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Abstract

Lattice-based cryptography is the use of conjectured hard problems on point lattices in Rn as the foundation
for secure cryptographic systems. Attractive features of lattice cryptography include apparent resistance
to quantum attacks (in contrast with most number-theoretic cryptography), high asymptotic efficiency
and parallelism, security under worst-case intractability assumptions, and solutions to long-standing open
problems in cryptography.

This work surveys most of the major developments in lattice cryptography over the past ten years. The
main focus is on the foundational short integer solution (SIS) and learning with errors (LWE) problems (and
their more efficient ring-based variants), their provable hardness assuming the worst-case intractability of
standard lattice problems, and their many cryptographic applications.
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Chapter 1

Introduction

This survey provides an overview of lattice-based cryptography, the use of apparently hard problems on
point lattices in Rn as the foundation for secure cryptographic constructions. Lattice cryptography has many
attractive features, some of which we now describe.

Conjectured security against quantum attacks. Most number-theoretic cryptography, such as the Diffie-
Hellman protocol [DH76] and RSA cryptosystem [RSA78], relies on the conjectured hardness of integer
factorization or the discrete logarithm problem in certain groups. However, Shor [Sho97] gave efficient
quantum algorithms for all these problems, which would render number-theoretic systems insecure in a future
where large-scale quantum computers are available. By contrast, no efficient quantum algorithms are known
for the problems typically used in lattice cryptography; indeed, generic (and relatively modest) quantum
speedups provide the only known advantage over non-quantum algorithms.

Algorithmic simplicity, efficiency, and parallelism. Lattice-based cryptosystems are often algorithmi-
cally simple and highly parallelizable, consisting mainly of linear operations on vectors and matrices modulo
relatively small integers. Moreover, constructions based on “algebraic” lattices over certain rings (e.g., the
NTRU cryptosystem [HPS98]) can be especially efficient, and in some cases even outperform more traditional
systems by a significant margin.

Strong security guarantees from worst-case hardness. Cryptography inherently requires average-case
intractability, i.e., problems for which random instances (drawn from a specified probability distribution)
are hard to solve. This is qualitatively different from the worst-case notion of hardness usually considered
in the theory of algorithms and NP-completeness, where a problem is considered hard if there merely exist
some intractable instances. Problems that appear hard in the worst case often turn out to be easier on the
average, especially for distributions that produce instances having some extra “structure,” e.g., the existence
of a secret key for decryption.

In a seminal work, Ajtai [Ajt96] gave a remarkable connection between the worst case and the average
case for lattices: he proved that certain problems are hard on the average (for cryptographically useful
distributions), as long as some related lattice problems are hard in the worst case. Using results of this kind,
one can design cryptographic constructions and prove that they are infeasible to break, unless all instances of
certain lattice problems are easy to solve.1

1Note that many number-theoretic problems used in cryptography, such as discrete logarithm and quadratic residuosity, also admit
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Constructions of versatile and powerful cryptographic objects. Historically, cryptography was mainly
about sending secret messages. Yet over the past few decades, the field has blossomed into a discipline
having much broader and richer goals, encompassing almost any scenario involving communication or
computation in the presence of potentially malicious behavior. For example, the powerful notion of fully
homomorphic encryption (FHE), first envisioned by Rivest et al. [RAD78], allows an untrusted worker to
perform arbitrary computations on encrypted data, without learning anything about that data. For three decades
FHE remained an elusive “holy grail” goal, until Gentry [Gen09b, Gen09a] proposed the first candidate
construction of FHE, which was based on lattices (as were all subsequent constructions). More recently,
lattices have provided the only known realizations of other versatile and powerful cryptographic notions, such
as attribute-based encryption for arbitrary access policies [GVW13, BGG+14] and general-purpose code
obfuscation [GGH+13b].

1.1 Scope and Organization

This work surveys most of the major developments in lattice cryptography over the past decade (since
around 2005). The main focus is on two foundational average-case problems, called the short integer
solution (SIS) and learning with errors (LWE) problems; their provable hardness assuming the worst-case
intractability of lattice problems; and the plethora of cryptographic constructions that they enable.

Most of this survey should be generally accessible to early-stage graduate students in theoretical computer
science, or even to advanced undergraduates. However, understanding the finer details of the cryptographic
constructions—especially the outlines of their security proofs, which we have deliberately left informal so
as to highlight the main ideas—may require familiarity with basic cryptographic definitions and paradigms,
which can be obtained from any graduate-level course or the textbooks by, e.g., Katz and Lindell [KL14] or
Goldreich [Gol01]. The reader who lacks such background is encouraged to focus on the essential ideas and
mechanics of the cryptosystems, and may safely skip over the proof summaries.

The survey is organized as follows:

• Chapter 2 recalls the necessary mathematical and cryptographic background.

• Chapter 3 gives a high-level conceptual overview of the seminal works in the area and their significance.

• Chapter 4 covers the modern foundations of the area, which have largely subsumed the earlier works.
Here we formally define the SIS and LWE problems and recall the theorems which say that these
problems are at least as hard to solve as certain worst-case lattice problems. We also cover their more
compact and efficient ring-based analogues, ring-SIS and ring-LWE.

• Chapter 5 describes a wide variety of essential lattice-based cryptographic constructions, ranging from
basic encryption and digital signatures to more powerful objects like identity-based encryption. These
schemes are presented within a unified framework, using just a handful of concepts and technical tools
that are developed throughout the chapter.

• Chapter 6 describes a few more advanced cryptographic constructions, with a focus on fully homomor-
phic encryption and attribute-based encryption.

• Chapter 7 concludes with a discussion of some important open questions in the area.

(comparatively simple) worst-case/average-case reductions, but only within a fixed group. Such a reduction gives us a distribution
over a group which is as hard as the worst case for the same group, but says nothing about whether the group itself is hard, or which
groups are hardest. Indeed, the complexity of these problems appears to vary quite widely depending on the type of group (e.g.,
multiplicative groups of integers modulo a prime or of other finite fields, elliptic curve groups, etc.).
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While we have aimed to convey a wide variety of lattice-based cryptographic constructions and their
associated techniques, our coverage of such a large and fast-growing area is necessarily incomplete. For
one, we do not discuss cryptanalysis or concrete parameters (key sizes etc.) of lattice-based cryptosystems;
representative works on these topics include [GN08, MR09, GNR10, LP11, CN11, LN13]. We also do not
include any material on the recent seminal constructions of candidate multilinear maps [GGH13a, CLT13,
GGH15, CLT15] and their many exciting applications, such as general-purpose code obfuscation [GGH+13b,
SW14]. While all multilinear map constructions to date are related to lattices, their conjectured security relies
on new, ad-hoc problems that are much less well-understood than SIS/LWE. In particular, it is not known
whether any of the proposed constructions can be proved secure under worst-case hardness assumptions, and
some candidates have even been broken in certain ways (see, e.g., [CHL+15, HJ15, CL15, CGH+15]). Note
that early constructions of fully homomorphic encryption also relied on ad-hoc assumptions, but constructions
based on more standard assumptions like (ring-)LWE soon followed; the same may yet occur for multilinear
maps and the applications they enable.

1.2 Other Resources

There are several other resources on modern lattice cryptography, or specialized subtopics thereof. (However,
due to the rapid development of the field over the past few years, these surveys are already a bit dated in
their coverage of advanced cryptographic constructions and associated techniques.) Some excellent options
include:

• The 2007 survey by Micciancio [Mic07] on cryptographic functions from worst-case complexity
assumptions, including ring-based functions;

• the 2009 survey by Micciancio and Regev [MR09] on lattice-based cryptographic constructions and
their cryptanalysis;

• the 2010 survey by Regev [Reg10] on the learning with errors (LWE) problem, its worst-case hardness,
and some early applications;

• the overviews of fully homomorphic encryption by Gentry [Gen10a] and Vaikuntanathan [Vai11];

• videos from the 2012 Bar-Ilan Winter School on Lattice Cryptography and Applications [Bar12];

• other surveys, books, and course notes [NS01, MG02, Reg04, Mic14] on computational aspects of
lattices, including cryptanalysis.

Acknowledgments. I warmly thank Vadim Lyubashevsky, Dieter van Melkebeek, Oded Regev, Noah
Stephens-Davidowitz, Madhu Sudan, and an anonymous reviewer for many valuable comments on earlier
drafts.
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Chapter 2

Background

2.1 Notation

For a real number x ∈ R, we let bxc denote the largest integer not greater than x, and bxe := bx + 1/2c
denote the integer closest to x, with ties broken upward.

We use bold lower-case letters like x to denote column vectors; for row vectors we use the transpose xt.
We use bold upper-case letters like A to denote matrices, and sometimes identify a matrix with its ordered set
of column vectors. We denote the horizontal concatenation of vectors and/or matrices using a vertical bar,
e.g., [A | Ax]. We sometimes apply functions entry-wise to vectors, e.g., bxe rounds each entry of x to its
nearest integer.

For a positive integer q, let Zq = Z/qZ denote the quotient ring of integers modulo q, i.e., the collection
of cosets a+ qZ with the induced addition and multiplication operations. Similarly, because Zq is an additive
group, it supports multiplication by integers, i.e., z · a ∈ Zq for an integer z ∈ Z and a ∈ Zq. We often write
z mod q to denote the coset z + qZ, and y = z (mod q) to denote that y + qZ = z + qZ.

We use standard asymptotic notation O(·),Ω(·),Θ(·), o(·), etc. In addition, tildes (e.g., Õ(·)) indicate
that logarithmic factors in the main parameter are suppressed.

2.2 Lattices

This survey requires minimal knowledge of lattices beyond some basic definitions and computational
problems, which we recall here. (See the other resources listed in the introduction for much more background.)

2.2.1 Basic Definitions

An n-dimensional lattice L is any subset of Rn that is both:

1. an additive subgroup: 0 ∈ L, and −x,x + y ∈ L for every x,y ∈ L; and

2. discrete: every x ∈ L has a neighborhood in Rn in which x is the only lattice point.

Examples include the integer lattice Zn, the scaled lattice cL for any real number c and lattice L, and the
“checkerboard” lattice {x ∈ Zn :

∑
i xi is even}.

The minimum distance of a lattice L is the length of a shortest nonzero lattice vector:

λ1(L) := min
v∈L\{0}

‖v‖.
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(Unless otherwise specified, ‖·‖ denotes the Euclidean norm.) More generally, the ith successive mini-
mum λi(L) is the smallest r such that L has i linearly independent vectors of norm at most r.

Because a lattice L is an additive subgroup of Rn, we have the quotient group Rn/L of cosets

c + L = {c + v : v ∈ L}, c ∈ Rn,

with the usual induced addition operation (c1 + L) + (c2 + L) = (c1 + c2) + L. A fundamental domain
of L is a set F ⊂ Rn that contains exactly one representative c̄ ∈ (c + L) ∩ F of every coset c + L. For
example, the half-open intervals [0, 1) and [−1

2 ,
1
2) are fundamental domains of the integer lattice Z, where

coset c+ Z has representative c− bcc and c− bce, respectively.

Bases and fundamental parallelepipeds. Although every (non-trivial) lattice L is infinite, it is always
finitely generated as the integer linear combinations of some linearly independent basis vectors B =
{b1, . . . ,bk}:

L = L(B) := B · Zk =

{ k∑
i=1

zibi : zi ∈ Z
}
.

The integer k is called the rank of the basis, and is an invariant of the lattice. For the remainder of this survey
we restrict our attention to full-rank lattices, where k = n. A lattice basis B is not unique: for any unimodular
matrix U ∈ Zn×n (i.e., one having determinant ±1), B ·U is also a basis of L(B), because U · Zn = Zn.

For a lattice L having basis B, a commonly used fundamental domain is the origin-centered fundamental
parallelepiped P(B) := B · [−1

2 ,
1
2)n, where coset c + L has representative c−B · bB−1 · ce.

The dual lattice. The dual (sometimes called reciprocal) of a lattice L ⊂ Rn is defined as

L∗ := {w : 〈w,L〉 ⊆ Z},

i.e., the set of points whose inner products with the vectors in L are all integers. It is straightforward to verify
that L∗ is a lattice. For example, (Zn)∗ = Zn, and (cL)∗ = c−1L∗ for any nonzero real c and lattice L. It is
also easy to verify that if B is a basis of L, then B−t := (Bt)−1 = (B−1)t is a basis of L∗.

2.2.2 Computational Problems

We now define some of the computational problems on lattices that have been most useful in cryptography, and
recall some results about their complexity. (There are many other problems that have been extensively studied
in mathematics and computational complexity, but so far have had less direct importance to cryptography.)
Perhaps the most well-studied computational problem on lattices is the shortest vector problem:

Definition 2.2.1 (Shortest Vector Problem (SVP)). Given an arbitrary basis B of some lattice L = L(B),
find a shortest nonzero lattice vector, i.e., a v ∈ L for which ‖v‖ = λ1(L).

Particularly important to lattice cryptography are approximation problems, which are parameterized by an
approximation factor γ ≥ 1 that is typically taken to be a function of the lattice dimension n, i.e., γ = γ(n).
For example, the approximation version of SVP is as follows (note that by setting γ(n) = 1 we recover the
problem defined above):

Definition 2.2.2 (Approximate Shortest Vector Problem (SVPγ)). Given a basis B of an n-dimensional
lattice L = L(B), find a nonzero vector v ∈ L for which ‖v‖ ≤ γ(n) · λ1(L).

7



As described in later sections, several cryptosystems can be proved secure assuming the hardness of
certain lattice problems, in the worst case. However, to date no such proof is known for the search version
of SVPγ . Instead, there are proofs based on the following decision version of approximate-SVP, as well as a
search problem related to the nth successive minimum:

Definition 2.2.3 (Decisional Approximate SVP (GapSVPγ)). Given a basis B of an n-dimensional lat-
tice L = L(B) where either λ1(L) ≤ 1 or λ1(L) > γ(n), determine which is the case.

Definition 2.2.4 (Approximate Shortest Independent Vectors Problem (SIVPγ)). Given a basis B of a
full-rank n-dimensional lattice L = L(B), output a set S = {si} ⊂ L of n linearly independent lattice
vectors where ‖si‖ ≤ γ(n) · λn(L) for all i.

A final important problem for cryptography is the following bounded-distance decoding BDDγ problem,
which asks to find the lattice vector that is closest to a given target point t ∈ Rn, where the target is promised
to be “rather close” to the lattice. This promise, and the uniqueness of the solution, are what distinguish BDDγ
from the approximate closest vector problem CVPγ , wherein the target can be an arbitrary point. (Because
no cryptosystem has yet been proved secure based on CVPγ , we do not formally define that problem here.)

