interval, and the block
size is limited to the bandwidth of the individual nodes. In
Bitcoin, an increase in block size or decrease in block interval

increases the probability of a fork. Forks incur a security
risk since it gives an opportunity to submit two conflicting
transactions in two different blocks, which can lead to a double
spend (see Section 2.4.5). Forks are also lowering the security
of the blockchain, since the mining power is split in half,
making it easier to attack the network. Furthermore, storage
and communication costs of the individual nodes goes up,
which might lead to centralisation when smaller nodes cannot
afford the equipment required to run a full node, and decide to
drop out of the network. Forks can also lead to inefficiencies
owing to transactions belonging to orphaned blocks being
moved back into the mempool. There have been discussions
about an increase of the current 1 MB block size in Bitcoin
[24, 2, 23, 60], all requiring a hard fork of the Bitcoin software,
but at the time of writing none of these proposals have taken
effect.

Bitcoin-NG

The rate at which the Bitcoin network can confirm
transactions is mostly due to Bitcoin’s leader election rather
than limited by the speed of the individual network links.
Bitcoin’s block leader is chosen by Proof of Work (as discussed
in Section 2.4.3) seemingly arbitrarily every 10 minutes. As
a consequence, the network traffic in Bitcoin becomes rather
bursty: A chunk of transactions move from the mempool to
the blockchain only when a new block leader is elected, while
the network remains almost idle the rest of the time. As
a consequence, the link capacity of the network is not fully
utilised, which reduces throughput.

Bitcoin-NG [18] tries to solve this problem by decoupling
leader election with transaction serialisation. In Bitcoin-NG,

17

there is one blockchain with two types of blocks, keyblocks
and microblocks: A miner starts a new epoch by generating
a keyblock through the same Proof of Work mechanism as in
Bitcoin. The keyblock contains a single coinbase transaction
with the leader’s public key. Once a leader has found a
keyblock, they are eligible to process transactions, which are
packed into microblocks and signed by the leader’s private
key. A microblock is valid when all transactions are valid,
and the block is correctly signed by the key of the block
leader as specified by the most recent keyblock. Microblocks
require no Proof of Work and can be produced as fast as
they can be propagated and processed by the block leader.
As a consequence, the available bandwidth in the network
is used more evenly which results in a higher throughput.
Transactions can also be confirmed much faster, since they
do not need to be cached in the mempool until a miner finds
the next keyblock.

A benefit of Bicoin-NG is that it shares the same, solid trust
model as in Bitcoin. Transaction fees are split 40/60, that is
40% of the fees are given to the current block leader, and the
remaining 60% procent are given to the next block leader.
Some concerns regarding double spending has been raised:
A malicious block leader could try to double spend within
their epoch, by generating a fork of microblocks containing a
conflicting transaction. To discourage such behavior, Bitcoin-
NG features a poison transaction which invalidates the block
leaders revenue if a fork is detected. The poison transaction
must be placed after the subsequent keyblock, but before the
malicious block leader has spent their transaction, and can
only be submitted once. Since all microblocks are signed
by the block leader, one can provide a proof of malice by
including the header of the first microblock in the fork. This
information is put in the poison transaction together with an
address which receives a 5% compensation of the confiscated
revenue.

ByzCoin and the CoSi Protocol

ByzCoin [34] combines a Practical Byzantine Fault Tolerance
(PBFT) algorithm with Bitcoin’s Proof of Work. Each
microblock must be co-signed by a two-thirds supermajority
of nodes in a consensus group before being appended to the
blockchain. Hash power-proportionate consensus groups are
formed after each keyblock, by taking the N most recent
block leaders and placing them in a tree with the current
block leader as the root. Blocks are co-signed with Schnorr’s
signature scheme using the CoSi protocol. The CoSi protocol
allows for efficient distribution and computation of signatures,
by leveraging the ability to aggregate Schnorr signatures. We
refer the reader to [54] for a detailed description of the CoSi
protocol.

Cryptonite

Apart from throughput, one should also consider the size
of the blockchain itself. The mini blockchain scheme [10],
implemented in the Cryptonite cryptocurrency, addresses this
problem by leveraging the possibility of completely pruning

old transactions from the blockchain, and only keep the
block headers, called a proof chain. Since pruning makes
it impossible to verify transaction history, the database
of unspent coins is replaced with an account tree and
transactions becomes operations on this account tree. A
drawback with Cryptonite is the lack of support for scripts,
all operations on Cryptonite’s account tree are similar to
Bitcoin’s P2PK transactions.

18

Chapter 3

Methodology

This chapter contains the design goals we attempt to
achieve, explains our approach for solving the problem and
defines the entities in our proposed PKI.

3.1 Design Goals

In choosing how to proceed, we need to consider the design
goals we want to achieve.

• Identity retention An identity should, to the furthest
extent possible, only be able to be issued, changed or
revoked after permission from the person or organisation
owning the identity. The current PKI achieves this
through strict vetting rules where a CA requires proof in
form of paperwork, or physical presence of an employee
acting on behalf of the organisation before a certificate
is produced. These procedures occasionally fail, due to
not being carried out properly or not at all, which can
result in impersonation. We believe a stronger guarantee
for identity retention of already existing identities can
be enforced by public key cryptography, where new
certificates need to be signed by the organisation’s private
key.

• Expiration of old identities There should be a
mechanism where identities are renewed on a regular
basis, and old identities are purged. This reduces storage
requirements, since identities which are no longer active
can be forgotten, and avoids “locking up” names in our
naming system.

• Key recovery If a private key not known to the CA is
required to issue new certificates, what happens if this
key is lost? In a naive setting, no new certificates would
be able to be signed until the identity expires. To avoid
such a situation, key recovery mechanisms are required
where servers can specify backup keys which can be kept
in cold storage or distributed to a trusted third party.

• Transparency Anyone should be able to connect and
retrieve a “global” view of the all identities in the system,
and being able to verify every transaction. This is
important to be able to detect fraudulent behavior,
without relying on a central authority.

• Scalability The system needs to scale in a reasonable
way when more and more identities are registered.
Namely, storage and bandwidth requirements should be
met by consumer off-the-shelf hardware, and the system
should be able to handle enough transactions to scale
globally.

• Backward compatible Processes for issuance, revoca-
tion and verification of names and public keys should be
compatible with the current PKI if possible.

• Thin client support The system should support thin
clients, to permit certificate verification for low-powered
devices such as smartphones.

3.2 Our Approach

Our approach is to assign a public key to each domain holder.
The public keys are stored in a Merkle tree, whose root hash
is stored in a block on the blockchain. Thin client support
is achieved by the use of Merkle proofs, which can prove the
existence of public key mapping without requiring a client
to download the whole tree. To keep the system compatible
with the current PKI, we use certificates as usual, but ensure
these are cross-signed by the domain holder’s private key.
Key recovery mechanisms can be built into the system, by
locking each public key in the tree with a Bitcoin script.
To ensure the Merkle tree is updated properly, custom-built
blockchain nodes are needed. Thus, a decision was made to
build our own blockchain, which also avoids us the limitations
in throughput, present in some of the public blockchains in use
today. A custom Proof of Stake protocol is proposed which
is based on a set of semi-trusted stakeholders who take turns
in adding blocks to the blockchain.

3.3 System Model

The entities involved in our distributed PKI are clients
and servers trying to establish secure connections among
themselves, and a set of blockchain nodes operating a
large P2P-network. Some of these blockchain nodes are
stakeholders, and may be chosen to approve transactions sent
to the network.

19

• Stakeholder A semi-trusted entity such as a govern-
ment, CA or browser vendor authorised to maintain the
blockchain.

• Blockchain CA A CA approved by the stakeholders
eligible to approve new transactions processed by the
stakeholders.

• Validator A third party who monitors the blockchain
network to ensure everyone follows the protocol.

• Thin client The client of an end-user (such as a web
browser) with limited processing, storage and bandwidth
abilities.

• Domain owner An owner of a DNS domain name,
running a web service.

3.4 Choice of signature scheme
Unless otherwise specified, keys are assumed to be a point on
a 256-bit elliptic curve. Such keys can be represented with 32
bytes using point compression [27].

20

Chapter 4

Blockchain Design

This chapter covers the design of our blockchain scheme.
This includes a description of the format of transactions,
blocks and accounts, and the design of the account tree, the
stake tree and the consensus process.

4.1 Overview
We start with a strawman design based on Bitcoin. This
design is transformed into a distributed PKI, in the form
of a rolling log with Proof of Stake, through a number of
innovations. Some touchpoints are:

• Accounts and account tree We begin by introducing
the notion of an account, which is a container for
a blockchain identity. Each account is identified by
a unique hash, and contains a signing key used to
sign certificates and a CA proof which determines the
account’s expiration date. The accounts are stored in a
data structure backed by a Merkle tree, called the account
tree. Bitcoin transactions are replaced by operations on
this account tree.

• Blockchain truststore We introduce the notion of a
blockchain truststore, consisting of an append-only file
secured by the blockchain network.

• Proof of Stake Bitcoins Proof of Work is replaced
by Proof of Stake, and instead of miners we have
stakeholders controlling an amount of coins in the system.
The stakeholders and their coins are stored in a separate
stake tree, and consensus is achieved by doing a follow-
the-satoshi in this tree.

• Pruning To reduce the amount of data to be stored, old
transactions are discarded and expired accounts in the
account tree are pruned. Thus, we alleviate the need for
blockchain nodes to store all of the transaction history
and every single account ever created, which would lead
to centralisation because of high storage requirements.
While Bitcoin scales linearly with time, our distributed
PKI scales almost linearly with the number of accounts
currently in the account tree.

• Synchronisation points We let some blockchain nodes
store a snapshot of the blockchain’s state at regular

intervals, called a synchronisation point. The purpose
of synchronisation points is to allow quick bootstrapping
of new clients.

4.2 Naming System
Our distributed PKI need a naming system to identify
the owner of an identity. Since our PKI is supposed to
store identities corresponding to domain holders in the DNS
system, a name in our proposed naming system is simply a
DNS domain name on the form domain.topdomain.