Definition 2.2.5 (Bounded Distance Decoding Problem (BDDγ)). Given a basis B of an n-dimensional
lattice L = L(B) and a target point t ∈ Rn with the guarantee that dist(t,L) < d = λ1(L)/(2γ(n)), find
the unique lattice vector v ∈ L such that ‖t− v‖ < d.

Algorithms and complexity. The above lattice problems have been intensively studied and appear to be
intractable, except for very large approximation factors. Known polynomial-time algorithms like the one
of Lenstra, Lenstra, and Lovász [LLL82] and its descendants (e.g., [Sch87] with [AKS01] as a subroutine)
obtain only slightly subexponential approximation factors γ = 2Θ(n log logn/ logn) for all the above problems
(among many others that are less relevant to cryptography). Known algorithms that obtain polynomial
poly(n) or better approximation factors, such as [Kan83, AKS01, MV10, ADRS15], either require super-
exponential 2Θ(n logn) time, or exponential 2Θ(n) time and space. There are also time-approximation tradeoffs
that interpolate between these two classes of results, to obtain γ = 2k approximation factors in 2Θ̃(n/k)

time [Sch87]. Importantly, the above also represents the state of the art for quantum algorithms, though in
some cases the hidden constant factors in the exponents are somewhat smaller (see, e.g., [LMvdP13]). By
contrast, recall that the integer factorization and discrete logarithm problem (in essentially any group) can be
solved in polynomial time using Shor’s quantum algorithm [Sho97].

On the complexity side, many lattice problems are known to be NP-hard (sometimes under randomized
reductions), even to approximate to within various sub-polynomial no(1) approximation factors. E.g., for
the hardness of SVP, see [Ajt98, Mic98, Kho03, HR07]. However, such hardness is not of any direct
consequence to cryptography, since lattice-based cryptographic constructions so far rely on polynomial
approximation problems factors γ(n) ≥ n. Indeed, there is evidence that for factors γ(n) ≥

√
n, the lattice

problems relevant to cryptography are not NP-hard, because they lie in NP ∩ coNP [GG98, AR04].

2.3 (Discrete) Gaussians and Subgaussians

Many modern works on lattices in complexity and cryptography rely on Gaussian-like probability distributions
over lattices, called discrete Gaussians. Here we recall the relevant definitions.

8



Gaussians. For any positive integer n and real s > 0, which is taken to be s = 1 when omitted, define the
Gaussian function ρs : Rn → R+ of parameter (or width) s as

ρs(x) := exp(−π‖x‖2/s2) = ρ(x/s).1

Notice that ρs is invariant under rotations of Rn, and that ρs(x) =
∏n
i=1 ρs(xi).

The (continuous) Gaussian distribution Ds of parameter s over Rn is defined to have probability density
function proportional to ρs, i.e.,

f(x) := ρs(x)/

∫
Rn

ρs(z) dz = ρs(x)/sn.

For a lattice coset c + L ⊂ Rn and parameter s > 0, the discrete Gaussian probability distribution
Dc+L,s is simply the Gaussian distribution restricted to the coset:

Dc+L,s(x) ∝

{
ρs(x) if x ∈ c + L
0 otherwise.

Smoothing parameter. Micciancio and Regev [MR04] introduced a very important quantity called the
smoothing parameter of a lattice L. Informally, this is the amount of Gaussian “blur” required to “smooth
out” essentially all the discrete structure of L. Alternatively, it can be seen as the smallest width s > 0 such
that every coset c + L has nearly the same Gaussian mass ρs(c + L) :=

∑
x∈c+L ρs(x), up to some small

relative error.
Formally, the smoothing parameter ηε(L) is parameterized by a tolerance ε > 0, and is defined using

the dual lattice as the minimal s > 0 such that ρ1/s(L∗) ≤ 1 + ε. This condition can be used to formalize
and prove the above-described “smoothing” properties. For the purposes of this survey, we often omit ε and
implicitly take it to be very small, e.g., a negligible n−ω(1) function in the dimension n of the lattice.

The smoothing parameter is closely related to other standard lattice quantities. For example:

Theorem 2.3.1 ([Ban93, MR04]). For any full-rank lattice L ⊆ Rn, we have η2−n(L) ≤
√
n/λ1(L∗).

Theorem 2.3.2 ([MR04, GPV08]). For any full-rank lattice L ⊆ Rn and ε ∈ (0, 1/2),

ηε(L) ≤ min
basis B of L

‖B̃‖ ·
√

logO(n/ε) ≤ λn(L) ·
√

logO(n/ε),

where ‖B̃‖ = maxi‖b̃i‖ denotes the maximal length of the Gram-Schmidt orthogonalized vectors {b̃i} of
the ordered basis B = {bi}.

Several works, e.g., [Ban93, Ban95, AR04, MR04, Reg05, Pei07, Pei10, BF11, ADRS15], have shown
that when when s ≥ η(L), the discrete Gaussian distribution Dc+L,s behaves very much like the continuous
Gaussian Ds in many important respects. For example, their moments and tails are nearly the same, and the
sum of independent discrete Gaussians is a discrete Gaussian.

1The normalization factor π in the exponential is chosen so that ρ is its own Fourier transform.
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Subgaussianity. Informally, a random variable (or its distribution) is subgaussian if it is dominated by a
Gaussian. Formally, a real random variable X is subgaussian with parameter s if for every t ≥ 0, we have2

Pr[|X| > t] ≤ 2 exp(−πt2/s2).

More generally, a random vector x over Rn is subgaussian with parameter s if every marginal 〈x,u〉 is, for
all unit vectors u ∈ Rn. It is not hard to show that the concatenation of independent subgaussian random
variables or vectors of common parameter s is itself a subgaussian vector of parameter s.

Examples of subgaussian distributions with parameter s include any symmetric random variable having
magnitude bounded by s/

√
2π; the continuous Gaussian Ds and discrete Gaussian DL,s over any lattice L;

and the discrete Gaussian Dc+L,s over any lattice coset when s ≥ η(L) (under a slight relaxation of
subgaussianity; see [MP12, Section 2.4]).

2.4 Cryptographic Background

Cryptography is concerned with a variety of different kinds of objects and security properties they can satisfy.
Here we give a brief, informal overview of the main concepts that are relevant to this survey. For further
details and formalisms, see, e.g., [KL14, Gol01].

In complexity-theoretic (as opposed to information-theoretic) cryptography, the security parameter λ
regulates the running times of all algorithms, including the attacker, along with the latter’s measure of success,
called its advantage. A typical requirement is that all algorithms (including the attacker) have running times
that are polynomial λO(1) in the security parameter, and that the attacker’s advantage is negligible λ−ω(1),
i.e., asymptotically smaller than the inverse of any polynomial in λ. (One can be even more permissive about
the adversary, e.g., allowing its running time and/or inverse advantage to be subexponential in λ, allowing it
to be non-uniform, etc.) In what follows, all function families are implicitly indexed by λ, and all algorithms
(including the attacker) are given λ as an input.

2.4.1 Function Families and Security Properties

A function family is a function f : K ×X → Y for some space K of keys, domain X , and range Y . We
call it a family because it defines the set of functions fk(·) = f(k, ·) for keys k ∈ K. If |X| > |Y |, i.e., the
function “compresses” its input by some amount, it is often called a hash function. The following are two
commonly used security properties of function families:

• A family f is one way if it is “hard to invert” for random inputs. More precisely, given k ∈ K and
y = fk(x) ∈ Y where k, x are randomly chosen from prescribed distributions, it is infeasible to find
any preimage x′ ∈ f−1

k (y).

• A family f is collision resistant if it is hard to find a collision for a random key. More precisely, given
a random k ∈ K (chosen from a prescribed distribution), it is infeasible to find distinct x, x′ ∈ X such
that fk(x) = fk(x

′).
2There are other equivalent definitions and slight relaxations of subgaussianity that are often useful in lattice cryptography;

see [Ver12, Lemma 5.5] and [MP12, Section 2.4] for details.

10



2.4.2 Public-Key Encryption

An asymmetric (also known as public-key) encryption scheme is a triple of randomized algorithms having
the following interfaces:

• The key generator, given the security parameter, outputs a public key and secret key.

• The encryption algorithm takes a public key and a message (from some known set of valid messages)
and outputs a ciphertext.

• The decryption algorithm takes a secret key and a ciphertext, and outputs either a message or a
distinguished “failure” symbol.

Naturally, the scheme is said to be correct if generating a key pair, then encrypting a valid message using the
public key, then decrypting the resulting ciphertext using the secret key, yields the original message (perhaps
with all but negligible probability).

A standard notion of security, called semantic security [GM82], or indistinguishability under chosen-
plaintext attack (IND-CPA), informally guarantees that encryption reveals nothing about encrypted messages
to a passive (eavesdropping) adversary. Formally, the definition considers the following experiment, which is
parameterized by a bit b ∈ {0, 1}:

1. Generate a public/secret key pair, and give the public key to the attacker, who must reply with two
valid messages m0,m1. (If the valid message space is just {0, 1}, then we may assume that mb = b
without loss of generality.)

2. Encrypt mb using the public key and give the resulting “challenge ciphertext” to the attacker.

3. Finally, the attacker either accepts or rejects.

An encryption scheme is said to be semantically (or IND-CPA) secure if it is infeasible for an attacker to
distinguish between the two cases b = 0 and b = 1. That is, its probabilities of accepting in the two cases
should differ by only a negligible amount.

A much stronger notion of security, called active security—or more formally, indistinguishability under
chosen-ciphertext attack (IND-CCA)—augments the above experiment by giving the attacker access to a
decryption oracle, i.e., one that runs the decryption algorithm (with the secret key) on any ciphertext the
attacker may query, except for the challenge ciphertext. (This restriction is of course necessary, because
otherwise the attacker could just request to decrypt the challenge ciphertext and thereby learn the value of b.)
The scheme is said to be actively (or IND-CCA) secure if it is infeasible for an attacker to distinguish between
the two cases b = 0 and b = 1.

2.4.3 Richer Forms of Encryption

Over the past several years, there has been an increasing interest in encryption systems having additional
useful features. For example, homomorphic encryption allows an untrusted worker to perform meaningful
computations on encrypted data, without revealing anything about the data to the worker. In this context, the
basic syntax and notion of IND-CPA security remain exactly the same, but there is an additional algorithm
for performing a desired homomorphic computation on ciphertexts.

Another example is identity-based encryption (IBE), in which any string (e.g., a user’s email address) can
serve as a public key. Here the model is slightly different: an IBE is a four-tuple of randomized algorithms
having the following interfaces:
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• The setup algorithm, given the security parameter, outputs a “master” public and secret key pair.

• The key extraction algorithm takes a master secret key and an identity string, and outputs a secret key
for that particular identity.

• The encryption algorithm takes a master public key, an identity string, and a valid message, and outputs
a ciphertext.

• The decryption algorithm takes an identity secret key and a ciphertext, and outputs a message (or a
failure symbol).

Correctness is defined in the expected way: for a ciphertext encrypted to a particular identity string, decrypting
using a corresponding secret key (produced by the key extraction algorithm) should return the original
message.

Informally, semantic security for IBE is defined by modifying the standard IND-CPA experiment to
model the property that even if many users collude by combining their secret keys, they still learn nothing
about messages encrypted to another user. More formally, we consider the following experiment: the attacker
is given the master public key, along with oracle access to the key extraction algorithm (with the master
secret key built in), thus allowing it to obtain secret keys for any identities of its choice. At some point, the
attacker produces two messages m0,m1 and a target identity, which must be different from all the queries it
ever makes to its key-extraction oracle. The attacker is then given a ciphertext that encrypts mb to the target
identity, and may make further queries to its oracle before either accepting or rejecting.
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Chapter 3

Early Results

In this chapter we briefly survey some of the pioneering works in lattice cryptography. At a conceptual level,
the ideas from these works persist to this day throughout the area. However, their precise formulations and
analytical techniques have largely been improved and subsumed by subsequent works, so we do not go into
much technical detail in this chapter.

3.1 Ajtai’s Function and Ajtai-Dwork Encryption

In a groundbreaking work, Ajtai [Ajt96] gave the first worst-case to average-case reductions for lattice
problems, and with them the first cryptographic object with a proof of security assuming the hardness of well-
studied computational problems on lattices. In particular, Ajtai’s work gave the first cryptographic function
based on a standard worst-case complexity assumption of any kind. Ajtai introduced the (average-case)
“short integer solution” (SIS) problem and its associated one-way function, and proved that solving it is at
least as hard as approximating various lattice problems in the worst case. Both SIS and Ajtai’s function are
still heavily used to this day in cryptographic applications; we recall them in detail in Section 4.1.

In a subsequent work from 1997, Ajtai and Dwork [AD97] gave a lattice-based public-key encryption
scheme. (See also [AD07].) Because all lattice-based encryption schemes inherit the basic template of this
system, we describe it in some detail here. At the highest level, Ajtai and Dwork give two main results:
first, they show that a certain average-case “hidden hyperplanes problem” HHP in Rn is at least as hard as
the “γ-unique shortest vector problem” uSVPγ on arbitrary n-dimensional lattices, for some polynomial
γ = poly(n) in the dimension n. (We informally define these problems below.) Second, they construct
a public-key cryptosystem where semantic security can be proved based on the hardness of the hidden
hyperplanes problem, and hence on the conjectured worst-case hardness of uSVPγ .

As the first encryption scheme with a security proof under a worst-case complexity assumption, Ajtai-
Dwork was a theoretical breakthrough. However, from a practical (and even theoretical) point of view, it
has some significant drawbacks: its public keys are of size Õ(n4), and its secret keys and ciphertexts are
of size Õ(n2), with matching runtimes for encryption and decryption, respectively. For concrete security
against cryptanalytic attacks on the hidden hyperplanes problem [NS98] (and thus to prevent key-recovery
attacks), the value of n must be in the hundreds, thus yielding public key sizes of several gigabits. Moreover,
each ciphertext encrypts only a single bit, so to encrypt (say) a 128-bit symmetric key requires ciphertext
sizes in the several megabits. Later works, described in subsequent sections, largely resolved (or at least
greatly mitigated) these drawbacks.
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Hidden hyperplanes and unique-SVP. Informally, the hidden hyperplanes problem introduced by Ajtai
and Dwork is as follows: let s ∈ Rn be a secret, random short vector. The goal is to find s, given many points
yi ∈ Rn such that 〈s,yi〉 is close to an integer, i.e., 〈s,yi〉 ≈ 0 (mod 1). In other words, each yi is close to
one of the parallel (n− 1)-dimensional hyperplanes Hj = {z ∈ Rn : 〈s, z〉 = j}, j ∈ Z. Note that this is
an average-case problem, because the secret s and points yi are chosen at random from some prescribed
distributions.