The characters allowed in the domain and topdomain are of
no great interest in this thesis as long as they are compatible
with the traditional DNS system, and for simplicity they
should follow the same format as ARPANET host names as
explained in RFC 883. These names are case insensitive, must
start with a letter, end with a letter or a digit and and interior
characters can be either a letter, a digit or a hyphen. The total
length of a label is not allowed to exceed 63 characters [44].
If we encode the name in ASCII it is sufficient to reserve 128
bytes for the whole name, including the dot separator and
null byte at the end.

Blockchain nodes are responsible for validating names of
new identities, to make sure they conform to the specified
format and are not already registered on the blockchain. A
restriction imposed by our naming system is that subdomains
cannot be registered. This simplifies transactions and
operations on the account tree, since each subdomain would
have to be cross-signed by the domain owner to avoid violation
of the identity retention principle. The benefit of having
subdomains directly registered on the blockchain is unclear,
considering the fact that all subdomains for a domain are
effectively controlled by the same entity. Subdomains for
an organisation is likely to be handled more efficiently by a
locally administered PKI.

4.3 Stakeholders
A stakeholder is an organisation, government, or individual,
responsible for maintaining blockchain identities, confirm
transactions and sign blocks. Stakeholders need to be
trustworthy since a colluding group of malicious stakeholders,
controlling a majority of the coins, can endanger the reliability

21

and trust in the system. Unlike Bitcoin, stakeholders are not
performing Proof of Work, and they cannot buy themselves
any influence by purchasing mining rigs. Instead, a new
stakeholder must be given stake from the other stakeholders
by receiving coins from the other stakeholders as explained
in Section 4.5. Once a stakeholder controls coins in this tree,
they are automatically participating in the consensus process
and may be chosen as the next block leader.

4.4 Accounts

An account is a container for a blockchain identity which
acts as trust anchor in our distributed PKI. Each account,
following the format in Table 4.1, contains a name N , as
explained in Section 4.2, a signing key KS, an update script
Uscr, an optional revocation script Rscr, and a CA proof PCA.

The account can be divided into two pieces, the account
header and the account body. The account header contains
the information required by clients to verify certificates issued
under the identity. When an account is sent to a client, only
the account header and a hash of the account body need to be
sent, which saves bandwidth. The Merkle hash of the account
in the account tree, described in Section 4.6, is derived from
the hashes of the account header and the account body.

Definition 3 (Merkle hash of an account). The Merkle
hash of an account A in the account tree consisting of the
account header Ah = (N ,KOID,KS) and the account body
Ab = (Uscr,Rscr,PCA) is the hash H(Ah | H(Ab)).

4.5 The Stake Tree

The stake tree is a Merkle tree containing the stakeholders for
our distributed PKI. Each stakeholder has their own wallet
in this tree, following the format in Table 4.2, containing the
name N of the stakeholder, a locking script Lscr, a block
signing key KB , a locking bit bl, and a number x indicating
the amount of coins (stake) in the wallet.

Each edge in the tree is labeled with the total amount
of coins for that subtree, as shown in Figure 4.1. Given a
CSPRNG, one can randomly select a stakeholder from the
tree, weighted by the amount of stake they own, by traversing
the tree down to a leaf node as explained in Algorithm 1 from
Appendix A.

Coins can be transferred from one wallet to another by
providing a solution to the wallet’s locking script. To
protect against an adversary stealing coins from an honest
stakeholder, which might happen if the adversary gets hold of
the private keys referred in the locking script, we propose
a mechanism where a majority of the stakeholders can
confiscate the coins of another stakeholder.

Blockchain nodes needs to recompute the hash tree when
wallets are updated, added or removed. This should not incur
a large computing overhead since the stake tree would be quite
small. If a stakeholder is a government, CA or browser vendor,
the number of stakeholders in our scheme would be in the

order of a few hundreds at maximum, and such a small tree
can easily be stored and updated in memory.

The Merkle hash of a wallet is, similarly to the Merkle hash
of an account in the account tree, divided into two pieces, a
body and a header. To prove that a wallet with a specific
block signing key KB , is in the stake tree, which is done when
a client is validating the block headers, one only needs to
provide the block signing key KB and a hash of the remaining
fields instead of specifying all the fields explicitly, which saves
bandwidth.

Definition 4 (Merkle hash of a wallet). The Merkle hash of
a wallet W in the stake tree consisting of the wallet header
Wh = KB and the wallet body Wb = (N ,Lscr, x, bl) is the
hash H(Wh | H(Wb)).

4.5.1 Follow-the-satoshi in the Stake Tree
We can do a follow-the-satoshi in the stake tree, as in
Algorithm 1 from Appendix A, by traversing the tree down
to a leaf node, starting at the root as follows: Begin by
initialising a CSPRNG <(M)→ [1,M] with a seed s. Given a
node with two child nodes, labelled with x1 and x2 indicating
the amount of coins in the left and right subtree respectively,
generate a new random number r ← <(x1 + x2). Choose
the left subtree if 1 ≤ r ≤ x1, or choose the right subtree
if x1 < r ≤ x1 + x2. Follow-the-satoshi terminates when a
leaf node has been reached, containing the account Ai of the
winning stakeholder. Psuedocode is available in Appendix A.

Lemma 1 (Follow-the-satoshi is fair). Follow-the-satoshi in
a stake tree with N stakeholders and

∑N
i=1 xi coins selects the

k-th stakeholder 1 ≤ k ≤ N with xk coins with probability
xk∑N
i=1 xi

.

Proof. We use structural induction. Only trees with depth
d and N = 2d−1 leaf nodes are considered, since if N is not
a power of two, we can always fill the tree up with empty
accounts, such that the condition holds.
Base case The base case is a tree with a single node,
containing an account A with x1 coins. Since Follow-the-
satoshi always selects an account, and there is only one
account to choose from, it selects A with probability 1 =
x1

x1
= x1∑1

i=1 xi
.

Induction hypothesis Suppose follow-the-satoshi selects
the k-th stakeholder with probability xk∑N

i=1 xi
∀T′ : |T′| ≤

2d − 1.
Inductive step Let T′1 and T′2 be two trees of of depth d
and construct a new tree T = Tree(T′1,T′2) of depth d + 1.
Denote by coins(T) the total number of coins in the tree T.

P (account k) = P (subtree T′x) · P (account k in T′x) =
IH

coins(T′x)
coins(T)

· xk
coins(T′x)

=
xk

coins(T)

Since the induction hypothesis holds for the larger stake tree
T, it holds for all stake trees. �

22

Table 4.1: The fields of an account in the account tree.

Field Description Size Default

N Account name A unique identifier for the account, following the format explained
in Section 4.2. The account name should be a null-terminated string encoded in
ASCII.

≤ 128 bytes

KOID Key type An OID identifying the type of key. 2 bytes
KS Signing key The public key used to verify signatures. Depends on KOID
PCA CA proof A tuple (CAOID, SigCA, Issued, Expires) containing a CA signature of

the account information, and defining the date of expiry.
84 bytes

Uscr Update script A Bitcoin locking script which defines the conditions for updating
the account.

VarInt

Rscr Revocation script A Bitcoin locking script which defines the conditions for
revoking the account.

VarInt Uscr

Figure 4.1: An example of a stake tree with 8 stakeholders A1,A2 . . .A8. The nodes highlighted in grey are the nodes visited after a follow-
the-satoshi where stakeholder A5 was chosen as the next block leader. The stake tree is created bottom-up fashion where each node in the tree is
labelled with the sum of coins for its two child nodes.

23

Table 4.2: The fields of a wallet in the stake tree.

Field Description Size

KB Signing key A public key used to verify block signatures. 32 bytes
N Stakeholder name The name of the stakeholder, encoded as an ASCII string terminated by a null

byte.
≤ 64 bytes

Lscr Locking script A Bitcoin locking script which defines the conditions for changing the signing key,
or transferring stake from the account.

VarInt

x Stake An integer indicating the number of coins associated with the account. 4 bytes
bl Locking bit A bit indicating if the account is locked (1) or unlocked (0). A locked wallet is not

allowed to participate in the consensus process.
1 bit

4.5.2 Operations on the Stake Tree
Operations on the stake tree, allow stakeholders to transfer
coins between each other, change the public keys, create new
stakeholders, confiscate the coins of a malicious stakeholder
and lock individual wallets as specified in Appendix B.
Locking wallets and confiscating coins of another stakeholder
is done through voting. Each stakeholder has a voting power
proportional to the amount of coins they own. A vote takes
effect once a coalition of stakeholders controlling a majority
of the coins has confirmed the vote. Each vote is timestamped
to prevent an adversary from replaying an old vote.

4.6 The Account Tree
The account tree is an authenticated, disk-based data
structure which keeps track of all accounts at a certain
block number. The account tree should fulfill the following
requirements:

• It should be as compact as possible to store on disk, to
minimise the storage requirements for a full node.

• There should be mechanism for detecting expired
accounts, to remove them from the tree and reclaim disk
space.

• Insertions and deletions in the account tree should be
fast, something like O(log n), in order to quickly process
operations on the account tree, such as purging expired
accounts, add new accounts and perform key updates.

• The data structure should offer a small (no more than a
few KB) proof of existence for an account in the tree.

A common way of storing ordered sets is by the use of trees
which offers fast removal and insertion. Such data structure
can easily be converted into an authenticated data structure
using a dynamic Merkle tree as explained in Section 2.1.1.
To keep the Merkle proofs small, one should use trees with
bounded depth and a small branching factor, ideally some sort
of binary self-balancing tree. Thus, we suggest the account
tree to be based on a dynamic Merkle tree, ordered by account
name hash H(N).

The accounts are put in interior nodes and the rotations of
the tree dictates how the Merkle tree should be modified when

account are added or removed. To be able to detect expired
accounts and remove them from the tree, it is accompanied
with a min-heap, ordered by date of expiry found in the CA
proof as shown in Figure 4.2. The account tree must be
updated equally by all nodes, such that everyone arrives at
the same Merkle root hash.

Our account tree should implement the following methods:

• Lookup(N) → (A,P) performs a lookup for an account
with account name N , and returns the account A and
Merkle proof P for a particular block or ⊥ if the account
does not exist.