The unique shortest vector problem uSVPγ is defined as follows: let L ⊂ Rn be any lattice having a
“γ-unique” shortest vector, which means that the length of a shortest nonzero vector v ∈ L is at least a γ
factor smaller than the lengths of all lattice vectors not parallel to v. More concisely: λ2(L) ≥ γ · λ1(L),
where recall that λi denotes the ith successive minimum of the lattice. The goal in uSVPγ is to find a shortest
nonzero vector in L, given an arbitrary basis of L. Note that uSVP is a promise problem, because the input
lattice L must satisfy λ2(L)/λ1(L) ≥ γ. (Alternatively, if it does not satisfy the promise then any answer is
considered correct.) It is also a worst-case problem, because there is no distribution over the lattice L or its
basis; an algorithm that purports to solve uSVPγ must work for any L satisfying the promise.

Cryptosystem and security. In brief, the Ajtai-Dwork cryptosystem works as follows: the public and
secret keys are respectively a random instance {yi}, and its solution s, of the hidden hyperplanes problem.
To encrypt a bit, one generates a ciphertext which is either a “random” point in Rn (to encrypt a 0), or the
sum of a random subset of the points {yi} given in the public key (to encrypt a 1). The resulting point y is
respectively either “far” from all the hidden hyperplanes Hj , or “close” to one of them. The receiver can
distinguish between these two possibilities (and thereby decrypt) using its secret key s, simply by testing
whether 〈s,y〉 is close to an integer.

As part of their security proof, Ajtai and Dwork give a search-to-decision reduction, which says that
any eavesdropper that can distinguish (with any noticeable advantage) between the above two cases can be
efficiently converted into an algorithm that solves HHP (with probability very close to one). In other words,
breaking the semantic security of the cryptosystem is at least as hard as solving HHP. The second part of
their proof shows that any algorithm that solves HHP can be transformed into one that solves uSVPγ , in the
worst case, for some γ = poly(n).

3.2 NTRU

In a concurrent work with Ajtai’s in 1996 (but not published until early 1998), Hoffstein, Pipher, and
Silverman [HPS98] devised the public-key encryption scheme NTRU (also known as NTRUEncrypt).1 This
was the first cryptographic construction using polynomial rings, which is most usefully interpreted in terms
of algebraically structured lattices. The NTRU cryptosystem is practically efficient and has quite compact
keys, and it has withstood significant cryptanalytic efforts when appropriately parameterized. (Note that
early parameterizations were a bit too compact, and were shown to have insufficient concrete security; see,
e.g., [CS97].) Unlike Ajtai-Dwork and its ilk, however, there is relatively little theoretical understanding of
the NTRU cryptosystem and its associated average-case computational problems. In particular, there is no
known reduction from any worst-case lattice problem to any standard version of the NTRU problem, nor
from the NTRU problem to breaking the cryptosystem’s semantic security. (However, a variant of the NTRU
cryptosystem has been proved secure [SS11], assuming the hardness of ring-LWE; see Section 5.2.4.)

1The meaning of the acronym NTRU is somewhat mysterious; plausible candidates include “N th degree truncated polynomial
ring” and “Number Theorists ’R’ Us.”
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The NTRU cryptosystem is parameterized by a certain polynomial ring R = Z[X]/(f(X)), e.g.,
f(X) = Xn − 1 for a prime n or f(X) = Xn + 1 for an n that is a power of two, and a sufficiently large
odd modulus q that defines the quotient ring Rq = R/qR. In brief, the public key is h = 2g · s−1 ∈ Rq for
two “short” polynomials g, s ∈ R, i.e., ones having relatively small integer coefficients, where the secret
key s is also chosen to be invertible modulo both q and two. Encryption essentially involves multiplying h
by a short “blinding” factor r ∈ R and adding a short error term e ∈ R that encodes the message bits in
its coefficients modulo two, to get a ciphertext c = h · r + e ∈ Rq. Decryption is done by multiplying the
ciphertext by the secret key to get c · s = 2g · r+ e · s ∈ Rq and interpreting the result as a short element of R,
which works because all of g, r, e, and s are short. From this one recovers e · s modulo two, and thereby e
modulo two, to recover the message bits. (There are slightly more efficient variants of this basic template,
e.g., choosing s = 1 (mod 2), so that e · s = e (mod 2).)

One can define many search and decision problems associated with NTRU, e.g., finding the secret key
given the public key, distinguishing the public key from uniformly random, and breaking the scheme’s
semantic security. Some of these are discussed in further detail in Section 4.4.4.

3.3 Goldreich-Goldwasser-Halevi Encryption and Signatures

Inspired by Ajtai’s seminal work [Ajt96] along with McEliece’s code-based cryptosystem [McE78], Goldre-
ich, Goldwasser, and Halevi (GGH) [GGH97] proposed a public-key encryption scheme and digital signature
scheme based on lattice problems. Unlike the works of Ajtai and Ajtai-Dwork [AD97], the GGH proposals
did not come with any worst-case security guarantees; their conjectured security was merely heuristic. Indeed,
the GGH encryption scheme was successfully cryptanalyzed for practical parameter sizes (but not broken
asymptotically) [Ngu99], and the GGH signature scheme was later broken completely [NR06]. However,
the central ideas underlying the GGH proposals were later resurrected and instantiated in ways that admit
security proofs under worst-case hardness assumptions, and have subsequently led to an enormous variety of
applications (see Sections 5.4 and 5.5 for details).

The main idea behind GGH encryption and signatures is that a public key is a “bad” basis of some lattice,
while the corresponding secret key is a “good” basis of the same lattice. Roughly speaking, a “bad” basis is
one consisting of long and highly non-orthogonal lattice vectors, while a “good” basis consists of relatively
short lattice vectors. Such bases can be generated together, e.g., by first choosing the good basis and then
multiplying it by some randomly chosen unimodular transformation (which preserves the lattice) to obtain
the bad basis.2 Alternatively, every integer lattice has a special basis, called the Hermite normal form, which
is in a precise sense a “hardest possible” basis for the lattice, because it can be efficiently computed from any
other basis. So the Hermite normal form is a best-possible choice for the public basis [Mic01].

In the GGH encryption scheme, the sender uses the public key to choose a “random” lattice point v ∈ L
that somehow encodes the message, and then adds to it some small error e ∈ Rn, letting the ciphertext be
c = v + e ∈ Rn. The error is small enough that c is much closer to v than to any other lattice point, so
the ciphertext unambiguously represents the message, and recovering v from c is a random instance of the
bounded-distance decoding problem (see Definition 2.2.5). The receiver, using its knowledge of the good
basis, can easily decode c back to v and recover the message. For security, one may conjecture that an
eavesdropper who knows only the bad basis cannot decode c, or even learn anything about v, which implies
that the message is hidden.

2Such a procedure may be seen as analogous to choosing two random primes as a secret key, and then multiplying them to obtain
a public key in factoring-based systems like RSA.
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In the GGH signature scheme, a message to be signed is mapped to a point m ∈ Rn, e.g., by a suitable
public hash function. The signer then uses its good basis to find a lattice vector v ∈ L relatively close to m,
which serves as the signature. A verifier, using only the public bad basis, can verify that v is a lattice vector
and is sufficiently close to m. For security, one may conjecture that a forger who knows only the bad basis
and some previous message-signature pairs cannot find a lattice vector sufficiently close to m′ for an unsigned
message m′. It turns out, however, that this conjecture is false, as shown most severely in [NR06]. The main
problem is that signatures leak significant information about the geometry of the secret “good” basis, and
after a relatively small number of signatures, an adversary can eventually recover the secret basis entirely,
allowing it to forge signatures for arbitrary messages.

NTRU meets GGH. Following the ideas in [GGH97], compact ring-based instantiations using NTRU-type
lattices were proposed in [HPS01, HHGP+03]. These were subject to various practical attacks, in addition
to the generic ones that apply to all GGH-type signatures. Of note is that the second proposal [HHGP+03]
includes a “perturbation” technique that is intended to make signatures reveal significantly less information
about the secret key (at the cost of larger keys and parameters). The main idea is that the algorithm that
decodes the (hashed) message m ∈ Rn to a nearby lattice vector v ∈ L is substantially less linear, because it
involves two unrelated lattice bases. However, the ideas of [NR06] were extended to also break this variant,
both asymptotically [MPSW09, Wan10] and in practice [DN12b].

3.4 Micciancio’s Compact One-Way Function

Inspired by the design ideas and efficiency of NTRU, in work published in 2002, Micciancio [Mic02]
modified Ajtai’s one-way/collision-resistant function from [Ajt96] to work over polynomial rings of the form
R = Z[X]/(Xn− 1), and demonstrated how this yields major efficiency improvements, namely, quasi-linear
Õ(n) key sizes and runtimes (improving on quasi-quadratic Õ(n2)). Micciancio also proved that the modified
function is one-way, assuming that certain approximation problems on n-dimensional cyclic lattices are hard
in the worst case.3

Unlike for Ajtai’s original function, and somewhat curiously, the security proof from [Mic02] showed that
the modified function is one-way, but not collision resistant (a strictly stronger property than one-wayness).
Two independent follow-up works [PR06, LM06] (described in Section 4.3.4 below) showed that the function
as defined in [Mic02] was in fact not collision resistant, but that slightly modifying the construction to
work over alternative rings made it so, under the same flavor of worst-case complexity assumptions. We
emphasize that all these works were limited to constructing one-way and collision-resistant hash functions;
they did not obtain any public-key encryption schemes. However, their ideas were important precursors to
the development of ring-LWE, which does yield encryption (see Section 4.4 below).

3.5 Regev’s Improvements to Ajtai-Dwork

In an important work from 2003, Regev [Reg03] gave several improvements to the results of Ajtai and
Dwork [AD97]. Regev’s work is most notable for introducing the use of Gaussian measures (probability
distributions) and harmonic analysis over lattices to the design and analysis of lattice-based cryptographic
schemes, building upon their use in mathematics by Banaszczyk [Ban93, Ban95]. These techniques yield

3An n-dimensional lattice L is cyclic if (x1, x2, . . . , xn) ∈ L implies (xn, x1, . . . , xn−1) ∈ L; such a lattice corresponds to an
ideal in the ring R by identifying polynomial residues of degree less than n with their n-dimensional coefficient vectors.
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substantially simpler algorithms and analysis, and much tighter approximation factors for the underlying worst-
case lattice problems. More specifically, whereas Ajtai and Dwork showed that breaking their cryptosystem
implies being able to solve uSVPγ for some large polynomial γ ≈ n7 on n-dimensional lattices, for Regev’s
system the approximation factor is only γ = Õ(n3/2). Since uSVPγ can only become harder as γ decreases,
this means that Regev’s cryptosystem is provably secure under potentially milder complexity assumptions.
In addition, the improved design of the cryptosystem itself withstands known cryptanalytic attacks for
somewhat smaller keys, ciphertexts, and runtimes than for Ajtai-Dwork. However, the asymptotic costs of
the cryptosystem remain essentially the same, with public keys of size Õ(n4), secret keys and ciphertexts of
size Õ(n2), and corresponding runtimes for encryption and decryption.
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Chapter 4

Modern Foundations

In this chapter we survey the main foundational works that directly underlie most modern lattice-based
cryptographic schemes. These include the two main average-case problems SIS and LWE, their analogues
over rings, and analytical techniques involving (discrete) Gaussian probability distributions.

4.1 Short Integer Solution (SIS)

The short integer solution (SIS) problem was first introduced in the seminal work of Ajtai [Ajt96], and has
served as the foundation for one-way and collision-resistant hash functions, identification schemes, digital
signatures, and other “minicrypt” primitives (but not public-key encryption). Here we define the SIS problem,
survey its connection to worst-case lattice problems, and explore some of its basic properties and immediate
cryptographic implications. (Further applications are described in Chapters 5 and 6.)

4.1.1 Definitions

Informally, the SIS problem asks, given many uniformly random elements of a certain large finite additive
group, to find a sufficiently “short” nontrivial integer combination of them that sums to zero. More formally,
SIS is parameterized by positive integers n and q defining the group Znq , a positive real β, and a number m of
group elements. (As we shall see, the parameter m is of secondary importance, so we sometimes leave it
unspecified.) For concreteness, one should think of n as being the main hardness parameter (e.g., n ≥ 100),
and q > β as both being at least a small polynomial in n.

Definition 4.1.1 (Short Integer Solution (SISn,q,β,m)). Given m uniformly random vectors ai ∈ Znq , form-
ing the columns of a matrix A ∈ Zn×mq , find a nonzero integer vector z ∈ Zm of norm ‖z‖ ≤ β such
that

fA(z) := Az =
∑
i

ai · zi = 0 ∈ Znq . (4.1.1)

We now highlight several simple but useful observations about the SIS problem:

• Without the constraint on ‖z‖, it is easy to find a solution via Gaussian elimination. Similarly, we
must take β < q because otherwise z = (q, 0, . . . , 0) ∈ Zm would always be a legitimate (but trivial)
solution.
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• Any solution for a matrix A can trivially be converted to one for any extension [A | A′], simply by
appending the solution vector with zeros (which leaves the norm of the solution unchanged). In other
words, we can ignore columns ai as desired, so the SIS problem can only become easier as m increases.
Similarly, it can only become harder as n increases.

• The norm bound β and the number m of vectors ai must be large enough that a solution is guaranteed
to exist. This is the case whenever β ≥

√
m̄ and m ≥ m̄, where m̄ is the smallest integer greater than

n log q, by a pigeonhole argument: first, by the previous observation we can assume without loss of
generality that m = m̄. Then because there are more than qn vectors x ∈ {0, 1}m, there must be two
distinct x,x′ such that Ax = Ax′ ∈ Znq , so their difference z = x− x′ ∈ {0,±1}m is a solution of
norm at most β.

• The above pigeonhole argument in fact shows more: the induced function family {fA : {0, 1}m → Znq }
defined in Equation (4.1.1) is collision resistant, assuming the hardness of the corresponding SIS
problem. This is because a collision x,x′ ∈ {0, 1}m for fA immediately yields an SIS solution for A.
(Of course the domain {0, 1}m is somewhat arbitrary here, and can be replaced by essentially any other
large enough set of sufficiently short integer vectors.)

The SIS problem can be seen as an average-case short-vector problem on a certain family of so-called
“q-ary” m-dimensional integer lattices, namely, the lattices

L⊥(A) := {z ∈ Zm : Az = 0 ∈ Znq } ⊇ qZm. (4.1.2)

Borrowing the terminology of coding theory, here A acts as a “parity-check” (or more accurately, “arity-
check”) matrix that defines the lattice L⊥(A). The SIS problem asks to find a sufficiently short nonzero
vector in L⊥(A), where A is chosen uniformly at random.