• Insert(A) inserts a new account A into the account tree,
iff the account does not already exist.

• Delete(N) deletes the account with account name N .

• Prune(Dnow)Delete accounts from the account tree whose
expiration date D ≥ Dnow.

• Update(A) updates an account with the new information
contained in A.

4.6.1 Operations on the Account Tree

Operations on the account tree allow users to manage their
digital identity in our distributed PKI, namely to add new
identities and renew, revoke and change the keys of existing
identities as specified in Appendix C. Each operation is
a transaction which must contain a valid unlocking script
fulfilling the conditions specified in the update or revocation
script. In addition, adding a new identity or changing an
existing identity requires a signature produced by a CA. As
a consequence, an adversary trying to impersonate a user in
our system, must not only be in control of a CA, but also
have access to the private keys of the user.

4.7 The Blockchain Truststore
The blockchain truststore is a truststore on the blockchain,
containing the names and public keys of all CAs eligible to
create CA proofs. The signatures in the CA proofs, submitted
when accounts are added or updated, are then checked by
blockchain nodes against this truststore, to determine the

24

Figure 4.2: An example of an account tree with five accounts, modeled as a Merkle tree on top of a self-balancing binary tree ordered by account
name hash H(N), together with a min-heap ordered by account expiry date. The purpose of the min-heap is to quickly detect and prune expired
accounts. Nodes for the two trees are stored in disk blocks, where each disk block represents a pair of nodes, one node from the self-balancing tree,
and the corresponding node in the min-heap. The actual account contents (such as scripts) are stored in a key-value database.

25

validity of the CA proof. If a blockchain node is unable
to verify a signature using the specified public key, or if the
signature is produced by a CA not active in the blockchain
truststore, the CA proof must be rejected and the transaction
should be dropped.

The blockchain truststore is an append-only file whose
hash is stored in the block header of each keyblock. The
integrity of the truststore can be checked by comparing the
hash of the truststore to the hash stored in the block header
of the last keyblock. The truststore can be updated by
adding new CAs, or revoke trust in existing CAs as specified
in Appendix D. Any such change must be confirmed by a
coalition of stakeholders, controlling a majority of the coins
in the stake tree.

When a CA is added, it is assigned an unused ID, and a
timestamp of creation together with the public key of the CA
is recorded in the truststore. If the CA is revoked, the time of
revocation is recorded, but the entry is kept in the truststore
to make it possible for blockchain nodes to validate old CA
proofs.

Since entries are never removed from the truststore, the size
of the file is going to grow over time. However, considering
revocation of a CA is an unusual event, we do not anticipate
this to be a problem.

4.8 Keyblocks and Microblocks
We distinguish between keyblocks and microblocks, specified
in Appendix E. Keyblocks contains transactions for the
stake tree and blockchain truststore and microblocks contains
transactions for the account tree. Like in Bitcoin-NG [18], a
keyblock signals the change of a block leader and is followed
by one or more microblocks. Since consensus is based on
Proof of Stake instead of Proof of Work, both keyblocks and
microblocks are signed with the private key of the stakeholder
and each keyblock contains an output from Algorithm 1
in Appendix A which can be used to validate the block
without downloading the stake tree. The nonce and difficulty
target fields are removed since they are not needed, and a
reference to the previous keyblock is added in addition to a
reference of the previous block. This makes it possible for thin
clients to drop intermediary microblocks and only validate the
keyblocks. Unlike Bitcoin, each keyblock also contains a hash
of the blockchain truststore, and a Merkle root hash of the
account tree. The coinbase transaction is removed since no
block reward is given for creating new blocks.

4.8.1 Dynamic Block Size
Bitcoin features a hard-capped 1 MB block size limit, which
would require a hard fork to change. Such a hard fork would
be inconvenient to do since it would require all participants
in the network to upgrade their software. A hard fork might
also lead to a consensus failure if some stakeholders refuse to
update. To avoid such a situation, while enabling the network
to dynamically scale when the number of users increases, one
could have a dynamic block size which can be changed by

stakeholders through voting (Table 4.3). This allows us to
regularly adjust the maximum throughput of the system.

4.9 Epochs, Timeslots and Block
Leaders

To elect a new block leader, we use an approach inheriting
many of its features from the Ouroboros Proof of Stake
protocol. Time is divided into epochs, where each epoch
consists of 2n consecutive keyblocks. An epoch is further
split into timeslots. Before starting a new epoch, Algorithm 1
is used as explained in Section 4.5.1 to sample a list of n
lucky stakeholders, eligible to produce blocks during their
designated timeslot. When a new timeslot starts, the next
stakeholder (as chosen by Algorithm 1) broadcasts a new
keyblock to the network. This stakeholder is then allowed
to confirm transactions by producing microblocks until the
timeslot ends and another stakeholder takes over. A timeslot
can be seen as the equivalent to Bitcoin’s block interval, but
is always fixed to say 10 minutes. See Appendix F for details.

Definition 5 (Longest chain). The longest chain in our
distributed PKI is the chain with the most keyblocks.

An epoch is divided into a commit phase and a reveal phase
as shown in Figure 4.3. The block leaders are the same in
both the commit and reveal phase, and one could think of
the reveal phase as a repetition of the commit phase with
only one small difference as follows: In the commit phase,
each keyblock should contain a commitment H(R) to a 128
bit random value R which is put into the block header. In
the reveal phase the same block leader reveals the committed
value by putting R′ in the block header of the keyblock, such
that H(R′) = H(R). The revealed values R1,R2 . . .Rn

2
are

then mixed together, to produce a seed for the CSPRNG used
as input to Algorithm 1.

Our protocol uses a single block leader at a time,
meaning the blockchain network would be unable to confirm
transactions if a stakeholder is offline during their timeslot.
This problem does not occur in Bitcoin where all miners
are competing against each other to create the next block.
To mitigate this problem, one could have a more complex
protocol with multiple block leaders, but this is not
investigated in this thesis. Instead, we instead rely on
stakeholders to be online when their timeslot arrives, and a
few instances of unavailability could be corrected by using a
flexible block size.

4.10 Co-signing Keyblocks

To avoid waiting for several confirmations before the content
of a block is accepted, which inevitably leads to delays in
the system, each keyblock must be co-signed by a quorum of
block leaders elected during an epoch. As a consequence, it
also becomes more difficult to create a fork or sign an invalid
keyblock. To achieve this, two additional fields are required

26

Table 4.3: A ChangeBlocksize transaction proposing a new block size for the next epoch.

Field Description Size

Origin A hash H(N) identifying the voting stakeholder. 32 bytes
New block size The proposed block size in bytes. 4 bytes
Unlocking script A Bitcoin unlocking script authorising this transaction. VarInt

Figure 4.3: Time is divided into epochs consisting of timeslots. Each timeslot is reserved for one block leader, chosen by a follow-the-satoshi
performed on the stake tree, described in Algorithm 1 (Appendix A). The epoch consists of a commit phase, where each block leader commits to
a random value, and a reveal phase where this random value is revealed. The random values are then mixed together at the end of the epoch, and
the result is used to reseed the CSPRNG used by Algorithm 1 to sample block leaders for the next epoch.

in the block header: a bit array indicating which block
leaders who have co-signed the block and a list of signatures.
Appendix E assumes the signatures can be aggregated and
stored in a single field to reduce the size of the block header.

27

Chapter 5

Identity Management

This chapter explains the issuance, revocation and
verification process of accounts in the account tree and
certificates issued by CAs, using the blockchain in the
previous chapter. A client can verify a certificate in two ways,
either by running its own blockchain node which maintains a
complete keystore, or by running a thin client which retrieves
the correct public key when required.

5.1 Manage Accounts in the Account
Tree

Accounts are added, updated or removed by transactions
posted to the blockchain network, as specified in Appendix C.
Each such transaction must be signed by a blockchain CA
active in the blockchain truststore. This acts as an additional
security barrier which makes it more difficult for an adversary
to impersonate a domain owner whose private keys have been
exposed.

An account in the account tree is created after a request
from a domain owner, who sends the DNS domain name N to
be registered on the blockchain, together with the account’s
update script Uscr, revocation script Rscr and signing key KS
to their favourite blockchain CA. The domain owner must
trust this blockchain CA to carry out the registration properly
on their behalf. When the blockchain CA has convinced itself
that the domain owner is the lawful owner of the claimed
domain name and that the information submitted is correct,
it creates a CA proof containing a CA identifier CAOID, a
creation date TC , a date of expiry TE , and a CA signature
SigCA as specified in Table 5.1. This CA proof is then bundled
with the information submitted by the domain owner and a
transaction is broadcast to the blockchain network. At this
point, no part of the transaction can be changed since this
would break the CA signature.

5.2 Issuing and Revoking Certificates
Certificates can be issued by any CA as long as they
are running software which supports our custom certificate
extension explained below. Each certificate should be cross-
signed by the domain holder’s signing key KS found on the

1Assuming ECDSA with a 256-bit elliptic curve is used.

blockchain. To request a new certificate, the domain owner
signs the CN and the certificate’s public key using KS and
includes this information in the CSR sent to the CA. This
signature is then included in a custom certificate extension
before the certificate is sealed by the CA. If the certificate
extension is set as non-critical it may be ignored by older
clients while more modern clients can use the domain owner’s
signature as an additional guarantee that the certificate was
issued with the consent of the domain owner.

All previously issued certificates for a domain are
automatically revoked once a domain owner changes its
signing key KS on the blockchain, since this invalidates the
domain owner’s signatures found in the old certificates. Thus,
protocols such as OCSP may be considered redundant since
revocation information is already included in the certificate.
We refer the reader to Chapter 7 for further discussion on this
topic.

5.3 Certificate Verification

A client receiving a certificate chain from a server, must not
only check the signature produced by the CA, but also the
signature produced by the domain owner. To do this, the
client need to retrieve the domain owner’s public key along
with an additional Merkle proof which proves that the public
key belongs to the top domain in the certificate. This is done
by checking the Merkle proof against the “Account tree hash”
field found in the most recent keyblock on the blockchain as
described in Appendix G.