One can also consider an inhomogeneous version of the SIS problem, which is to find a short integer
solution to Ax = u ∈ Znq , where A,u are uniformly random and independent. Notice that, disregarding
the norm constraint, the set of all solutions is the lattice coset L⊥u (A) := c + L⊥(A), where c ∈ Zm is an
arbitrary (not necessarily short) solution. It is not hard to show that the homogeneous and inhomogeneous
problems are essentially equivalent for typical parameters.

Normal form. The SIS problem admits a small but important optimization, called the (Hermite) “normal
form” (HNF), which compresses the size of the instance A by n columns, at no cost in cryptographic
functionality or hardness.1 It works as follows: first, we can assume that the leftmost n columns A1 ∈ Zn×nq

of A = [A1 | A2] ∈ Zn×mq form an invertible matrix over Zq, which is without loss of generality because,
as observed above, we can ignore columns as desired. We then replace A with

A−1
1 ·A = [In | Ā = A−1

1 A2],

and treat the In submatrix as implicit. Note that Ā is uniformly random, because A2 is uniform and
independent of A1. Moreover, A and [In | Ā] have exactly the same set of (short) SIS solutions. Therefore,
SIS instances of the latter form are at least as hard to solve as those of the former type.

1The HNF optimization for SIS is analogous to working with a systematic generator matrix of an error-correcting code. Its formal
connection to the Hermite normal form for lattices is explained in [MR09, end of Section 5].
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4.1.2 Hardness

Starting from Ajtai’s seminal work [Ajt96], a long sequence of works has established progressively stronger
results about the hardness of the SIS problem relative to worst-case lattice problems. All such results are
instances of the following template:

Theorem 4.1.2. For any m = poly(n), any β > 0, and any sufficiently large q ≥ β · poly(n), solving
SISn,q,β,m with non-negligible probability is at least as hard as solving the decisional approximate shortest
vector problem GapSVPγ and the approximate shortest independent vectors problems SIVPγ (among others)
on arbitrary n-dimensional lattices (i.e., in the worst case) with overwhelming probability, for some γ =
β · poly(n).

Notice that the exact values of m and q (apart from its lower bound) play essentially no role in the ultimate
hardness guarantee, but that the approximation factor γ degrades with the norm bound β on the SIS solution.
The theorem is proved by giving a polynomial-time reduction that uses an oracle for SIS (which works on the
average, with noticeable probability) to solve GapSVPγ and SIVPγ on any n-dimensional lattice. The central
challenge in obtaining such a reduction is in generating a uniformly random SIS instance whose solution
somehow helps in finding short vectors of an arbitrary lattice; below we give a high-level description of how
this is done.

In Ajtai’s original work, the poly(n) factors associated with the modulus q and approximation factor γ
were quite large polynomials. Since then, several works have substantially improved these factors, thus
yielding smaller instances (e.g., cryptographic keys) and stronger hardness guarantees. A few of the most
notable improvements are as follows:

• The 2004 work of Micciancio and Regev [MR04] obtained approximation factors of γ = β · Õ(
√
n),

which can be as small as γ = Õ(n) for meaningful choices of β, with a modulus q that can be as small
as β · Õ(n

√
m).

This work uses Gaussians over lattices and builds upon the harmonic analysis techniques first developed
in [Ban93, Reg03, AR04]. In particular, it defines and analyzes the important notion of the lattice
smoothing parameter η(L) (already implicit in [Ban93, Reg03]), which is the amount of Gaussian error
needed to “smooth out” the discrete structure of a lattice. Such smoothing is what lets the reduction
generate uniformly random SIS instances that are meaningfully linked to an arbitrary input lattice.

• The 2008 work of Gentry, Peikert, and Vaikuntanathan improved the bound on q to be as small as
β · Õ(

√
n), while preserving the γ = β · Õ(

√
n) approximation factor from [MR04]. The main new

ingredient is a technically simpler reduction that works entirely with discrete Gaussians over lattices,
which avoids the “round-off” error associated with continuous Gaussians. To do this the reduction uses
GPV’s discrete Gaussian sampling algorithm, which is described below in Theorem 5.4.2.

• The 2013 work of Micciancio and Peikert [MP13] further improved the bound on q to be as small as
β ·nε for any constant ε > 0. Recall that this bound is essentially optimal (up to the nε factor), because
any SIS instance has trivial solutions of norm q. The approximation factor γ obtained by the reduction
is somewhat subtle, as it can depend on the norm of the SIS solution in the `∞ norm, rather than the
usual `2 norm. This is due to the reduction’s use of the SIS oracle to produce a discrete Gaussian as a
combination of several other discrete Gaussians, using a “convolution lemma” similar to one proved
in [Pei10].
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Overview of the reductions. The worst-case/average case reductions that prove Theorem 4.1.2 all work
according to the following template, first due to Ajtai [Ajt96]. Recall that the reduction is given a basis B of
an arbitrary n-dimensional lattice L, along with an average-case SIS oracle, and its goal is to solve SIVPγ for
some γ = poly(n), i.e., to find n linearly independent lattice vectors all of length at most γ · λn(L). Here
we give an informal overview of the reduction strategy and its analysis; see, e.g., [MR04, GPV08, MP13] for
the full details of modern instantiations.

At the highest level, the reduction uses a set S ⊂ L of linearly independent lattice vectors (starting with
the input basis B), along with its SIS oracle, to obtain a new set S′ ⊂ L such that ‖S′‖ ≤ ‖S‖/2, where
‖X‖ := maxi‖xi‖ for a set X = {xi}. It then iteratively repeats this process until it stops working, at which
point we can guarantee that the final set is indeed a solution to SIVPγ .

To implement the above strategy, the reduction uses the following “core step:”

1. Using the current set S of lattice vectors, generate m random lattice vectors vi ∈ L that are “well
spread” yet as short as is feasible.2 Let these vectors form the columns of a matrix V.

2. Define ai ∈ Znq as ai := B−1vi mod qZn, i.e., A := B−1 ·V mod qZn×m, and give this instance to
the SIS oracle. (Note that B−1vi is integral because vi is a lattice vector.)

3. If the oracle returns a valid solution z ∈ Zm, output v := Vz/q.

By repeating this core step enough times, the reduction can obtain many vectors v, (some of) which will
make up the next set S′. In order for all this to work as desired, one needs to prove the following:

• If z is an SIS solution for A, then v ∈ L and ‖v‖ ≤ ‖S‖/2. The first claim follows by construction:
because vi = Bai (mod qL), we have

Vz = B(Az) = 0 (mod qL),

so v = Vz/q ∈ L. For the second claim, we can generate the vectors vi such that ‖vi‖ ≤ ‖S‖·poly(n).
Then because ‖z‖ ≤ β, we have ‖Vz‖ ≤ ‖S‖ · β · poly(n). Therefore, for a sufficiently large
q = β · poly(n) we can ensure that ‖v‖ = ‖Vz‖/q ≤ ‖S‖/2.

• The SIS instance A ∈ Zn×mq is (nearly) uniform. Because the SIS oracle is only assumed to work
(with noticeable probability) for uniformly random instances, we need to show that this is the case
(up to negligible statistical error) for the instances constructed by the reduction. This holds if ‖S‖ >
γ · λn(L)—i.e., if we don’t already have an SIVPγ solution—essentially because the vi are sufficiently
“well spread” modulo qL.

More specifically, for an appropriate distribution of vi one can use the smoothing parameter (see
Section 2.3) to prove that vi mod qL is nearly uniform over L/qL, because γ ≥ β · poly(n) ≥ q.3

Finally, because multiplication by B−1 is a bijection from L/qL to Zn/qZn, each ai = B−1vi mod
qZn is nearly uniform as well.

• Some subset of the vectors v is full rank (i.e., the v do not all lie in a proper subspace of Rn). Finally,
we must show that even a malicious SIS oracle cannot, e.g., force all the vectors v to be zero. This
again follows from the fact that the vi are “well spread,” but in a slightly different way. Specifically,
conditioned on any fixed value of ai ∈ Znq , which is all the oracle “sees” about vi, it remains well

2Concretely, we can use S to sample from a discrete Gaussian distribution over L; see Section 2.3 and Theorem 5.4.2.
3In fact, we do not actually need an upper bound on q here: if q > γ, we can just sample the vi from a distribution that is wider

by a q/γ factor; the effect of this is exactly cancelled out when we divide by q in the end.
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spread over the coset Bai ∈ L/qL. Therefore, conditioned on any fixed SIS instance A and solution z,
the random variable Vz is still sufficiently well spread that any proper subspace of Rn lacks a noticeable
amount of its probability mass, and so by obtaining enough vectors v we can obtain a full-rank set.

4.2 Learning With Errors (LWE)

A very important work of Regev [Reg05] from 2005 introduced the average-case learning with errors (LWE)
problem, which is the “encryption-enabling” analogue of the SIS problem. Indeed, the two problems are
syntactically very similar, and can meaningfully be seen as duals of each other. Here we describe LWE, its
hardness, and a basic LWE-based cryptosystem in some detail. See Chapters 5 and 6 for a survey of LWE’s
many other cryptographic applications, and Regev’s survey [Reg10] for more on its worst-case hardness,
search/decision equivalence, and some basic applications.

4.2.1 Definitions

LWE is parameterized by positive integers n and q, and an error distribution χ over Z. For concreteness, n
and q can be thought of as roughly the same as in SIS, and χ is usually taken to be a discrete Gaussian of
width αq for some α < 1, which is often called the relative “error rate.”4

Definition 4.2.1 (LWE distribution). For a vector s ∈ Znq called the secret, the LWE distribution As,χ

over Znq × Zq is sampled by choosing a ∈ Znq uniformly at random, choosing e ← χ, and outputting
(a, b = 〈s,a〉+ e mod q).5

There are two main versions of the LWE problem: search, which is to find the secret given LWE samples,
and decision, which is to distinguish between LWE samples and uniformly random ones. We additionally
parameterize these problems by the number m of available samples, which we typically take to be large
enough that the secret is uniquely defined with high probability. (As with SIS, the parameterm is of secondary
importance, so we often leave it unspecified.)

Definition 4.2.2 (Search-LWEn,q,χ,m). Given m independent samples (ai, bi) ∈ Znq ×Zq drawn from As,χ
for a uniformly random s ∈ Znq (fixed for all samples), find s.

Definition 4.2.3 (Decision-LWEn,q,χ,m). Given m independent samples (ai, bi) ∈ Znq × Zq where every
sample is distributed according to either: (1) As,χ for a uniformly random s ∈ Znq (fixed for all samples), or
(2) the uniform distribution, distinguish which is the case (with non-negligible advantage).

We highlight several useful observations about search- and decision-LWE:

• Without the error terms from χ, both problems are easy to solve, because we can efficiently recover s
from LWE samples by Gaussian elimination. (In the uniform case of decision-LWE, with high
probability no solution s will exist.)

4The original work of Regev [Reg05] considered a continuous Gaussian distribution, then discretized it by rounding to the nearest
integer. While this does not quite yield a true discrete Gaussian, a special case of a theorem from [Pei10] says that a slightly different,
randomized discretization method does so.

5It is worth mentioning that LWE is a generalization of “learning parities with noise,” which is the special case where q = 2
and χ is a Bernoulli distribution over {0, 1}.
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• Just as with SIS, it is often convenient to combine the given samples into a matrix A ∈ Zn×mq (whose
columns are the vectors ai ∈ Znq ) and a vector b ∈ Zmq (whose entries are the bi ∈ Zq), so that for
LWE samples we have6

bt = stA + et (mod q),

where e← χm. In the uniform case of decision-LWE, b is uniformly random and independent of A.

• Search-LWE can be seen as an average-case bounded-distance decoding (BDD) problem on a certain
family of q-ary m-dimensional integer lattices: for LWE samples, the vector b is relatively close to
exactly one vector in the LWE lattice

L(A) := {Ats : s ∈ Znq }+ qZm, (4.2.1)

and the goal is to find that lattice vector. (In the uniform case, b is far from all points in L(A) with very
high probability.) Also, it is not hard to verify that the SIS and LWE lattices respectively defined in
Equations (4.1.2) and (4.2.1) are dual to each other, up to a scaling factor of q, i.e., L(A) = q ·L⊥(A)∗.

• There is a high-level similarity between LWE and the Ajtai-Dwork hidden hyperplanes problem
(described in Section 3.1): in LWE there is a secret vector s, and the samples (ai, bi) ∈ Zn+1

q

are either uniformly random, or are close to the mod-q subspace orthogonal to (−s, 1), because
〈(−s, 1), (ai, bi)〉 = ei ≈ 0 mod q. (A more formal connection is given in Regev’s survey [Reg10].)

Normal form. Similarly to SIS, the LWE problem also has a normal form, in which the coordinates
of the secret s are chosen independently from the error distribution χ (modulo q). Using this form can
yield substantial efficiency gains for certain cryptographic constructions, as discussed below in Section 5.2.
Applebaum et al. [ACPS09] (following [MR09]) proved that the normal form, in either its search or decision
variant, is at least as hard as the same variant for any distribution of the secret (e.g., uniform), up to a
small difference in the number of samples m. The reduction that proves this is a slight extension of the one
described for SIS in Section 4.1: given an instance

A = [A1 | A2], bt = [bt1 | bt2]

where A1 ∈ Zn×nq is invertible and b1 ∈ Znq , we transform it to the instance

Ā = −A−1
1 ·A2, b̄t = bt1Ā + bt2.

As before, Ā is uniformly random, because A2 is independent of A1. Now observe that when the input
comes from an LWE distribution, each bti = stAi + eti for some s ∈ Znq , where the entries of each ei are
independently drawn from χ, so we have

b̄t = stA1 · Ā + et1Ā + stA2 + et2

= et1Ā + et2.

That is, the instance Ā, b̄ comes from the LWE distribution with secret e1, and finding e1 yields the original
secret st = (bt1 − et1) ·A−1

1 . Also, for the decision problem, when b is uniformly random and independent
of A, it immediately follows that b̄ is uniformly random and independent of Ā.

6A useful convention for later cryptographic schemes is to multiply secrets on the right for SIS, and on the left for LWE.

23



Using the normal form, LWE can even be seen as syntactically identical to the normal form of SIS, but
for parameters that correspond to injective rather than surjective functions: while SIS is concerned with the
surjective function mapping a short x ∈ Zm to [In | Ā] · x ∈ Znq , LWE deals with the injective function
mapping a short e ∈ Zm to [Āt | Im−n] · e ∈ Zm−nq . (For further details see [Mic10].) However, there is a
major qualitative difference between injectivity and surjectivity, in terms of what cryptographic objects we
can construct, and what we can prove about their hardness.