The Merkle proof changes whenever a new keyblock is
added to the blockchain, which means this information cannot
be included in the certificate itself. Instead, the Merkle proof
needs to be downloaded separately. This can be done in two
ways: Either the client runs its own validator node which
verifies every transaction and stores a complete copy of the
account tree. This would be very impractical for most home
users, although a company may run its own local validator
node which can be accessed on the company’s intranet.

Instead, a client may run its own thin client which only
downloads and verifies the block headers of the keyblocks.
When a thin client receives a certificate, it connects to
the blockchain network and requests a Merkle proof from
a stakeholder or validator. Since the Merkle proof is hard

28

Table 5.1: The contents of a CA proof which is used to authorise changes to the account tree. The CA proof can be though of as a “lightweight
blockchain certificate” and is only 84 bytes in size.

Field Description Size

CA identifier An object identifier CAOID indicating the name of the CA who created the CA proof. 2 bytes
Creation date A UNIX timestamp indicating the time when the CA proof was signed. 8 bytes
Date of expiry A UNIX timestamp indicating the date of expiry for the CA proof. 8 bytes
Signature algorithm An OID indicating the algorithm used to produce the signature. 2 bytes
CA signature A CA signature attesting to the validity of the CA proof. 64 bytes1

to fabricate, it can be supplied over an untrusted channel.
To eliminate the need for a thin client to create a separate
connection, the Merkle proof and the public key could be
included in a custom OCSP response and be stapled with the
certificate using OCSP stapling.

29

Chapter 6

Evaluation

This chapter contains a summary of our findings and
elaborates on the security and scalability of our PKI.

X Identity retention Each identity can only be updated
or revoked by presenting a solution to the accounts
locking script defined by the owner, and each certificate
is cross-signed with a key residing in this account. This
makes it very difficult to impersonate someone, since it
would require an adversary to gain access to both a CA
and the private keys of the domain holder.

X Expiration of old identities The date of expiry for
an account is set via a timestamp in the CA proof.
Account which have expired according to this timestamp
are removed from the account tree and can be forgotten
by blockchain nodes.

X Key recovery Any number of backup keys can be
specified using a Bitcoin multisignature script.

X Transparency All transactions on the blockchain are
public and anyone can connect to the blockchain network
and start to audit transactions.

X Backward compatible Cross-signed certificates are
breaking older clients if the server signature is put in
a non-critical certificate extension.

X Thin client support Clients who want to verify a
certificate only need to synchronise the block headers to
do so. They can then request the additional information
required to verify the signature of a certificate by
querying the blockchain network.

6.1 Security Analysis

Security for blockchain nodes looks different depending on
how they operate. We distinguish between stakeholders and
validators which enforce all rules of the protocol and thin
clients which only validates the block headers of the longest
blockchain. An end-user is typically running a thin client, and
must to some extent rely on the honesty of the stakeholders.

6.1.1 Threat Model

At any time instant, we assume that there are two coalitions
of stakeholders, a malicious coalition controlling a p fraction
of the coins and an honest coalition controlling a 1−p fraction
of the coins. The stakeholders within a coalition are assumed
to cooperate with each other, but not necessarily with the
stakeholders from the other coalition if they can benefit from
not doing so. We furthermore assume that a stakeholder is
operational during the whole epoch in which they have been
assigned a timeslot. Thus, the possibility of denial of service
against individual stakeholders is largely neglected.

6.1.2 51%-attack

Clearly, security cannot be achieved when p > 1
2 since a

malicious majority can confiscate the coins of the honest
stakeholders and take complete control over the system.
Thus, a 51%-attack would be fatal to our blockchain PKI.
To mitigate this type of attack, it is important to make a
good initial selection of stakeholders, where the coins in the
stake tree are spread out among several different participants
who are unlikely to cooperate maliciously.

6.1.3 Censor Transactions

The malicious coalition of stakeholders could try to censor
certain transactions, such that certain domain owners are
unable to renew their account or update their keys. Since
stakeholders take turns in processing transactions, this should
not constitute a big problem. If transactions are approved in
a first-come, first-served fashion, any lingering transactions
are the first to be approved by an honest stakeholder, unless
there is congestion in the network.

6.1.4 Signing a Counterfeit Keyblock

Tricking an end-user running a thin client into accepting
a counterfeit public key controlled by an adversary can be
done by creating a blockchain with more keyblocks than
the blockchain created by the honest coalition, where the
last keyblock has signed a fraudulent Merkle root containing
the adversary’s public key. The (invalid) substitution of the
domain owner’s public key would be detected by a stakeholder

30

or validator, but not by a thin client since they do not check
every transaction on the network.

Assume each keyblock must be signed by a two-third
quorum (a common threshold in Byzantine fault tolerant
systems) of stakeholders elected during an epoch for the
blockchain network to accept it. If Algorithm 1 elects n
stakeholders during an epoch, then the malicious coalition
is said to be winning at any time instant if and only if the
number of malicious stakeholders elected > 2n

3 .
This probability can be modeled using a binomial

distribution. If the malicious stakeholders control p fraction of
the coins as explained in Section 6.1.1, then we may view one
execution of Algorithm 1 as a Bernoulli trial with adversary
success probability p. Let X′ ∈ [0, 1] be the stochastic variable
denoting the outcome of aforementioned Bernoulli test, where
1 means success (malicious stakeholder chosen) and 0 denotes
failure (honest stakeholder chosen). The malicious coalition
can successfully sign a counterfeit keyblock if and only if
X =

∑n
i=0 X′i >

2n
3 .

This probability is given by the Binomial CDF:

Pr

(
X >

2n

3

)
= 1−

n
2∑
i=0

(
n

i

)
· pi · (1− p)n−i (6.1)

For 128-bit of security and p = 0.3, one should choose n
such that Pr

(
X > 2n

3

)
< 2−128. The smallest n fulfilling this

condition is n = 120, which means that an epoch must consist
of at least 2n = 240 timeslots.

6.1.5 Stake Grinding

As explained in the previous section, for p = 0.3 and n = 120,
the probability for the malicious coalition to successfully
sign a counterfeit block is negligible. However, this assumes
Algorithm 1 is fair, which might not be the case if the seed
to the CSPRNG is controlled by an adversary. The malicious
coalition can mount a stake grinding attack where they ignore
the keyblocks produced by the honest coalition which gives
them complete control over the input to the mixing function.
They can then test many different xi∈Z128

such that the
seed Mix(x0≤i<2128) gives them an advantage during the next
epoch. This type of attack can be alleviated in different ways:

• Make the mixing function time or memory consuming to
compute. However, this may also lead to slow verification
of blocks, which is undesirable.

• Make the mixing function hard to precompute, for
example by using a hash of the block headers as salt.

• Increase the number of timeslots during an epoch.
However, this would also lead to slower updates to the
stake tree.

• Automatically lock the wallet of stakeholders who create
an invalid keyblock.

6.1.6 Compromised Stakeholder

If a block signing key is compromised, it can be changed
by posting a SetSigningKey transaction to the blockchain,
signed by the keys referred in the stakeholder’s locking
script. If the keys referred in the stakeholder’s locking script
are compromised, an honest coalition of stakeholders can
cooperate to revoke trust in the compromised stakeholder by
posting a ConfiscateStakes transaction on the blockchain.

6.1.7 Compromised Domain Owner

An adversary who gets access to the private signing key of
a domain holder can trick (any) CA to sign a fraudulent
certificate on behalf of the adversary. However, this certificate
can only be used until the domain owner detects the leak (for
example by monitoring the CT logs) and changes its signing
key by posting an UpdateTransaction on the blockchain. If the
private keys referred in the domain owner’s locking script are
leaked and they trick a blockchain CA into approving a new
locking script for the domain owner containing private keys
controlled by an adversary, access to the domain is irrevocably
lost. The domain owner must then wait until the account
expires, and then re-register the account.

6.2 Performance Analysis

This performance analysis provide some back-of-the-envelope
calculations which is used to estimate resource requirements
for blockchain nodes. The goal is to determine a suitable block
size and make a verdict whether our scheme is practically
applicable, if deployed on the same scale as DNS. Our
analysis focuses on the the performance metrics discussed in
Section 2.4.6.

The reason we choose to look at DNS, is because there is
one-to-one mapping between domain names and accounts in
the account tree. This means that the size of the account tree,
and the number of transactions in the blockchain network is
directly proportional to the number of domains. It should
be noted that far from all domains utilise HTTPS today, but
considering HTTPS is being more and more of a requirement,
this is likely to change.

6.2.1 Block Size

Based on statistics collected by VeriSign, there were a total of
327 million registered domain names across all top domains,
at the end of the third quarter 2016, with an average yearly
increase of about 23 million domain names per year between
the years 2011 to 2016 [55].

Domains are typically registered and renewed on a yearly
basis, and under the assumption that each registered domain
name is either renewed or revoked once per year, a total of
327 million transactions must be processed every year, or
6000 transactions during a 10 minute timeslot. Assuming an
average transaction size of 864 bytes (an update transaction

31

20
11

Q
1

20
11

Q
2

20
11

Q
3

20
11

Q
4

20
12

Q
1

20
12

Q
2

20
12

Q
3

20
12

Q
4

20
13

Q
1

20
13

Q
2

20
13

Q
3

20
13

Q
4

20
14

Q
1

20
14

Q
2

20
14

Q
3

20
14

Q
4

20
15

Q
1

20
15

Q
2

20
15

Q
3

20
15

Q
4

20
16

Q
1

20
16

Q
2

20
16

Q
3

200

220

240

260

280

300

320

340

N
um

be
r
of

do
m
ai
ns
×
1
06

Figure 6.1: The number of domains registered in the domain name system, measured quarterly from the first quarter 2011 until the third quarter
2016.

with 128-byte account name, 320-byte unlocking script, 84-
byte CA proof, 32-byte signing key, 160-byte update script
and 160-byte revocation script1) we need a block size of 5.2
MB, split among several microblocks, about five times the
current Bitcoin block size. A sudden increase of the number
of transactions in the short run can be handled by queuing
transactions in the mempool. However, once the mempool
is full, one would have to drop transactions in the network.
This is why renewals of domains have to be somewhat evenly
spread out. To have everyone renewing their blockchain
identity at the beginning of a new year would not work.