4.2.2 Hardness

Regev proved the following worst-case hardness theorem for LWE (stated here in a slightly stronger form, as
discussed below):

Theorem 4.2.4 ([Reg05]). For anym = poly(n), any modulus q ≤ 2poly(n), and any (discretized) Gaussian
error distribution χ of parameter αq ≥ 2

√
n where 0 < α < 1, solving the decision-LWEn,q,χ,m problem is

at least as hard as quantumly solving GapSVPγ and SIVPγ on arbitrary n-dimensional lattices, for some
γ = Õ(n/α).

Notice that, just as in the worst-case hardness theorem for SIS (Theorem 4.1.2), the exact values of m and q
(apart from its lower bound of 2

√
n/α) play essentially no role in the ultimate hardness guarantee. However,

the approximation factor γ degrades with the inverse error rate 1/α of the LWE problem.
Theorem 4.2.4 is proved by giving a quantum polynomial-time reduction that uses an oracle for LWE

to solve GapSVPγ and SIVPγ in the worst case, thereby transforming any algorithm (whether classical or
quantum) that solves LWE into a quantum algorithm for lattice problems. The quantum nature of the reduction
is meaningful because there are no known quantum algorithms for GapSVPγ or SIVPγ that significantly
outperform classical ones, beyond generic quantum speedups. Still, it would be very useful to have a
completely classical reduction to give further confidence in the hardness of LWE. Such a reduction was given
in 2009 by Peikert [Pei09], and is discussed below in Section 4.2.4.

In [Reg05], the above theorem is proved in two main parts:

1. First, search-LWE is proved to be at least as hard as worst-case lattice problems, via a quantum
reduction. This reduction consists of two main sub-parts:

(a) Using an oracle for search-LWE, along with a source of discrete Gaussian samples over L with
parameter r, one can classically solve bounded-distance decoding BDD on the dual lattice L∗
to within distance d ≈ αq/r. This works by combining the BDD instance with the Gaussian
samples to produce properly distributed LWE samples, whose underlying secret (which the oracle
reveals) lets us compute the BDD solution.

(b) Using an oracle for BDD on L∗ to within distance d, one can quantumly generate discrete
Gaussian samples over L with parameter r′ ≈

√
n/d. This uses quantum computation to

“uncompute” a known solution to a BDD instance, which lets us to set up a particular quantum
state. Computing the quantum Fourier transform on this state and measuring yields a discrete
Gaussian sample.

Notice that for the value of d from the first sub-part, in the second sub-part we have r′ ≤ r/
√

2
because αq ≥ 2

√
n. The full reduction iterates the two steps, generating discrete Gaussian samples

of successively narrower parameter until the steps stop working, at which point we have very narrow
discrete Gaussian samples over L, which easily yield solutions to SIVP and GapSVP.
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2. Second, decision-LWE is proved to be equivalent to search-LWE (up to some polynomial blowup
in the number m of samples), via an elementary classical reduction. Originally, this equivalence
applied only to polynomially-bounded prime moduli q = poly(n), generalizing an earlier proof
for the case q = 2 [BFKL93]. Subsequently, it has been improved to hold for essentially any
modulus [Pei09, ACPS09, MM11, MP12, BLP+13], i.e., even exponentially large composite ones.

4.2.3 Cryptosystem

In [Reg05], Regev also gave a new public-key cryptosystem whose semantic security can provably be based
on the LWE problem with an error rate of α = Ω̃(1/

√
n), and hence on the conjectured quantum hardness of

GapSVPγ or SIVPγ for γ = Õ(n3/2). In contrast with Ajtai-Dwork [AD97] and Regev’s improvements to
it [Reg03], two notable features of the LWE-based cryptosystem are:

1. generality: the underlying worst-case problems GapSVPγ and SIVPγ appear less “structured” than the
unique-SVP problem uSVPγ , and

2. improved efficiency: public keys are only Õ(n2) bits (versus Õ(n4)), and secret keys and ciphertexts
are only Õ(n) bits (versus Õ(n2)) per encrypted message bit.

In addition, in the multi-user setting the per-user public keys can be reduced to Õ(n) bits, using Õ(n2) bits
of trusted randomness that is shared across all users.7

At a high level, the construction and security proof for Regev’s LWE-based cryptosystem are strongly
reminiscent of Ajtai-Dwork: the secret key is a random vector s ∈ Znq , and the public key is several LWE
samples (ai, bi) for secret s. One encrypts a bit by adding a random subset of the samples in the public key,
then suitably hiding the message bit in the last coordinate of the result, so that the ciphertext is either “close
to” or “far from” the subspace orthogonal to (−s, 1). Using the secret s, one can decrypt by distinguishing
between the two cases. Semantic security follows by considering a thought experiment in which the public
key is “malformed,” in the sense that it consists of uniformly random samples with no underlying secret.
Assuming the hardness of LWE, no adversary can distinguish such a key from a properly formed one.
Moreover, encryption under such a malformed key is “lossy,” in the sense that the resulting ciphertext is
statistically independent of the message bit, so an adversary has no advantage in distinguishing an encryption
of 0 from an encryption of 1. More technical details on the construction and proof are given in Section 5.2.

4.2.4 More Hardness

Following [Reg05], several works provided additional hardness theorems for LWE, e.g., under classical
reductions, for “leaky” secrets, for smaller errors and moduli, etc. We review many of these results below.

Classical hardness. A work of Peikert [Pei09] partially “dequantized” Regev’s quantum worst-case reduc-
tion [Reg05] from Theorem 4.2.4 above. In particular, this was the first work to yield public-key encryption
assuming the worst-case classical hardness of a problem on general lattices, as opposed to structured lattices
with “unique” shortest vectors, as in [AD97, Reg03]. More specifically, Peikert proved that LWE with an
error rate of α is classically at least as hard as worst-case GapSVPγ , for the same γ = Õ(n/α) factor as in
Theorem 4.4.3. However, there are two main caveats:

7It is not clear how to implement such sharing for [AD97, Reg03], and while Ajtai [Ajt05] later gave a different style of
cryptosystem that does permit sharing, no worst-case security proof is known for it.
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• The classical reduction works only for GapSVP, not SIVP, whereas the quantum reduction works for
both problems.

• The reduction requires an exponentially large modulus q ≥ 2n/2 for the LWE problem, whereas the
quantum reduction works for any modulus q ≥ 2

√
n/α. (The classical reduction can be adapted to

work for moduli as small as q = poly(n), but for a non-standard variant of GapSVP.)

A large modulus means that LWE samples require many more bits to represent, and thereby implies larger
key sizes and less-efficient cryptoschemes. However, it does not appear to restrict the kinds of cryptographic
applications that can be constructed from LWE.

Shortly following [Pei09], Lyubashevsky and Micciancio [LM09] built upon its main idea to prove the
equivalence, under classical reductions and up to small poly(n) approximation factors, of the GapSVP, uSVP,
and BDD problems. In particular, this implies that the Ajtai-Dwork cryptosystem, which was originally based
on uSVP, can actually be based on GapSVP as well.

A few years later, Brakerski et al. [BLP+13] gave a general dimension-modulus tradeoff for LWE, which
roughly says that hardness for a particular error rate α is determined almost entirely by n log q, and not
by the particular choices of n and q, as long as q is bounded from below by some small polynomial. So
for example, using Peikert’s result that GapSVP on n-dimensional lattices classically reduces to LWE in
dimension n with modulus q ≥ 2n/2, by [BLP+13] the same GapSVP problem classically reduces to LWE
in dimension n2 with modulus q = poly(n). The reductions from [BLP+13] were heavily influenced by
techniques like “key-switching” and “modulus reduction” that were developed in the literature on fully
homomorphic encryption (e.g., [BV11b, BGV12, Bra12]; see Section 6.1), but are more technically intricate
due to the need to generate the proper LWE distribution rather than just samples with small error terms.

Robustness. LWE is a very “robust” problem, in the sense that it remains hard even if the attacker learns
extra information about the secret and errors. For example, Goldwasser et al. [GKPV10] showed that LWE
with “weak” secrets—i.e., where the adversary learns some bounded information about, or a hard-to-invert
function of, the secret—remains as hard as LWE with “perfect” secrets, although for smaller dimension n
and error rate α. They used this fact to give a symmetric-key encryption scheme that is robust to imperfect
or leaky secret keys. Similarly, Dodis et al. [DGK+10] gave a public-key encryption scheme from LWE
that is robust to leakage of any computationally hard-to-invert function of the secret key. Finally, several
works [BF11, OPW11, AP12, BLP+13, LPSS14] give comparatively tight reductions showing that LWE
remains hard, up to a small loss in the dimension and error rate, even if one reveals one or more linear
relations (over the integers) on the secret and error.

Alternative errors and small parameters. In independent works, Döttling and Müller-Quade [DM13]
and Micciancio and Peikert [MP13] also considered LWE with non-Gaussian and potentially small errors, e.g.,
uniform over an interval. Such distributions are algorithmically much easier to sample than Gaussians, and so
may be more suitable in practical implementations. Another motivation is an algorithmic attack of Arora and
Ge [AG11], which shows that for errors that come from a domain of size d, it is possible to solve LWE in
time and space roughly 2d

2
, provided that the attacker is given sufficiently many LWE samples. Although the

precise statements of the results from [DM13, MP13] are almost entirely disjoint, their qualitative flavor and
techniques are very similar. For concreteness, we give a few details about the latter.

The work of [MP13] shows that LWE remains hard for non-Gaussian error distributions (e.g., uniform)
that may also have small support (even as small as {0, 1}), provided that the number m of samples available
to the attacker is appropriately bounded. Note that for small support, some sample bound is necessary in
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light of the Arora-Ge attack [AG11] mentioned above. For example, for binary errors the number of samples
is limited to n(1 + O(1/ log n)), while for supports of size Ω(n) the number of samples can be as large
as O(n). While the former sample bound is not large enough to support any known cryptographic application
of LWE, the latter is large enough for certain uses. The main theorem from [MP13] relies on the assumed
hardness of standard LWE for large enough Gaussian errors, and in somewhat larger dimensions. It uses a
“lossiness” argument, very similar to the main idea from [PW08], which shows that search-LWE with small
errors is information-theoretically unsolvable if the samples ai are generated according to the underlying
(standard) LWE distribution, rather than uniformly at random. Since the standard LWE distribution is
indistinguishable from uniform, one cannot break the small-error version of LWE without also breaking
standard decision-LWE.

4.3 Ring-SIS

Recall from Section 3.4 that, inspired by the ideas behind the NTRU cryptosystem [HPS98], Miccian-
cio [Mic02] introduced a compact ring-based analogue of Ajtai’s SIS problem and its associated function fA
from Definition 4.1.1. This analogue has come to be known as the ring-SIS problem. Here we define the
problem, describe its connection with SIS, and survey its hardness relative to worst-case problems on ideal
lattices in the underlying ring.

4.3.1 Definitions

The ring-SIS problem is parameterized by:

• A ring R, which is often (but not always) taken to be a degree-n polynomial ring of the form
R = Z[X]/(f(X)), e.g., f(X) = Xn − 1 as in [Mic02], or f(X) = X2k + 1 as in [LMPR08]. Note
that elements of R can be canonically represented by their residues modulo f(X), which are integer
polynomials of degree less than n.

We also endow R with a norm ‖·‖, which is not necessarily the norm of the argument’s vector of
coefficients; see Section 4.3.3 for further details. For a vector ~z over R we define ‖~z‖ = (

∑
i‖zi‖

2)1/2.

• A positive integer modulus q. We define Rq := R/qR = Zq[X]/(f(X)), whose canonical representa-
tives are polynomials of degree less than n with coefficients from some set of canonical representatives
of Zq.

• A real norm bound β > 0 for the “short” solution, and a number m of samples. (As usual, m tends to
be of secondary importance, so we often leave it unspecified.)

For concreteness, the degree n, modulus q, and norm bound β can be thought of as roughly comparable to
their counterparts in the SIS problem, whereas m is typically an n factor smaller for ring-SIS (as explained
below).

Definition 4.3.1 (R-SISq,β,m). Given m uniformly random elements ai ∈ Rq, defining a vector ~a ∈ Rmq ,
find a nonzero vector ~z ∈ Rm of norm ‖~z‖ ≤ β such that

f~a(~z) := 〈~a, ~z〉 = ~at · ~z =
∑
i

ai · zi = 0 ∈ Rq. (4.3.1)
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The primary advantage of R-SIS over SIS is its relative compactness and efficiency: the number m of
elements ai ∈ Rq required to guarantee the existence of a sufficiently short solution is only m ≈ log q,
rather than m ≈ n log q for SIS. This is essentially because there are an exponential 2Ω(n) number of short
ring elements zi ∈ R that can be used as coefficients for each ai ∈ Rq, versus just a few small integer
coefficients for each ai ∈ Znq in the SIS problem. In addition, using FFT-like techniques one can compute
each zi · ai ∈ Rq in quasi-linear Õ(n) time, so the total time to compute f~a(~z) is also quasi-linear for typical
choices of q and m.

4.3.2 Relation to SIS

It is helpful to understand the formal algebraic similarities and differences between SIS and ring-SIS. In
particular, this understanding provides a mechanical translation of many cryptographic constructions from
one problem to the other. This often also yields a mechanical translation of the security proof, although
sometimes more significant changes are needed.

In short, in ring-SIS each random element ai ∈ Rq corresponds to n related (non-independent) vectors
ai ∈ Znq in SIS, where n is the degree of the ring R over Z. Similarly, each ring element zi ∈ R of a ring-SIS
solution stands in for a corresponding block of n integers in an SIS solution. This rule of thumb can be
formalized by treating ring-SIS as a special case of SIS with “structured” instances:

• By fixing an appropriate Z-basis of R, we obtain an additive group isomorphism between the input
domains R and Zn, and the output domains Rq and Znq , which additionally preserves “shortness” (at
least approximately). For example, for R = Z[X]/(Xn − 1) the monomial Xi corresponds to the
(i+1)st standard basis vector ei+1 ∈ Zn, for i = 0, . . . , n−1. This yields the correspondence between
ring-SIS inputs ~z ∈ Rm and SIS inputs z ∈ Znm, and similarly for the outputs.

• Left-multiplication by any fixed a ∈ Rq is a Z-linear function from R to Rq, so it can be represented by
a (structured) square matrix Aa ∈ Zn×nq , which maps Zn to Znq . For example, forR = Z[X]/(Xn−1)
any a ∈ Rq corresponds to the circulant matrix whose first column is the coefficient vector of a. This
yields the correspondence between a ring-SIS instance ~a = (a1, . . . , am) ∈ Rmq and the (structured)
SIS instance A = [Aa1 | · · · | Aam ] ∈ Zn×nmq .

In abstract algebra terms, in SIS the random elements ai are drawn from the domain Znq , which is treated
solely as an additive group, i.e., a Z-module. An SIS solution is a short Z-combination of the ai that sums to
zero. Whereas in ring-SIS, the random elements are drawn from Rq, which is treated as an R-module, and
a solution is a short R-combination that sums to zero. The richer R-module structure is the source of the
increased efficiency, but also of the more specialized underlying worst-case hardness assumptions (described
in Section 4.3.4 below).

4.3.3 Geometry of Rings

A solution ~z ∈ Rm to a ring-SIS instance must be sufficiently “short” according to an appropriate choice of
norm on R. A naı̈ve choice of norm, used in several early works, is given by the coefficient embedding that
associates each z ∈ R = Z[X]/(f(X)) with the n-dimensional integer vector of coefficients of its canonical
representative in Z[X]. This choice can be useful for developing intuition, but it is non-canonical—it depends
on the choice of representatives of R, which need not be polynomials in X of degree less than n—and it
leads to unwieldy constraints on the form of f(X), as well as rather crude analysis. For example, the norm of
a · b ∈ R may be only loosely related to the norms of a and b, due to the reduction modulo f(X).
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A much better notion of norm is given by the classical notion of the canonical embedding σ : R→ Cn
from algebraic number theory. This embedding maps each ring element z ∈ R to the vector (z(αi))i ∈ Cn,
where the αi ∈ C are the n complex roots of f(X). Note that any representative of z yields the same vector
in Cn, which makes the embedding canonical. It also has the nice feature that the sum a+ b ∈ R and product
a · b ∈ R respectively embed as the coordinate-wise sum and product of σ(a), σ(b) ∈ Cn, which yields
simple and rather sharp bounds on the norms of ring elements under addition and multiplication. We stress
that the canonical embedding and complex numbers are used mainly for analysis, e.g., in security proofs;
they do not ever need to be computed explicitly. For further discussion of these points and the advantages of
the canonical embedding, see, e.g., [LPR10].

4.3.4 Ideal Lattices and Hardness of Ring-SIS

In short, R-SIS and its associated cryptographic functions can be proved at least as hard as certain lattice
problems in the worst case, similarly to SIS. However, the underlying lattice problems are specialized to
algebraically structured lattices, called ideal lattices, arising from the ring R. In addition, the algebraic and
geometric properties of R play a major role in what kinds of security properties R-SIS can be expected to
have, and in the quantitative strength of the underlying worst-case guarantee.

Ideal lattices. An ideal lattice is simply a lattice corresponding to an ideal in R under some fixed choice of
geometric embedding, e.g., the coefficient or canonical embedding described in Section 4.3.3 above. Recall
that an ideal of a commutative ring R is an additive subgroup I ⊆ R that is also closed under multiplication
by R, i.e., v · r ∈ I for every v ∈ I, r ∈ R. This multiplicative closure means that ideal lattices have
geometric symmetries that lattices do not have in general. For example, under the coefficient embedding of
R = Z[X]/(Xn − 1), an ideal corresponds to a cyclic lattice in Zn, i.e., one which is closed under cyclic
rotations of the coordinates of Zn. This is because ideals of R are closed under multiplication by X , which
corresponds to rotation by one coordinate in the coefficient embedding.

As described below, the known hardness proofs for R-SIS relate to lattice problems that are restricted to
ideal lattices in R. The complexity of such problems is a bit different than for arbitrary lattices. For example,
for typical choices of rings the decision problem GapSVPγ for small γ = poly(n) factors is actually easy on
ideal lattices, because the algebraic symmetries force the minimum distance of an ideal to lie within a narrow,
easily computable range. In addition, the approximate SVP and SIVP problems are equivalent (sometimes
up to a small loss in the approximation factor), because the symmetries allow one short nonzero vector to be
converted into n linearly independent ones of the same length (or nearly so).

For typical choices of rings, and for cryptographically relevant approximation factors γ, the SVPγ and
SIVPγ problems on ideal lattices appear to be very hard in the worst case, even for quantum algorithms.
Indeed, despite the additional algebraic structure of ideal lattices, no significant speedup for these problems is
known, relative to general lattices of the same dimension. In particular, the best known (quantum) algorithms
for SVPpoly(n) on ideal lattices in typical choices of rings take exponential 2Ω(n) time. However, ideal lattices
have not been investigated nearly as deeply from a computational point of view, so hardness conjectures
concerning them may not yet deserve as much confidence.

One-wayness. For the ring R = Z[X]/(Xn− 1) and other appropriate parameters, Micciancio proved that
the function f~a defined in Equation (4.3.1) is one-way, assuming the worst-case hardness of certain problems
on n-dimensional cyclic lattices, i.e., ideal lattices in R under the coefficient embedding. Equivalently,
he showed the hardness of the inhomogeneous version of ring-SIS, in which one seeks a short solution to
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Equation (4.3.1) for a uniformly random right-hand side (instead of zero). However, he left it as an open
problem to determine whether the function is collision-resistant, as Ajtai’s SIS-based function is. Recall that
collision resistance is essentially equivalent to the hardness of homogeneous ring-SIS.

Collision resistance. The concurrent and independent works of Peikert and Rosen [PR06] and Lyuba-
shevsky and Micciancio [LM06], published in 2006, showed that the function f~a over R = Z[X]/(Xn − 1)
turns out not to be collision resistant, i.e., homogeneous R-SIS is easy. The reason turns out to be that the
ring is not an integral domain, and zero divisors can be used to construct collisions.

On the positive side, however, the same works [PR06, LM06] showed that over appropriate integral
domains R, the function f~a is indeed collision resistant (equivalently, R-SIS is hard), assuming that SVPγ
for γ = β · poly(n) is hard in the worst case for ideal lattices in R. Prominent examples of suitable rings
include cyclotomic rings like Z[X]/(Xn + 1) for power-of-two n, and Z[X]/(Xp−1 + · · ·+X1 + 1) for
prime p. In general, cyclotomic rings admit quite fast and elegant ring operations, using FFT-like techniques
described in detail in [LMPR08, LPR13].

Tighter approximation factors from number fields. Subsequent work by Peikert and Rosen [PR07]
generalized the above results, demonstrating thatR-SIS is at least as hard as worst-case SVPγ on ideal lattices
in R, where R = OK is the ring of algebraic integers in any number field K. Notably, the approximation
factor for the underlying SVPγ problem can be as small as γ = O(

√
log n) in certain families of number

fields. This work revealed how the discriminant of the number field—essentially, the determinant of R under
the canonical embedding—controls the worst-case approximation factors.

4.4 Ring-LWE

In work published in 2010, Lyubashevsky, Peikert, and Regev [LPR10] introduced ring-LWE, the ring-based
analogue of learning with errors, and proved the hardness theorems described below in Section 4.4.2. (A
concurrent and independent work by Stehlé et al. [SSTX09] also considered a special case of ring-LWE
for rings of the form R = Z[X]/(Xn + 1) for power-of-two n, and proved weaker results, e.g., it lacked a
hardness proof for the decision form).

We recommend a thorough understanding of the definitions and issues relating to ring-SIS (Section 4.3)
before tackling ring-LWE, which involves some additional subtleties.

4.4.1 Definitions

Ring-LWE is parameterized by a ring R of degree n over Z, a positive integer modulus q defining the quotient
ring Rq = R/qR, and an error distribution χ over R. Typically, one takes R to be a cyclotomic ring, and χ to
be some kind of discretized Gaussian in the canonical embedding of R, which we can roughly think of as
having an “error rate” α < 1 relative to q. (However, the precise form of the error distribution needed for
proving hardness is somewhat subtle; see Section 4.4.2 for discussion.)

Definition 4.4.1 (Ring-LWE distribution). For an s ∈ Rq called the secret, the ring-LWE distribution As,χ
over Rq × Rq is sampled by choosing a ∈ Rq uniformly at random, choosing e ← χ, and outputting
(a, b = s · a+ e mod q).

We note that in the original definition of the ring-LWE distribution from [LPR10], the secret s∨ and noisy
product b∨ actually belong to R∨q := R∨/qR∨, where R∨ is a certain fractional ideal that is dual to R. It

30



turns out that this is the right definition for the hardness proof and cryptographic applications when using
(near-)spherical errors e∨ in the canonical embedding of R, which are easiest to analyze and derive sharp
bounds for (see [LPR10, Section 3.3] and [LPR13] for details). The form of the problem defined above
(where s, b ∈ Rq) can be obtained from the version just described simply by multiplying s∨ and b∨ by a
certain “tweak” factor t, where tR∨ = R:

t · b∨︸ ︷︷ ︸
b

= (t · s∨)︸ ︷︷ ︸
s

·a+ (t · e∨)︸ ︷︷ ︸
e

∈ R/qR.

Notice that this yields a “tweaked,” possibly non-spherical distribution χ for the error e. Yet these two forms
of the problem are entirely equivalent in terms of computation, applications, analysis, etc., because the tweak
is reversible; see, e.g., [LPR13, AP13] for details. (We mention that an alternative way of replacing R∨

with R was described in [DD12], but it incurs some computational and analytical losses, because it is not
reversible.)

The decision version of the R-LWE problem is to distinguish between ring-LWE samples and uniformly
random ones. As usual, we also parameterize the problem by the number m of available samples, which is
sometimes left unspecified.

Definition 4.4.2 (Decision-R-LWEq,χ,m). Given m independent samples (ai, bi) ∈ Rq ×Rq where every
sample is distributed according to either: (1) As,χ for a uniformly random s ∈ Rq (fixed for all samples), or
(2) the uniform distribution, distinguish which is the case (with non-negligible advantage).

Just as in LWE, without errors the ring-LWE problem is easy, because in case (1) we can efficiently find s:
given a sample (ai, bi) where ai ∈ Rq is invertible (most elements of Rq are), we have s = bi · a−1

i , whereas
in case (2) there will almost never be a single s that is consistent with all samples. Similarly, ring-LWE has a
normal form, in which the secret s is chosen from the error distribution (modulo q), rather than uniformly. It
is easy to show that this form of the problem is at least as hard as the one defined above, by adapting the
proof described in Section 4.2.1.

The primary advantage of ring-LWE is its compactness and efficiency: each sample (ai, bi) yields an
n-dimensional pseudorandom ring element bi ∈ Rq, rather than just a single pseudorandom scalar bi ∈ Zq as
in LWE. In addition, ring multiplication can be performed in only quasi-linear Õ(n) time using FFT-like
techniques, so we can generate these n pseudorandom scalars in just Õ(1) amortized time each. For example,
this all yields a public-key encryption scheme with only Õ(1)-factor overheads in encryption/decryption time
and ciphertext space, versus sending the plaintext in the clear. See Section 5.2 for further details.

Relation to LWE. It is helpful to understand the algebraic similarities and differences between LWE and
ring-LWE. Just as with (ring-)SIS, a single ring-LWE sample with a random ai ∈ Rq takes the place of n
LWE samples with random ai ∈ Znq . So ring-LWE can be seen as a special case of LWE with “structured”
(correlated) samples.

In abstract algebraic terms, in LWE the secret s and random ai are elements Znq , which is treated as a
Z-module, and they are multiplied using the Z-bilinear inner product 〈·, ·〉 : Znq × Znq → Zq. By contrast,
in ring-LWE the secret s and random ai are elements of Rq, which is treated as an R-module, and they are
multiplied using standard R-bilinear multiplication in Rq.

4.4.2 Hardness

Like LWE, ring-LWE enjoys a worst-case hardness guarantee, informally stated here:

31



Theorem 4.4.3 ([LPR10]). For any m = poly(n), cyclotomic ring R of degree n (over Z), and appropriate
choices of modulus q and error distribution χ of error rate α < 1, solving the R-LWEq,χ,m problem is at least
as hard as quantumly solving the SVPγ problem on arbitrary ideal lattices in R, for some γ = poly(n)/α.

(See Section 4.3.4 for a discussion of ideal lattices and SVPγ .) Notice that as with LWE, the approximation
factor γ varies inversely with the error rate α of χ. Unlike with LWE, however, the factor γ also degrades
slightly with the number of samples m. This degradation may be an artifact of the proof technique, and in
any case it can be avoided by choosing the error distribution itself at random from a certain family. See the
main theorem from [LPR10] for more details.

As mentioned above, the precise form of the error distribution χ in the above theorem is somewhat
delicate, as it relies on the canonical embedding and the “tweak” factor that transforms R∨ to R (when using
the form of the problem from Definition 4.4.1). In particular, the Z-coefficients of the error terms e ← χ
are not necessarily independent in any Z-basis of R, but they can still be sampled very efficiently in an
appropriate choice of basis. See [LPR10, LPR13] for full details.

The above theorem is proved in two parts: first, the search version of ring-LWE, which is to recover the
secret s given many samples from As,χ, is proved to be at least as hard as SVPγ , using a quantum reduction.
This part of the proof actually holds for any ring of integersR of a number field (not just cyclotomics) and any
sufficiently large modulus q. Then, a classical search-to-decision reduction is used to prove that the decision
version is at least as hard as the search version. This part of the proof relies on additional algebraic properties
of cyclotomics and the form of the modulus q, namely, that cyclotomics are Galois over the rationals, and
that q splits into the product of distinct small-norm prime ideals in R.

4.4.3 Generalizations

Brakerski, Gentry, and Vaikuntanathan [BGV12] introduced a generalized ring-LWE problem (R-GLWE),
which essentially interpolates between LWE and ring-LWE: the secret is a vector ~s ∈ Rkq of ring elements,
and GLWE samples are of the form (~a, b) ∈ Rkq × Rq, where either b = 〈~s,~a〉 + e mod q for e ← χ, or
b ∈ Rq is uniformly random. For R = Z this specializes to the k-dimensional LWEk,q,χ problem, and for
k = 1 it specializes to R-LWEq,χ. Generalizing Theorem 4.4.3, Langlois and Stehlé [LS15] proved that
R-GLWE is at least as hard as quantumly approximating worst-case lattice problems on so-called module
lattices, which are lattices corresponding to R-modules M ⊆ Rk.

4.4.4 Relation to NTRU

Recall from Section 3.2 that the NTRU cryptosystem of Hoffstein, Pipher, and Silverman [HPS98] was an
early lattice-based cryptographic proposal. Several computational problems naturally relate to the NTRU
system. One such problem is the following:

Definition 4.4.4 (NTRU learning problem). For an invertible s ∈ R∗q and a distribution χ on R, define
Ns,χ to be the distribution that outputs e/s ∈ Rq where e ← χ. The NTRU learning problem is: given
independent samples ai ∈ Rq where every sample is distributed according to either: (1) Ns,χ for some
randomly chosen s ∈ R∗q (fixed for all samples), or (2) the uniform distribution, distinguish which is the case
(with non-negligible advantage).