6.2.2 Storage Requirements for Validators
and Stakeholders

Assuming each node in the account tree contains a 564-byte
account (consisting of 128-byte account name, 32-byte signing
key, 84-byte CA proof, 160-byte revocation script and 160-
byte update script): a database with all 327 million accounts
would have a size of ≈ 185 GB. Blockchain nodes would also
have to store the account tree, consisting of the min-heap and
self-balancing tree discussed in Section 4.6. If each disk block
for this account tree is 109 byte large, the whole account tree
structure would occupy another 36 GB.

Additionally each node may have to store a synchronisation

1A multisignature script with five public keys is about 160 bytes large.
This script should be versatile enough for most users.

point consisting of all transactions for the last w blocks,
together with an old version of the account database and the
account tree, as it looked w blocks ago. Not all nodes need
to store this information, since it is only needed to bootstrap
new nodes. Say for example, that each epoch consists of 160
keyblocks, and by convention each blockchain node stores the
transactions of the last 30 epochs. With a block interval of
10 minutes as in Bitcoin, this is all transactions during a one-
month period. This would occupy an additional 22 GB for the
transactions and another 216 GB for the account tree and the
database.

Storage requirements would increase over time when more
and more accounts are added. Assuming linear growth with
23 million accounts every year, the size of the database would
increase with about 13 GB/year, the one-month transaction
set would increase with 1.65 GB/year and the account tree
would increase with 2.5 GB/year. A summary is available in
Section 6.2.2.

6.2.3 Bandwidth Requirements for Thin
Clients

Thin clients need to download a copy of the stake tree and
the block headers of the keyblocks. They can then request a
Merkle proof from a validator or stakeholder when required,
to convince themselves that a certain account is present in
the account tree.

32

Table 6.1: Storage and bandwidth requirements for different blockchain nodes.

Data Stored/downloaded by Size Growth

Account tree Validators and stakeholders 36 GB 2.5 GB/year
Account contents (such as
scripts)

Validators and stakeholders 185 GB 13 GB/year

Transaction history Stakeholders and some val-
idators

22 GB/month 1.65 GB/year

Synchronisation point Stakeholders and some val-
idators

243 GB 17.15 GB/year

Block headers Everyone 13.6 MB/year
Stake tree Everyone Negligible Negligible
Blockchain truststore Validators and stakeholders Negligible Negligible
Proof data Thin clients 3.7 KB/certificate

The size of a keyblock is 251 bytes during the commit
phase and 267 bytes during the reveal phase as specified in
Appendix E. With a block interval of 10 minutes, this yields
about 13.6 MB of block headers every year, which has to be
downloaded by new clients. The size of the stake tree grows
over time when new stakeholders are added and removed, but
unless this happens very often, the size of the stake tree should
remain negligible.

In addition to the bandwidth required to download the
block headers and the stake tree, which is only done once, a
thin client also need to download the server’s public key and
some proof data for each certificate it want to validate. More
specifically, they need to download the blockchain account for
a domain holder together with a Merkle proof which proves
that the account is present in the account tree. If the account
tree is implemented using a red-black tree, the Merkle proof
will be of bounded size as follows:

Lemma 2 (Maximum depth of a red-black tree). The depth
of a red-black tree with n nodes is bounded by O(log n+ 1).

Hence, the depth of an account tree containing all 327
million domains is at most 57. For each level in the tree, two
hashes are needed to recreate the Merkle hash of the parent
node (the Merkle hash of the sibling node and the hash of
the account stored in the parent node). If each hash is 32
bytes, this means that the maximum size of any Merkle proof
will be ≈ 3.7 KB. Additionally, one would have to send the
domain owner’s public key and a hash of the account body,
which can be used to compute the Merkle hash of the account
(see Definition 3).

6.2.4 Bootstrap Time for New Nodes

A new blockchain node which is booting up needs to
synchronise with the network before it can start to validate
new transactions. This involves downloading and verifying
the block headers of the longest available blockchain
B1, B2 . . . BN , downloading the accounts and the account tree
for block Bi, 0 < i < N and all transactions for the most
recent N−i blocks Bi, Bi+1 . . . BN . To download the account
tree (≈ 36 GB), the account database (≈ 185 GB) and one

month of transaction history (≈ 22 GB) would take about 11
hours with a 50 Mb/s internet connection. Since we always
keep a window of only the last N − i transactions, the time to
bootstrap new nodes will not increase significantly over time.

33

Chapter 7

Discussion

The proposed design has mainly been motivated by
scalability, which was deemed to be the largest obstacle for
our blockchain-based solution to work. Although it appears
as storage requirements are not going to be a large problem
if pruning is used, the number of transactions which can
processed is still a bottleneck. This could potentially be
rectified by sharding the blockchain, meaning a transaction
is only validated and stored by a subset of stakeholders.
Sharding is a topic of ongoing research, and will probably
have to be investigated in more detail before deploying our
blockchain scheme at scale. Apart from throughput, we also
faced issues with large block headers, mainly due to the use
of Merkle proofs in our Proof of Stake scheme. Our block
headers are significantly heavier than Bitcoin’s, and occupies
about 13.6 MB yearly, compared to Bitcoin’s 4.2 MB. For full
security, a client must synchronise these headers along with a
copy of the stake tree before any certificates can be validated,
which may prove cumbersome in practice.

It should be noted that the Bitcoin blockchain is almost
trustless, while our system requires some trust in the
stakeholders who maintain the blockchain. In particular,
a majority of stakeholders can collude in order to subvert
the integrity of the blockchain. We would argue that such
an attack is unlikely to happen on purpose, since it most
likely will be detected and the stakeholders involved may
face legislative action as a result. Our system also requires
some trust in the CAs responsible for signing CA proofs. A
malicious blockchain CA could try to swap the keys of the
domain owner before registering the identity. This would not
pose a threat to already registered identities, but could still
prove to be problematic since existing identities cannot be
revoked.

The owner of an identity is the owner to the keys referred
in the account’s locking script. If these keys are stolen or
lost, there may be no way of recovering the account and one
would have to wait until the account has expired and can
be registered again. Ironically, this is also the strength of the
blockchain since it is impossible to take control over someone’s
account without having access to their keys. However, one
always have the opportunity to specify a separate revocation
script, which can be used by for example a CA to re-register
the account. Techniques such as Verifiable Secret Sharing
where a key is split among several people, or the use of
multisignature scripts containing backup keys can be used

to ensure an account can be recovered even if some keys are
lost. In this way, it is up to the domain owner to adjust the
level of security to fit their needs.

A benefit of a distributed PKI is that it may have the
potential to improve certificate revocation. In a distributed
PKI, each domain owner would be able to attest to the
validity of their own certificates. This eliminates the
need for a centrally administered OCSP servers run by
CAs, which can be a targets for denial of service attacks.
However, it is doubtful whether our blockchain solution could
provide reliable revocation services due to limited transaction
throughput. Further work on the use of distributed PKIs for
certificate revocation is a good topic for future research.

7.1 Conclusion

Although the use of a blockchain as an authoritative source
of information for the web sounds tempting, mainly due to its
strong security guarantees, it is not without drawbacks. Most
notably, a client must synchronise the block headers of the
longest chain before it can start to verify the server signatures
found in certificates, and the limited number of transactions
which can be processed may limit its usability. Although a
block size of 5.2 MB is perfectly feasible, it assumes renewal
of identities are evenly spread out during the year, which
is somewhat unrealistic. A blockchain design would also
discourage domain holders from using the blockchain as a
tool for revocation, since this would lead to an increase in
the number of transactions which has to be processed. In
the unlikely event of a new Heartbleed bug, where millions
of servers may need to rotate their keys at the same time,
the system would simply grind to a halt. Identities which
are lost, would also be unavailable until they expire which
may discourage some people from putting their identity on
the blockchain.

These drawbacks indicate that a distributed PKI backed
by a blockchain is not a silver bullet in its current form,
but rather a complement to existing security solutions. At
this stage, it is hard to predict whether a blockchain-based
solution for the web will succeed. Success is largely going
to depend on the participation of CAs, browser vendors and
other stakeholders, and whether they can agree on a standard
which can be widely adopted and implemented.

34

About PrimeKey
This thesis was written at PrimeKey Solutions AB.
PrimeKey provides businesses and organisations around the
world with the ability to implement security solutions such as
e-Passports, authentication, digital signatures, unified digital
identities and validation using EJBCA Enterprise, SignServer
Enterprise and PrimeKey PKI Appliance. PrimeKey has its
head office in Stockholm, Sweden.

Acknowledgements
I want to thank PrimeKey for giving me the opportunity to
write this thesis, specifically Johan Eklund and my PKI advi-
sor Mike Kushner who have taken great interest in my work
and provided me with useful feedback. I also want to thank
everyone at my university who have helped me throughout
the writing of this thesis, most notably my university advisor
Dr. Per Austrin and my examiner Prof. Johan Håstad. I also
want to mention the following students who have helped me
peer review an earlier draft: Arash Safari, Edvin Lundberg,
Hannes Leskelä, Lovisa Runhem and Martin Steier - thank
you for your ideas and comments! Finally, I want to thank
Dimaz Ankaa Wijaya for all interesting conversations about
blockchains.

The most recent version of this thesis can be found at
https://helix.stormhub.org/papers.

35

https://helix.stormhub.org/papers

Bibliography

[1] Ali, M., Nelson, J., Shea, R., and Freedman, M. J. Blockstack: A
Global Naming and Storage System Secured by Blockchains. In 2016
USENIX Annual Technical Conference (USENIX ATC 16) (Denver,
CO, 2016), USENIX Association, pp. 181–194.

[2] Andresen, G. Increase maximum block size. Bitcoin Improvement
Proposal 101 (June 2015).

[3] Antonopoulos, A. M. Mastering Bitcoin: Unlocking Digital
Crypto-Currencies, 1st ed. O’Reilly Media, Inc., 2014.