In the NTRU cryptosystem, the public key is one sample e/s for a short s, and ciphertexts essentially
correspond to additional samples with the same denominator s, though with somewhat less-short numerators.
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Just as with the normal form of ring-LWE, we can assume without loss of generality that the secret
denominator s is chosen from the distribution χ, restricted to units in Rq. This is because given samples ai =
ei/s ∈ Rq from Ns for some arbitrary s ∈ R∗q , we can take one that is a unit—call it a0—and divide the
remaining samples by it, yielding samples a′i = ai/a0 = ei/e0 whose common denominators are the short
unit e0. Because the same transformation on uniformly random samples preserves the uniform distribution,
being able to distinguish normal-form NTRU samples from uniform implies being able to do so for NTRU
samples with an arbitrary denominator.

The NTRU and ring-LWE problems are syntactically very similar, and can even be viewed as homoge-
neous and inhomogeneous versions of the same problem. Specifically, for NTRU samples ai ∈ Rq there
is a secret s such that every ai · s = ei (mod q) for some short ei ∈ R, while for ring-LWE samples
(ai, bi) ∈ Rq ×Rq, there is a secret s such that every ai · s+ bi = ei (mod q) for some short ei ∈ R. This
interpretation often makes it possible to adapt cryptographic constructions from one problem to the other
(e.g., [BV11b] and [LTV12]).

Ring-LWE is at least as hard as NTRU. Here we sketch a proof that ring-LWE is at least as hard as the
NTRU learning problem, for appropriate parameters. (Although the proof strategy is relatively standard by
now, we have not seen this particular result documented before.) More specifically, we describe a reduction
from the decision version of NTRU to the search version of ring-LWE. Using the search-decision equivalence
for the latter problem, we can also extend the reduction to the decision version, with one caveat that we
explain below. The reduction works by a “lossiness” argument, à la [PW08, Pei09, DM13, MP13]. Suppose
we have an oracle O that solves search-R-LWE with high probability, given ` samples. Then an algorithm
that solves the NTRU learning problem works as follows: given ` samples ai ∈ Rq as input, it chooses a
secret s and errors ei from the LWE error distribution χ and gives the pairs (ai, bi = ai · s+ ei) to O, which
returns some ŝ. If ŝ = s, our algorithm accepts, otherwise it rejects.

To analyze the reduction, first consider the case where the ai are uniformly random. Then the input we
give to O consists of properly distributed ring-LWE samples with secret s, so O must return ŝ = s with high
probability, and our algorithm accepts. In the other case, we have ai = e′i/s

′ (mod q) for some random short
s′, e′i drawn from the distribution χ′ used in the NTRU problem. Then as long as the LWE error distribution χ
is sufficiently “wider” than χ′, the pairs (ai, bi = s · e′i/s′ + ei) information-theoretically hide the value
of s. That is, there are multiple possibilities for the secret and errors that are consistent with the pairs; for
example, they could instead respectively be the short elements s+ s′ and ei − 1. Therefore, no matter how
the oracle O works internally, and even though its input pairs are not properly distributed ring-LWE samples,
it cannot reliably guess the particular s that our algorithm chose, and so our algorithm rejects with noticeable
probability. This implies that our algorithm has noticeable distinguishing advantage between NTRU samples
and uniformly random ones, as desired.

The above outline of course omits the precise calculations needed for the lossiness argument, but these
are by now rather routine (see, e.g., [PW08, GKPV10, BKPW12, DM13, MP13]). We note that in order for
the lossiness property to hold, the ratio of the widths of χ and χ′ must grow with `, the number of ring-LWE
samples used by the oracle O for search-ring-LWE. If we wish to connect the decision versions of NTRU
and ring-LWE via the known search-decision equivalence for the latter problem, then ` can be an unbounded
polynomial (it depends inversely on the advantage of the ring-LWE distinguisher). Therefore, the ratio of
the widths of χ and χ′ would need to be super-polynomial, which weakens the result. A possible way of
circumventing this problem is to give a sample-preserving search-decision equivalence for ring-LWE, which
would keep ` small; see Chapter 7 for details.
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Chapter 5

Essential Cryptographic Constructions

In this chapter we survey a core collection of lattice-based cryptographic construction, which are all built
upon the (ring-)SIS/LWE problems. The presentation is organized by type of cryptographic object:

• one-way and collision-resistant hash functions (Section 5.1);

• passively secure encryption (Section 5.2);

• actively secure encryption (Section 5.3);

• trapdoor functions (Section 5.4) and their applications, like digital signatures and identity-based
encryption (Section 5.5);

• digital signatures without trapdoors (Section 5.6); and

• pseudorandom functions (Section 5.7).

Because the presentation necessarily departs from a linear chronology, we point out several instances in
which advances in one subarea influenced works in another.

5.1 Collision-Resistant Hash Functions

Recall from Sections 4.1 and 4.3 that the functions fA and f~a (respectively defined in Equations (4.1.1)
and (4.3.1)) are collision resistant assuming the hardness of the corresponding (ring-)SIS problem.

Lyubashevsky et al. [LMPR08] defined SWIFFT, which is a concrete instantiation of the ring-SIS-
based hash function f~a. The instantiation was chosen to admit fast computation using various FFT and
precomputation techniques, and to have an estimated 2100 security level for collision resistance against known
cryptanalytic attacks. It should be noted that the parameterization of SWIFFT corresponds to a vacuous
worst-case security guarantee, because the degree n = 64 of the ring is small enough that one can find
relatively short vectors in n-dimensional lattices in a moderate amount of time. This does not mean that
SWIFFT is insecure, however, because the worst-case guarantee simply provides a lower bound on the
hardness of breaking the function. In practice, it appears that SWIFFT and other instantiations of Ajtai’s
function are substantially harder to break than the worst-case problems used in the hardness proofs.

5.2 Passively Secure Encryption

Since the introduction of the (ring-)LWE problems, a large number of encryption schemes and other applica-
tions have been based upon them. In this subsection we give a semi-chronology of LWE-based public-key
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encryption schemes having passive (IND-CPA) security. (Recall that this means, informally, that a passive
eavesdropper who sees the public key and encrypted messages learns nothing about the contents of those mes-
sages.) Many of the schemes presented in this section have additional useful properties (e.g., homomorphisms,
security for key-dependent messages), which we largely omit from the discussion.

5.2.1 Regev’s LWE Cryptosystem

Recall that Regev [Reg05] gave the first LWE-based public-key encryption scheme, in which public keys
are Õ(n2) bits, secret keys and ciphertexts are Õ(n) bits, and each ciphertext encrypts a single bit. (Here n
is the dimension of the underlying LWE problem.) In the multi-user setting, if there is a trusted source of
randomness that can be shared among all users, then the per-user public key size can be reduced to only Õ(n)
bits.

Description of the system. The cryptosystem is parameterized by an LWE dimension n, modulus q, error
distribution χ over Z, and number of samples m that all should satisfy various conditions needed for security
and correct decryption, as described below.

• The secret key is a uniformly random LWE secret s ∈ Znq , and the public key is somem ≈ (n+1) log q
samples (āi, bi = 〈s, āi〉+ei) ∈ Zn+1

q drawn from the LWE distributionAs,χ, collected as the columns
of a matrix

A =

[
Ā
bt

]
∈ Z(n+1)×m

q , (5.2.1)

where bt = stĀ + et mod q. (In the multi-user setting, Ā can be shared among all users, and the
user’s public key is just b.) Note that by definition, the secret and public keys satisfy the relation

(−s, 1)t ·A = et ≈ 0 (mod q). (5.2.2)

• To encrypt a bit µ ∈ Z2 = {0, 1} using the public key A, one just takes a random subset-sum of the
LWE samples and appropriately encodes the message bit in the last coordinate.1 More specifically, one
chooses a uniformly random x ∈ {0, 1}m and outputs the ciphertext

c = A · x + (0, µ · b q2e) ∈ Zn+1
q . (5.2.3)

Notice that, ignoring the µ · b q2e term, encryption is merely evaluation of the function fA from
Equation (4.1.1) on a random binary input x, although here the matrix A is not uniformly random, but
is instead pseudorandom.

• To decrypt using the secret key s, one computes

(−s, 1)t · c = (−s, 1)t ·A · x + µ · b q2e
= et · x + µ · b q2e (Equation (5.2.2))

≈ µ · b q2e (mod q) (e,x ∈ Zm are short)

and tests whether it is closer to 0 or to b q2e modulo q.

1More generally, it was observed by [KTX08, PW08] that one can encrypt messages from Zp using q/p in place of q/2, as long
as q/p is sufficiently large.
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Notice that decryption is correct as long as the accumulated error 〈e,x〉 ∈ Z has magnitude less than q/4.
This can be made to hold simply by choosing q to be large enough relative to the error distribution χ and the
value of m. For example, if χ = DZ,r is a discrete Gaussian, which is subgaussian with parameter r, then
〈e,x〉 is subgaussian with parameter at most r

√
m, and hence has magnitude less than r

√
m ln(1/ε)/π with

probability at least 1−2ε.2 So to ensure correct decryption with overwhelming probability, along with security
under a worst-case assumption (as discussed next), one can use parameters as small as r = Θ(

√
n) and

q = Õ(n), which correspond to an LWE error rate of α = r/q = 1/Õ(
√
n) and worst-case approximation

factors of γ = Õ(n3/2).

Security. Regev’s system is semantically secure against passive eavesdroppers, assuming that decision-
LWEn,q,χ,m is hard, which for appropriate parameters is implied by the conjectured worst-case (quantum)
hardness of lattice problems (see Section 4.2.2).

Here we give a reasonably detailed outline of the security proof, which follows a strategy that has come
to be known as a “lossiness” argument. The two main ideas are: 1. a properly formed public key A is
indistinguishable from a “malformed” uniformly random one, and 2. encrypting under such a malformed key
is information-theoretically secure. More formally, recall that we wish to show that a public key A together
with an encryption c of a fixed bit µ are indistinguishable for µ = 0, 1 (see Section 2.4.2). We proceed by
considering a sequence of alternative, or “hybrid,” experiments that produce A, c in different ways:

• In the first hybrid experiment, the public key A is “malformed” in the sense that it is chosen uniformly
at random from Z(n+1)×m

q , instead of being generated from LWE samples. (Note that there is no
corresponding secret key.) The ciphertext c is generated by encrypting µ using A in the usual way, as
c = A · x + (0, µ · b q2e) ∈ Zn+1

q .

We claim that this experiment is indistinguishable from the real one, under the LWE assumption. This
is shown by a reduction: any hypothetical attacker A that aims to distinguish the two experiments can
be transformed into an algorithmD that aims to distinguish LWE samples from uniformly random ones,
i.e., it attacks decision-LWEn,q,χ,m: D simply collects its input samples into a matrix A, encrypts µ
using A to get a ciphertext c, and invokes A on (A, c), outputting the same accept/reject decision.
It is clear that D perfectly simulates the real or hybrid experiment, depending on whether its input
samples are LWE or uniform (respectively); therefore, D and A have equal distinguishing advantages.
Because D’s advantage must be negligible by hypothesis, so is A’s.

• In the second hybrid experiment, the public key A is still uniformly random, but now the ciphertext c ∈
Zn+1
q is also chosen uniformly and independently of A.

We claim that this experiment is statistically indistinguishable from the previous one, i.e., even a
computationally unbounded attacker has only negligible advantage in distinguishing them. In other
words, encrypting under a uniformly random public key is “lossy,” in that it hides the message
information-theoretically. The claim follows immediately from the fact that m ≈ (n + 1) log q is
sufficiently large, and by a regularity lemma (also known as the leftover hash lemma) [HILL99], which
says that (A,u = A ·x) for uniform and independent A← Z(n+1)×m

q and x← {0, 1}m is statistically
indistinguishable from uniformly random. (Clearly, adding any fixed vector (0, µ · b q2e) to u preserves
its uniform distribution.)

2Using a slightly larger modulus q, one can even ensure correct decryption with certainty by rejecting any (negligibly rare) error
vector e that is too long in Euclidean norm during key generation.
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In conclusion, because the above experiments are indistinguishable for any fixed bit µ, and the last one does
not depend on µ at all, the two real experiments for µ = 0, 1 are also indistinguishable.

As a final remark, we note that the system is trivially breakable under an active, or chosen-ciphertext,
attack. We discuss actively secure LWE-based encryption in Section 5.3 below.

Normal form optimization. As documented in [MR09], the above cryptosystem, along with essentially all
other LWE-based systems, is amenable to a mild optimization using the “normal forms” of SIS/LWE defined
in Sections 4.1.1 and 4.2.1. (Indeed, some systems described below incorporate this optimization explicitly.)
For the same parameters n,m as above, we let the matrix Ā ∈ Zn×(m−n)

q have only m− n columns, and
define A ∈ Z(n+1)×(m−n)

q as in Equation (5.2.1) above, where the coordinates of s ∈ Zn are chosen from
the error distribution χ. To encrypt a bit µ ∈ {0, 1}, one chooses a uniformly random x ∈ {0, 1}m+1 and
outputs the ciphertext

c = [In+1 | A] · x + (0, µ · b q2e) ∈ Zn+1
q .

To decrypt given the secret key s, one computes

(−s, 1)t · c = (−s, 1)t · [In+1 | A] · x + µ · b q2e
= (−s, 1, e)t · x + µ · b q2e (Equation (5.2.2))

≈ µ · b q2e (mod q) (s, e,x are short)

and tests whether it is closer to 0 or to b q2e modulo q.
The security proof for this variant is essentially the same as the one outlined above, but it now relies on

the hardness of the normal form of decision-LWE, as well as a regularity lemma for matrices of the form
[In+1 | A] for uniformly random A.

Longer messages. Typically, one wishes to encrypt several bits at a time, e.g., to transmit a key for a
symmetric encryption scheme. In this context, Peikert, Vaikuntanathan, and Waters [PVW08] described
a significant efficiency improvement using an amortization technique. In their variant, one can encrypt
` = O(n) bits per ciphertext, with no asymptotic increase in the sizes of the public key or ciphertexts, nor in
the runtime of encryption. However, the secret key size and decryption runtimes are increased to Õ(` · n),
versus Õ(n) in the original system.

The main idea is, instead of using an (n+ 1)-row public key of the form A =
[

Ā
bt≈stĀ

]
, to generate an

(n+ `)-row key of the form

A =

[
Ā

B ≈ St · Ā

]
∈ Z(n+`)×m

q ,

where the ` rows of St ∈ Z`×nq are independent LWE secrets, and each entry of St · A is perturbed by
independent error drawn from χ. Encrypting a message m ∈ {0, 1}` works essentially as before, by choosing
uniformly random x ∈ {0, 1}m and outputting the ciphertext

c = A · x + (0,m · b q2e) ∈ Zn+`
q .