[4] Baqer, K., Huang, D. Y., McCoy, D., and Weaver, N. Stressing
out: Bitcoin “stress testing”. In Financial Cryptography and Data
Security - FC 2016 International Workshops, BITCOIN, VOTING,
and WAHC, Christ Church, Barbados, February 26, 2016, Revised
Selected Papers (2016), pp. 3–18.

[5] Barnes, R., Hoffman-Andrews, J., and Kasten, J. Automatic
Certificate Management Environment (ACME). Internet-draft,
Internet Engineering Task Force, October 2016.

[6] Basin, D., Cremers, C., Kim, T. H.-J., Perrig, A., Sasse, R., and
Szalachowski, P. ARPKI: Attack Resilient Public-Key
Infrastructure. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (New York, NY, USA,
2014), CCS ’14, ACM, pp. 382–393.

[7] Bentov, I., Lee, C., Mizrahi, A., and Rosenfeld, M. Proof of
Activity: Extending Bitcoin’s Proof of Work via Proof of Stake.
SIGMETRICS Perform. Eval. Rev. 42, 3 (December 2014), 34–37.

[8] Blockchain Technology and the Financial Services Market -
State-of-the-Art Analysis, 2016.

[9] Blockchain.info - Blockchain Size.
https://blockchain.info/charts/blocks-size. Accessed: 2017-02-17.

[10] Bruce, J. The Mini-Blockchain Scheme Rev. 2. Online, July 2014.

[11] C. Evans, C. Palmer, R. S. Public Key Pinning Extension for
HTTP. RFC 7469, RFC Editor, April 2015.

[12] Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and Thayer,
R. OpenPGP Message Format. RFC 4880, RFC Editor, November
2007.

[13] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R.,
and Polk, W. Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile. RFC 5280, RFC
Editor, May 2008.

[14] Coronado, C. On the security and the efficiency of the Merkle
signature scheme. Cryptology ePrint Archive, Report 2005/192, 2005.
http://eprint.iacr.org/2005/192.

[15] Croman, K., et al. On Scaling Decentralized Blockchains. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2016, pp. 106–125.

[16] Dahlberg, R., Pulls, T., and Peeters, R. Efficient Sparse Merkle
Trees. Springer International Publishing, Cham, 2016, pp. 199–215.

[17] Davarpanah, K., Kaufman, D., and Pubellier, O. NeuCoin: the
First Secure, Cost-efficient and Decentralized Cryptocurrency. CoRR
abs/1503.07768 (2015).

[18] Eyal, I., Gencer, A. E., Sirer, E. G., and van Renesse, R.
Bitcoin-NG: A Scalable Blockchain Protocol. CoRR abs/1510.02037
(2015).

[19] Eyal, I., and Sirer, E. G. Majority is not Enough: Bitcoin Mining is
Vulnerable. CoRR abs/1311.0243 (2013).

[20] Ford, W., and Baum, M. S. Secure Electronic Commerce: Building
the Infrastructure for Digital Signatures and Encryption, 2nd ed.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2000.

[21] Fox IT. DigiNotar Certificate Authority breach “Operation Black
Tulip”. Fox IT Interim Report (September 2011).

[22] Framtidens husköp i blockkedjan - Ett utvecklingsprojekt med
Lantmäteriet, Telia Company, Chromaway och Kairos Future, 2016.

[23] Garzi, J. Block size increase to 2MB. Bitcoin Improvement Proposal
102 (June 2015).

[24] Garzi, J. Floating block size hard limit. Bitcoin Improvement
Proposal 100 (June 2015).

[25] Hallam-Baker, P. X.509v3 Transport Layer Security (TLS) Feature
Extension. RFC 7633, RFC Editor, October 2015.

[26] Hearn, M. Connection Bloom filtering. Bitcoin Improvement
Proposal 37 (October 2012).

[27] Jivsov, A. Compact representation of an elliptic curve point. Internet
draft, Symantec, June 2014.

[28] John Leyden. Comodo admits 2 more resellers pwned in SSL cert
hack. The Register (March 2011).

[29] Kalodner, H. A., et al. An Empirical Study of Namecoin and
Lessons for Decentralized Namespace Design. In 14th Annual
Workshop on the Economics of Information Security, WEIS 2015,
Delft, The Netherlands, 22-23 June, 2015 (2015).

[30] Kaskaloglu, K. Near zero bitcoin transaction fees cannot last
forever. In The International Conference on Digital Security and
Forensics (DigitalSec2014) (2014), The Society of Digital Information
and Wireless Communication, pp. 91–99.

[31] Kiayias, A., Russell, A., David, B., and Oliynykov, R. Ouroboros:
A Provably Secure Proof-of-Stake Blockchain Protocol. Cryptology
ePrint Archive, Report 2016/889, 2016.
http://eprint.iacr.org/2016/889.

[32] Kim, T. H.-J., Huang, L.-S., Perrig, A., Jackson, C., and
Gligor, V. Accountable Key Infrastructure (AKI): A Proposal for a
Public-key Validation Infrastructure. In Proceedings of the 22Nd
International Conference on World Wide Web (New York, NY, USA,
2013), WWW ’13, ACM, pp. 679–690.

[33] King, S., and Nadal, S. PPCoin: Peer-to-Peer Crypto-Currency with
Proof-of-Stake, 2012.

[34] Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I.,
Gasser, L., and Ford, B. Enhancing Bitcoin Security and
Performance with Strong Consistency via Collective Signing. CoRR
abs/1602.06997 (2016).

[35] Kwon, J. Tendermint GitHub Pages - Merkle Trees. https:
//github.com/tendermint/tendermint/wiki/Merkle-Trees#iavl-tree,
2015. Accessed: 2017-06-02.

[36] Lamport, L., Shostak, R., and Pease, M. The Byzantine Generals
Problem. ACM Trans. Program. Lang. Syst. 4, 3 (July 1982),
382–401.

[37] Laurie, B., Langley, A., and Kasper, E. Certificate Transparency.
RFC 6962, RFC Editor, June 2013.

[38] Let’s Encrypt Stats - Let’s Encrypt - Free SSL/TLS Certificates.
https://letsencrypt.org/stats/. Accessed: 2017-02-17.

36

https://blockchain.info/charts/blocks-size
http://eprint.iacr.org/2005/192
http://eprint.iacr.org/2016/889
https://github.com/tendermint/tendermint/wiki/Merkle-Trees#iavl-tree
https://github.com/tendermint/tendermint/wiki/Merkle-Trees#iavl-tree
https://letsencrypt.org/stats/

[39] Matsumoto, S., and Reischuk, R. M. IKP: Turning a PKI Around
with Blockchains. Cryptology ePrint Archive, Report 2016/1018, 2016.
http://eprint.iacr.org/2016/1018.

[40] McConaghy, T., Marques, R., and Müller, A. BigchainDB: A
Scalable Blockchain Database, 2016.

[41] Bitcoin Wiki - Merged mining specification.
https://en.bitcoin.it/wiki/Merged_mining_specification. Accessed:
2017-02-20.

[42] Merkle, R. C. A digital signature based on a conventional encryption
function. In A Conference on the Theory and Applications of
Cryptographic Techniques on Advances in Cryptology (London, UK,
UK, 1988), CRYPTO ’87, Springer-Verlag, pp. 369–378.

[43] Mizrahi, A. A blockchainbased property ownership recording system,
2017. Accessed: 2017-05-10.

[44] Mockapetris, P. Domain names: Implementation and Specification.
RFC 883, RFC Editor, November 1983.

[45] Mozilla. Mozilla Included CA Certificate List.
https://wiki.mozilla.org/CA:IncludedCAs. Accessed: 2017-02-28.

[46] Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System, May
2008.

[47] Netcraft. Netcraft’s March 2016 SSL Survey, March 2016.

[48] O’Dwyer, K. J., and Malone, D. Bitcoin mining and its energy
footprint. In 25th IET Irish Signals Systems Conference 2014 and
2014 China-Ireland International Conference on Information and
Communications Technologies (ISSC 2014/CIICT 2014) (June
2014), pp. 280–285.

[49] Paul Ducklin. The TURKTRUST SSL certificate fiasco – what really
happened, and what happens next? Sophos, Naked Security (January
2013).

[50] Rosenfeld, M. Overview of Colored Coins, 2012.

[51] Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin,
S., and Adams, C. X.509 Internet Public Key Infrastructure Online
Certificate Status Protocol - OCSP. RFC 6960, RFC Editor, June
2013.

[52] Statoshi - Unspent Transaction Output Set.
https://statoshi.info/dashboard/db/unspent-transaction-output-set.
Accessed: 2017-02-17.

[53] Stephens, J. PKI FAQ: What is the maximum number of names that
can be included in the SAN extension? Microsoft TechNet, 2011. Rev.
5.

[54] Syta, E., Tamas, I., Visher, D., Wolinsky, D. I., Jovanovic, P.,
Gasser, L., Gailly, N., Khoffi, I., and Ford, B. Keeping
authorities "honest or bust" with decentralized witness cosigning. In
IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA,
USA, May 22-26, 2016 (2016), pp. 526–545.

[55] VeriSign. The Domain Name Industry Brief. Press Release, 2016.
Volume 14, Issue 1.

[56] Viega, J., Chandra, P., and Messier, M. Network Security with
OpenSSL: Cryptography for Secure Communications, 1st ed. O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 2002.

[57] W3Techs - Market Share Trends for SSL Certificate Authorities.
https://w3techs.com/technologies/history_overview/ssl_certificate.
Accessed: 2017-02-17.

[58] Wilkinson, S., et al. Storj - A Peer-to-Peer Cloud Storage Network,
2014.

[59] Wood, G. Ethereum: A Secure Decentralised Generalised Transaction
Ledger, 2014. EIP-150 Revision.

[60] Wuille, P. Block size following technological growth. Bitcoin
Improvement Proposal 103 (July 2015).

[61] Yu, J., Cheval, V., and Ryan, M. DTKI: a new formalized PKI with
no trusted parties. CoRR abs/1408.1023 (2014).

37

http://eprint.iacr.org/2016/1018
https://en.bitcoin.it/wiki/Merged_mining_specification
https://wiki.mozilla.org/CA:IncludedCAs
https://statoshi.info/dashboard/db/unspent-transaction-output-set
https://w3techs.com/technologies/history_overview/ssl_certificate

Appendices

38

Appendix A

Follow-the-satoshi

This appendix contains psuedocode for Algorithm 1.

Algorithm 1 Procedure for follow-the-satoshi in a stake tree, taking a CSPRNG < and a stake tree T as input, and outputs
a walletW chosen at random with probability proportional to the number of coins in the wallet. The stake tree is modeled as
a one-indexed array where T[1] is the root of the tree. Each node T[i], 1 ≤ i ≤ |T| is a tuple (x1, x2,W) where x1 is the total
amount of coins in the left subtree, x2 is the total amount of coins in the right subtree, and W is the wallet of a stakeholder
or nil if the node is not a leaf node.
procedure fts-tree(<,T)→W

assume |T| ≥ 3
i← 1 . index of root node
loop

if T[i] is a leaf then
return T[i].wallet

end if
x1 ← T[i].x1

x2 ← T[i].x2

r ← <(x1 + x2)
if 1 ≤ r ≤ x1 then . left subtree

i← i · 2
else . right subtree

i← i · 2 + 1
end if

end loop
end procedure

39

Appendix B

Operations on the Stake Tree

This appendix specifies the format of transactions related to the stake tree.

Table B.1: A StakesTransfer begins a transfer of coins by putting an encumbrance on an amount of coins with a locking script. The amount is
transferred when someone presents a solution to the locking script provided in a matching ReceiveStakes transaction.

Field Description Size

Payer A hash H(N) identifying the stakeholder sending the coins. 32 bytes
Payment script A Bitcoin locking script which defines the conditions which has to be fulfilled in order to

complete the transfer using a consecutive ReceiveStakes transaction.
VarInt

Amount The amount of stake to transfer. 4 bytes
Timestamp A UNIX timestamp indicating the epoch for which this vote is valid. 8 bytes
Unlocking script A Bitcoin unlocking script authorising this transaction. VarInt

Table B.2: A ReceiveStakes transaction receives coins from another stakeholder by presenting a solution to the corresponding payment script.
This transaction requires a reference to a previously submitted StakesTransfer transaction.

Field Description Size

Payee A hash H(N) identifying the stakeholder receiving the coins. 32 bytes
Payer The hash of a previously submitted StakesTransfer transaction. 32 bytes
Solution script A solution to the payment script in the stakes transfer transaction, whose hash is stored

in the “Payer” field.
VarInt

Timestamp A UNIX timestamp indicating the epoch for which this vote is valid. 8 bytes
Unlocking script A Bitcoin unlocking script authorising this transaction. VarInt

Table B.3: A CreateStakeholder transaction votes for adding a new stakeholder to the stake tree. Once the new stakeholder receives a majority
vote, coins from the existing stakeholders are transferred to the new stakeholder in proportion to what the existing stakeholders currently own. For
example, if a new stakeholder receives a majority vote to own xnew fraction of the coins, an old stakeholder currently controlling xold

xtotal
fraction of

the coins would have to transfer xoldxnew coins to the new stakeholder.

Field Description Size

Signing key The public key KS used by the stakeholder to sign blocks. 32 bytes
Stakeholder name The name N of the stakeholder. ≤ 64 bytes
Coins The amount of coins which should be transferred to the new stakeholder. 4 bytes
Timestamp A UNIX timestamp indicating the epoch for which this vote is valid. 8 bytes
Locking script A hash H(Lscr) of the stakeholder’s locking script. 32 bytes

40

Table B.4: A LockStakes votes for locking the coins account of another stakeholder. If the subject is currently locked, the transaction is deemed
invalid and dropped, otherwise it is deemed valid and should be put in a subsequent keyblock. Once a coalition of stakeholders controlling a
majority of the coins has voted for a wallet to be locked, the locking bit of the subject is set to 1, which effectively excludes the stakeholder from
the consensus process. The wallet then remains suspended, until it is removed from the stake tree or is unlocked again.

Field Description Size

Origin A hash H(N) identifying the voting stakeholder. 32 bytes
Subject A hash H(N) indicating the wallet to be locked. 32 bytes
Timestamp A UNIX timestamp indicating the epoch for which this vote is valid. 8 bytes
Unlocking script A Bitcoin unlocking script authorising this vote. VarInt

Table B.5: An UnlockStakes votes for unlocking the coins account of another stakeholder. If the subject is currently unlocked, the transaction is
deemed invalid and dropped, otherwise it is deemed valid and cached in the mempool. Once a coalition of stakeholders controlling a majority of
the coins has voted for a wallet to be unlocked, the locking bit of the subject is set to 0, which includes the stakeholder into the consensus process
again.

Field Description Size

Origin A hash H(N) identifying the voting stakeholder. 32 bytes
Subject A hash H(N) indicating the wallet to be locked. 32 bytes
Timestamp A UNIX timestamp indicating the epoch for which this vote is valid. 8 bytes
Unlocking script A Bitcoin unlocking script authorising this vote. VarInt

Table B.6: A ConfiscateStakes transaction votes for confiscating some of the coins, or all the coins of a stakeholder S. This transaction should
be put in a subsequent keyblock and becomes effective once a coalition of stakeholders controlling a majority of the coins in the stake tree have
confirmed the vote. Once the vote has been confirmed, they median of the proposed values in the “Amount” field is distributed among the remaining
stakeholders. If all coins are confiscated, this transaction permanently excludes S from the consensus process and purges their wallet from the
stake tree.

Field Description Size

Origin A hash H(N) identifying the voting stakeholder. 32 bytes
Subject A hash H(N) indicating the wallet to be locked. 32 bytes
Amount Proposes an amount of coins to confiscate. 4 bytes
Timestamp A UNIX timestamp indicating the epoch for which this vote is valid. 8 bytes
Unlocking script A Bitcoin unlocking script authorising this vote. VarInt

Table B.7: A SetSigningKey transaction changes the signing key of a stakeholder.

Field Description Size

Origin A hash H(N) identifying the stakeholder whose signing key should be set. 32 bytes
New signing key The new signing KS key to use. 32 bytes
Timestamp A UNIX timestamp indicating the epoch for which this vote is valid. 8 bytes
Unlocking script A Bitcoin unlocking script authorising this transaction. VarInt

Table B.8: A SetLockingScript transaction changes the locking script of a stakeholder.

Field Description Size

Origin A hash H(N) identifying the stakeholder whose locking script should be set. 32 bytes
New locking script The new locking script to use. VarInt
Timestamp A UNIX timestamp indicating the epoch for which this vote is valid. 8 bytes
Unlocking script A Bitcoin unlocking script authorising this transaction. VarInt

41

Appendix C

Operations on the Account Tree

This appendix specifies the format of transactions related to the account tree.

Table C.1: An AddAccount transaction adds a new account to the account tree. The account is added only if the name of the account has not
already been registered, and the CA proof is valid. The CA proof is accepted as valid as long as it is signed by a CA currently in the blockchain
truststore and the timestamp of the signature does not deviate significantly from the timestamp of the block.

Field Description Size

Account name The unique identifier N for the account. ≤ 64 bytes
Key type An OID identifying the type of key. 2 bytes
Signing key The public key KS used to verify certificate signatures. 32 bytes
CA proof The CA proof PCA. 84 bytes
Update script The update script Uscr. VarInt
Revocation script An optional revocation script Rscr. VarInt

Table C.2: A RevokeAccount transaction revokes an account and removes it from the account tree. For this transaction to be valid, one must
provide a valid unlocking script, fulfilling the conditions defined in the revocation script Rscr, or the conditions defined in the update script Uscr
if no revocation script is present.

Field Description Size

Account name A hash H(N) identifying an account to be revoked. 32 bytes
CA proof A valid CA proof PCA. 84 bytes
Unlocking script A Bitcoin unlocking script fulfilling the encumbrance specified by Rscr. VarInt

Table C.3: An UpdateAccount transaction updates an account with new information given a valid CA proof. For this transaction to be valid, one
must provide a valid unlocking script, fulfilling the conditions defined in the update script Uscr. This transaction sets the new date of expiry to
the expiration date of the CA proof, and optionally updates one or more fields as specified.

Field Description Size

Account name A hash H(N) identifying the account to be updated. 32 bytes
Unlocking script A Bitcoin unlocking script fulfilling the encumbrance specified by Uscr. VarInt
CA proof A valid CA proof PCA specifying the new expiration date. 84 bytes
Update mask A bitmask specifying the fields to be updated. 4 bits
Type of key An OID identifying the type of key. 2 bytes
Signing key The new public key KS used to verify certificate signatures, if any.
Update script The new update script Uscr, if any. VarInt
Revocation script The new revocation script Rscr, if any. VarInt

42

Appendix D

Operations on the Blockchain Truststore

This appendix specifies the format of transactions related to the blockchain truststore.

Table D.1: An AddCA transaction votes for adding a new CA to the truststore with the specified object identifier CAOID and public key KCA.
The date of creation is not specified here, but set once the CA is added to the truststore.

Field Description Size

CA identifier An OID CAOID used to identify the CA. 2 bytes
Key type An OID identifying the type of key. 2 bytes
Public key A public key used to verify signatures produced by this CA.
Origin A hash H(N) identifying the voting stakeholder. 32 bytes
Unlocking script A Bitcoin unlocking script authorising this transaction. VarInt

Table D.2: A RevokeCA transaction votes for revocation of an existing CA in the blockchain truststore. The date of revocation is not specified
here, but set once the CA is removed from the truststore.

Field Description Size

CA identifier An OID CAOID specifying the CA to be revoked. 2 bytes
Origin A hash H(N) identifying the voting stakeholder. 32 bytes
Unlocking script A Bitcoin unlocking script authorising this transaction. VarInt

43

Appendix E

Microblocks and Keyblocks

This appendix specifies the format of keyblocks and microblocks.

Table E.1: The format of a keyblock. Fields in the block header are highlighted in yellow. The last column indicates whether the field is present
during the commit phase (C), during the reveal phase (R) or both (CR).

Field Description Size CR?

Magic number A magic number identifying the type of data structure. 4 bytes CR
Block size The number of bytes following up to the end of the block. 4 bytes CR
Version The block version, incremented whenever the software is updated. 4 bytes CR
Time A 64 bit UNIX timestamp, containing the creation date of the block. 8 bytes CR
Commitment A commitment H(R). 32 bytes C
Randomness Some random bits R matching the previous commitment. 16 bytes R
Previous block The hash of the previous block. 32 bytes CR
Previous keyblock The hash of the previous keyblock. 32 bytes CR
Truststore hash The hash of the blockchain truststore. 32 bytes R
Stake root hash The Merkle root hash of the stake tree. 32 bytes R
Account root hash The Merkle root hash of the account tree. 32 bytes CR
Transaction root hash The Merkle root hash of all transactions included in the block. 32 bytes C
Signature A signature of the fields in the block header produced by the stakeholders

private key.
64 bytes CR

Signers A bit array indicating which block leaders have co-signed the keyblock. 15 bytes
Transaction counter The number of transactions in the block. VarInt C
Transactions A list of transactions. C

Table E.2: The format of a microblock. Fields in the block header are highlighted in yellow.

Field Description Size

Magic number A magic number identifying the type of data structure. 4 bytes
Block size The number of bytes following up to the end of the block. 4 bytes
Version The block version, incremented whenever the software is updated. 4 bytes
Time A 64 bit UNIX timestamp, containing the creation date of the block. 8 bytes
Previous block The hash of the previous block. 32 bytes
Transaction root hash The Merkle root hash of the Merkle tree with transactions. 32 bytes
Signature A signature of the fields in the block header produced by the stakeholders private

key.
64 bytes

Transaction counter The number of transactions in the block. VarInt
Transactions A list of transactions.

44

Appendix F

Operation of a Blockchain Node

F.1 Blockchain Maintenance

This section describes what a blockchain node should do when a new commit or reveal phase starts and how a blockchain
node synchronises with the network the first time it boots up.

• During a designated timeslot in the commit phase Each timeslot in the commit phase starts with the block leader
of the timeslot broadcasting their keyblock to the rest of the network.

1. The “Time” field is set to the current time according the blockchain node’s local clock.

2. A random 128-bit value R is generated and stored locally. The hash H(R) is computed and put into the
“Commitment” field.

3. The fields “Previous block” and ”Previous keyblock” are set to the hash of the last valid microblock and keyblock
respectively.

4. The “Account root hash” field is set to the current Merkle root hash of the account tree after all previous transactions
have been applied.

5. The “Signature” field is set to a signature computed over the fields in the block header, produced jointly by the
stakeholders of the current epoch, for example using the CoSi protocol [54].

6. The ith bit of the “Signers” field is set to 1 if the block leader during timeslot i participated in the co-signing
process.

7. The list of transactions is filled with all pending transactions from the mempool related to the stake tree and the
blockchain truststore. If congestion is detected, one may propose a new block size for the next epoch by adding an
optional ChangeBlocksize transaction. The transactions are ordered in a Merkle tree and the root of this tree is put
in the “Transaction root hash” field.

8. Finally the size of the block is computed and put in the “Block size” field.

After the keyblock has been broadcast, the stakeholder collects transactions for the account tree and puts them in
microblocks which are produced regularly until the timeslot ends.

• During a designated timeslot in the reveal phase A timeslot in the reveal phase is identical to a timeslot in the
commit phase, except for the keyblock which is constructed differently.

1. The “Randomness” field is filled with the 128 random bits R which were committed in the previous timeslot.

2. The “Stake root hash” is set to the Merkle root hash of the stake tree used to verify blocks during the next epoch.

3. The “Truststore hash” is set to the hash of the blockchain truststore, which should be used to verify CA proofs
during the next epoch.

• When an epoch ends and a new commit phase starts

1. Use the revealed commitments R1,R2 . . .Rn from the previous reveal phase to compute the seed s for the CSPRNG
using a mixing function as s = Mix(R1,R2 . . .Rn) and use Algorithm 1 (Appendix A) to derive the stakeholders
for the next epoch.

45

2. Adjust the block size according to the votes put by the stakeholders of the previous commit phase.

• When a commit phase ends and a new reveal phase starts

1. Recompute the stake tree and the blockchain truststore based on the transactions collected from the keyblocks
during the previous commit phase.

• When a microblock is received

1. The “Time” field containing the timestamp of the block must exceed the timestamp of the previous block, and must
not be a time in the future.

2. The “Previous block” field should contain the hash of the previously received block.

3. The “Signature” field should contain a digital signature produced by the current block leader.

4. Validate all transactions in the block, order them in a Merkle tree and check the root of this tree against the
“Transaction root hash” field.

• When a keyblock is received Move the head of the blockchain one step forward by updating the account tree, using
the transactions found in the microblocks of the previous timeslot.

1. Validate the fields in the block header.

2. Validate and collect the transactions in the block.

3. Optionally create a new synchronisation point by making a copy of the account database, the account tree, the
stake tree and the blockchain truststore. Discard old microblock transactions if needed.

• When a blockchain node boots up for the first time When a blockchain node starts it must synchronise with
the network such that it reaches the same state as other blockchain nodes. In Bitcoin, this is done by traversing the
whole blockchain starting at the genesis block. In our scheme, only the block headers and the transactions found in
keyblocks are kept, while the microblock transactions are pruned after a certain period of time. This means that we
keep a complete transaction history of the stake tree and blockchain truststore, but only the most recent transaction
history of the account tree.

A blockchain node starts the synchronisation process by downloading a copy of the longest blockchain. After the
transaction history of the stake tree and the blockchain truststore have been checked, the state of the account tree
is bootstrapped by downloading a copy of the all accounts and the account tree at a given block number called a
synchronisation point. New synchronisation points are created regularly by blockchain nodes as new blocks are added
to the blockchain. Once the synchronisation is complete, the blockchain node can start to verify incoming microblocks
and keyblocks as usual.

Here follows a summary of the synchronisation process:

1. Download and verify the block headers of the longest blockchain advertised by the network.

2. Download and verify all keyblock transactions for this blockchain starting at the genesis block.

3. Select a recent synchronisation point. Download a copy of all accounts and the account tree and verify the integrity
of the data using the “Account tree hash” field.

4. Traverse all subsequent microblocks following the synchronisation point, updating the account tree as new
microblocks are processed, until the “head” of the blockchain is reached.

46

Figure F.1: Description of how the blockchain is maintained. Each blockchain node keeps track of a window with microblock transactions for
the most recent w blocks on the blockchain, as well as the transactions of all keyblocks starting at the genesis block. Blockchain nodes may also
keep an old copy of the account database and the account tree as they looked w blocks ago, called a synchronisation point. The synchronisation
point is used to bootstrap new blockchain nodes, and moves forward on a regular basis as new blocks are added to the blockchain.

47

Appendix G

Verify a Certificate

A client verifies a certificate by checking both the signature produced by the CA and the signature (of the public key in the
certificate) produced by the domain owner. The blockchain account of the domain owner, containing the domain holder’s
public key, is fetched from the blockchain network or stapled in an OCSP response received from the server.

A client receives the following data (either by extracting it from a custom OCSP response or by contacting the blockchain
network directly):

X An OID KOID identifying the type of public key.

X The domain holder’s public key KS .

X A block number i.

X A Merkle proof P which proves inclusion of the domain holder’s public key in block i.

X A hash H(Ah) computed over the remaining fields in the account body.

A client synchronises and validates the block headers of the longest blockchain advertised by the network, and proceeds as
follows:

1. Extract the topdomain from the “Common Name” field of the certificate.

2. Compute the Merkle hash of the domain holder’s blockchain account as:

H(topdomain | KOID | KS | H(Ah))

3. Use the hashes in P to reconstruct the Merkle root hash of the account tree for block i.

4. Reject the domain holder’s public key if the computed hash does not correspond to the hash found in the “Account root
hash” field of the most recent keyblock on the blockchain.

48

	Introduction
	Problem Statement
	Motivation and Aim
	Delimitation
	Thesis Content and Contribution
	Choice of Methodology
	Related Work
	Namecoin
	Blockstack
	Instant Karma PKI
	Coloured Coins
	Limitations of Existing Solutions

	Background
	Merkle Trees
	Dynamic Merkle Trees

	Public Key Infrastructure
	Certificate Authorities
	Certificate Issuance
	Revoking Certificates
	Certificate Chains
	X.509 Certificates

	Pinning and Certificate Transparency
	Public Key Pinning
	Certificate Transparency

	Blockchains
	Financial Transactions on a Blockchain
	Simple Payment Verification
	Proof of Work
	Proof of Stake
	Blockchain Security
	Scalability Concerns

	Methodology
	Design Goals
	Our Approach
	System Model
	Choice of signature scheme

	Blockchain Design
	Overview
	Naming System
	Stakeholders
	Accounts
	The Stake Tree
	Follow-the-satoshi in the Stake Tree
	Operations on the Stake Tree

	The Account Tree
	Operations on the Account Tree

	The Blockchain Truststore
	Keyblocks and Microblocks
	Dynamic Block Size

	Epochs, Timeslots and Block Leaders
	Co-signing Keyblocks

	Identity Management
	Manage Accounts in the Account Tree
	Issuing and Revoking Certificates
	Certificate Verification

	Evaluation
	Security Analysis
	Threat Model
	51%-attack
	Censor Transactions
	Signing a Counterfeit Keyblock
	Stake Grinding
	Compromised Stakeholder
	Compromised Domain Owner

	Performance Analysis
	Block Size
	Storage Requirements for Validators and Stakeholders
	Bandwidth Requirements for Thin Clients
	Bootstrap Time for New Nodes

	Discussion
	Conclusion

	Appendices
	Follow-the-satoshi
	Operations on the Stake Tree
	Operations on the Account Tree
	Operations on the Blockchain Truststore
	Microblocks and Keyblocks
	Operation of a Blockchain Node
	Blockchain Maintenance

	Verify a Certificate