For security, by a routine hybrid argument, it can be shown that a public key A is indistinguishable from
uniform assuming the hardness of decision-LWE. Moreover, for m ≈ (n+ `) log q = Õ(n), the regularity
lemma and lossiness argument described above still apply, thus establishing semantic security.

37



A separate mild optimization relates to the way that the message bits are encoded to be recoverable
under noise. Throughout this survey, for simplicity we encode m ∈ {0, 1}` as m · b q2e ∈ Z`q. This incurs a
multiplicative overhead of log q, along with the additive overhead of the ciphertext “preamble” Āx. Recently,
Peikert [Pei14] described a more sophisticated “reconciliation” mechanism that encodes the message bit-for-
bit, making the ciphertext overhead merely additive. This mechanism works for any value of ` and essentially
any (ring-)LWE cryptosystem.

Generating fresh LWE samples. We conclude this coverage of Regev’s cryptosystem by noting that its
encryption algorithm (Equation (5.2.3)) implicitly contains a method for generating unboundedly many
“fresh” LWE samples for a fixed secret and a somewhat wider Gaussian error distribution, given a sufficiently
large number of initial samples. More specifically, an encryption (a, b) = A · x ∈ Zn+1

q of zero is essentially
a new LWE sample with secret s, in the sense that a is negligibly far from uniform and independent of Ā, and

b = 〈s,a〉+ 〈e,x〉 ≈ 〈s,a〉 (mod q).

Therefore, (a, b) constitutes a noisy linear equation in s. However, for the system as described above, the
distribution of the error term 〈e,x〉 ∈ Z (over the random choice of x) may not be so “nice”—it is not easy
to analyze, and it may even vary with the value of a. So the samples generated in this way may not quite be
fresh LWE samples in the sense we usually mean, i.e., from a distribution As,χ.

Fortunately, it was shown in [GPV08, ACPS09], using a key lemma from [Reg05], that a slightly modified
procedure does indeed generate LWE samples having a true Gaussian error distribution (up to negligible
statistical error). To do this, one instead chooses x according to a discrete Gaussian DZm,r for appropriate
r = Õ(1), and adds a little “smoothing” error to the final coordinate of A ·x. The error in the resulting sample
is then statistically close to Gaussian with parameter O(r · ‖e‖), where e is the error vector in the original
LWE samples. (Note that this original error e can come from any distribution, as long as it is relatively
short.) Moreover, when the input matrix A is uniformly random (instead of from the LWE distribution), the
same procedure produces samples that are nearly uniformly random and independent of A. Therefore, the
procedure is a form of randomized self-reduction for both the search and decision forms of LWE.

5.2.2 Dual LWE Cryptosystem

Gentry, Peikert, and Vaikuntanathan (hereafter GPV) [GPV08] defined an LWE-based public-key encryption
scheme which can be viewed as “dual” to the above-described ones of Regev [Reg05] and Peikert et
al. [PVW08]. The systems are duals in the following sense: in the above schemes, public keys have a non-
uniform (LWE) distribution with a unique secret key, yet there are many choices of encryption randomness
that produce the same ciphertext (for a given public key). In the GPV system, by contrast, public keys
are uniformly random with many possible secret keys, whereas the encryption randomness that produces a
particular ciphertext is unique. It turns out that having many possible secret keys is tremendously useful for
constructing a variety of more advanced cryptosystems, as covered in later sections.

Description of the system.

• To generate a key pair, one first chooses a uniformly random Ā ∈ Zn×mq for a sufficiently large m ≈
n log q. (In the multi-user setting, Ā can be chosen by a trusted party and shared among all users.) The
secret key is a uniformly random x ∈ {0, 1}m, and the public key is A = [Ā | u = Āx] ∈ Zn×(m+1)

q .
Notice that the public and secret keys satisfy the relation

A · (−x, 1) = 0 (mod q). (5.2.4)
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Also notice that finding a valid secret key for a given public key Ā,u is essentially the (inhomogeneous)
SIS problem.

• To encrypt a bit µ ∈ {0, 1}, one chooses an LWE secret s ∈ Znq and outputs the ciphertext

ct ≈ stA + (0, µ · b q2e)
t, (5.2.5)

where the approximations hide independent errors drawn from the LWE error distribution χ.

• To decrypt using the secret key x, one computes

ct · (−x, 1) ≈ st ·A · (−x, 1) + µ · b q2e (Equation (5.2.5); x is short) (5.2.6)

= µ · b q2e (Equation (5.2.4))

and tests whether the results is closer to 0 or to q/2 modulo q. Note that the total error in the above
approximation is essentially the same as in Regev’s system.

Security. The dual cryptosystem is semantically secure against passive eavesdroppers, assuming that
decision-LWEn,q,χ,m+1 is hard. The proof proceeds very similarly to the one for Regev’s system (see
Section 5.2.1), but with some steps reordered. The two main ideas are: 1. a public key A is nearly uniformly
random, so 2. a public key along with a ciphertext c (apart from the µ · b q2e term) constitute a set of LWE
samples, which are indistinguishable from uniform and hence hide the message.

Because many subsequent constructions build on the dual cryptosystem and its security proof, here we
give a reasonably detailed outline, which again considers a sequence of hybrid experiments that produce a
public key A ∈ Zn×(m+1)

q and ciphertext c ∈ Zm+1
q :

• In the first hybrid experiment, the public key A is chosen uniformly at random, instead of by the
key-generation algorithm as [Ā | Āx]. The ciphertext c is generated by encrypting the bit µ under A
in the usual way.

This hybrid experiment is statistically indistinguishable from the real one. Just as in the previous proof,
this follows from the fact that m ≈ n log q is sufficiently large, and by the regularity lemma.

• In the next hybrid experiment, the public key A remains uniformly random, and now the ciphertext c
is also chosen uniformly and independently of A.

This hybrid experiment is indistinguishable from the previous one, under the LWE assumption. This
follows by a straightforward reduction: given m + 1 samples (A;bt) ∈ Z(n+1)×(m+1)

q drawn from
either the LWE or uniform distribution, we can simulate either the previous hybrid experiment or this
one (respectively) by outputting A as the public key and ct = bt + (0, µ · b q2e)

t as the ciphertext.
(Note that in the uniform case, adding the fixed term preserves uniformity of b.) So any hypotheti-
cal distinguisher for these two hybrid experiments would directly translate to one having the same
advantage against the decision-LWE problem.

Because the above experiments are indistinguishable for any fixed bit µ, and the last one does not depend
on µ at all, the two real experiments for µ = 0, 1 are also indistinguishable.
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Variants. A few variants of the dual LWE cryptosystem are worth briefly mentioning:

• As with Regev’s system, there is an amortized version of the dual system that encrypts ` bits at a time.
Here one uses a uniformly random secret key X ∈ {0, 1}m×` and public key A = [Ā | U = ĀX] ∈
Zn×(m+`)
q ; each bit of the message is then hidden by the corresponding (noisy) entry of stU.

• The entries of the secret key X need not be binary nor uniform, but may be chosen from any distribution
on small integers such that [Ā | U = ĀX] is statistically close to uniform. Most notably, the scheme
can be made identity-based when the entries of X are chosen from, e.g., a discrete Gaussian over Z.
See Section 5.5.2 for further details.

5.2.3 More Compact LWE Cryptosystem

Lindner and Peikert [LP11] gave a public-key cryptosystem in which the public keys, and the secret keys
and/or ciphertexts, are smaller than those in the above LWE-based schemes by a factor of about log q, which
is around ten or more for typical choices of parameters. This system adapts the code-based cryptosystem of
Alekhnovich [Ale03] and the subset-sum-based cryptosystem of Lyubashevsky, Palacio, and Segev [LPS10],
and their security proof strategies, to LWE. In particular, and in contrast to the systems described above, both
the secret key and the encryption randomness (for a given public key and ciphertext) are unique.

Description of the system.

• Let Ā ∈ Zn×nq be a (possibly shared) uniformly random square matrix. A secret key is a vector s ∈ Zn
with coordinates drawn independently from the error distribution χ, and the public key is

A =

[
Ā

bt ≈ stĀ

]
∈ Z(n+1)×n

q ,

where the approximation hides independent errors drawn from χ. Notice that the secret and public
keys satisfy the relation

(−s, 1)t ·A ≈ 0 (mod q). (5.2.7)

• To encrypt a bit µ ∈ {0, 1}, one chooses an r ∈ Zn with coordinates drawn from the error distribution
and outputs a ciphertext

c ≈ Ar + (0, µ · b q2e) ∈ Zn+1
q (5.2.8)

where the approximation hides independent errors drawn from χ.

• To decrypt using the secret key s, one computes

(−s, 1)t · c ≈ (−s, 1)t ·A · r + µ · b q2e ≈ µ · b
q
2e

where the first approximation relies on Equation (5.2.8) and the shortness of s, and the second relies on
Equation (5.2.7) and the shortness of r.

Similarly to the prior schemes, there is an amortized variant that can encrypt ` bits per ciphertext. Here
the secret key is a matrix S ∈ Zn×` of independent error terms, and the public key is

[
Ā

Bt≈StĀ

]
.
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Analysis. The above scheme is semantically secure against passive eavesdroppers, assuming that decision-
LWE is hard. The proof is a bit different than for the previously described schemes: it relies on the
normal-form LWE assumption twice, and does not require a statistical regularity lemma. In more a bit detail,
first notice that under the LWE assumption, the public key is indistinguishable from uniform. So consider a
hybrid experiment in which the public key is uniformly random: then the public key and ciphertext (ignoring
the µ · b q2e term) together just constitute n+ 1 LWE samples, which are indistinguishable from uniform by
assumption, so they hide the message bit.

Notice that if we wish to have a worst-case hardness guarantee from Theorem 4.2.4, the entries of both
r, s (which are drawn from χ) need to have magnitudes on the order of

√
n. Therefore, the accumulated

error in the decryption relation is somewhat larger, by about a
√
n factor, than in the prior LWE-based

schemes. This induces a somewhat larger modulus q, and thereby a smaller LWE error rate for the public
keys and ciphertexts, which yields somewhat looser approximation factors γ = Õ(n2) (versus Õ(n3/2))
for the underlying worst-case lattice problems. However, after normalizing to the same estimated hardness
against concrete attacks, the compact scheme still has much smaller keys and ciphertexts; see [LP11] for
further details.

5.2.4 Ring-LWE Cryptosystems

Using the correspondence between LWE and ring-LWE outlined in Section 4.4 above, the vast majority of
LWE-based schemes and applications can be mechanically converted to more compact and efficient ones that
remain secure under a corresponding ring-LWE assumption.

Compact ring-LWE encryption. The ring-LWE analogue of the compact LWE-based cryptosystem from
Section 5.2.3 is relatively easy to describe and analyze.3 This system was first described in [LPR10] for
the simplest cyclotomic rings R = Z[X]/(Xn + 1) for power-of-two n, and in full generality for arbitrary
cyclotomic rings in [LPR13]. In brief, the system works as follows: a public key is a normal-form ring-LWE
sample

(a, b ≈ s · a) ∈ Rq ×Rq,

for some (possibly shared) uniformly random a ∈ Rq and short secret key s ∈ R, where both s and the
approximation error are drawn from χ. To encrypt a message µ ∈ R2 (corresponding to an n-bit string), one
generates a ciphertext

(u ≈ a · r, v ≈ b · r + µ · b q2e) ∈ Rq ×Rq,

where r ∈ R and the approximation errors are drawn from χ. Decryption works by computing

v − s · u ≈ µ · b q2e+ b · r − s · a · r ≈ µ · b q2e,

and recovering µ by removing the approximation error. (In the construction for general cyclotomic rings,
obtaining the tightest parameters is somewhat subtle, and the system needs to be tweaked slightly; see [LPR13]
for details.)

3Chronologically, the ring-LWE analogue was actually discovered before the LWE-based system, which was then “backported”
from the former.
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Ring-LWE meets NTRU. Stehlé and Steinfeld [SS11] gave a variant of the NTRU cryptosystem that has
a security proof under the ring-LWE assumption. In their system, as in NTRU, the public key is a ratio
h = g/f ∈ Rq of two “somewhat short” polynomials. However, here the coefficients of f and g are chosen
to have magnitudes of roughly

√
q · poly(n), so that g/f ∈ Rq is statistically very close to uniformly

random. (By contrast, in NTRU the coefficients are very small, and g/f is conjectured to be computationally
indistinguishable from uniform.) Proving this statistical fact is the main technical obstacle; once it is obtained,
semantic security from ring-LWE follows relatively easily. In contrast with the ring-LWE cryptosystem
described above, here public keys and ciphertexts are only one ring element each. However, in order to obtain
the statistical property along with correctness, the parameters must be substantially larger, to the point where
the scheme is concretely less efficient than other ring-LWE schemes.

Regularity. When adapting other LWE-based applications to ring-LWE, one subtlety is that certain schemes
require an appropriate regularity (or “leftover hash”) lemma for the ring-SIS function f~a (Equation (4.3.1)).
Such lemmas are substantially harder to prove for rings than for additive groups like Znq , mainly because
for typically used parameters, the ring Rq is very far from being a field, i.e., it has many zero divisors.4

Micciancio [Mic02] gave the first such regularity lemma for rings like these, where q is a prime integer. One
drawback is that proof depends on using “short” ring elements zi ∈ R that, when viewed as polynomials,
have uniformly random integer coefficients in a poly(n)-sized interval. However, many applications require
or work best with Gaussian-distributed ring elements. A subsequent regularity lemma that works for this
setting was given in [LPR13]. It relies on ring-SIS instances ~a in normal form, where the first Rq-component
is unity, and it still requires the zi to have polynomially large integer coefficients.

5.3 Actively Secure Encryption

The encryption schemes described in Section 5.2 are only semantically secure against passive eavesdroppers,
i.e., indistinguishable under chosen-plaintext attack (IND-CPA). Many real-world applications require the
much stronger notion of security against active attacks, formally known as indistinguishability under chosen-
ciphertext attack (IND-CCA).

Fujisaki and Okamoto gave two generic, efficient methods [FO99a, FO99b] for converting any IND-
CPA-secure public-key encryption scheme into an IND-CCA-secure one. However, their construction and
analysis relies on the random-oracle heuristic [BR93], which is not sound in general (see, e.g., [CGH98]).
Recently, an instantiation of the Fujisaki-Okamoto transformation for a particular compact ring-LWE-based
cryptosystem was described in [Pei14].

In the rest of this subsection we describe two related paradigms for obtaining actively secure public-key
encryption from lattices in the standard model, i.e., without the random-oracle heuristic.

5.3.1 From Lossy Trapdoor Functions

The work of Peikert and Waters [PW08] was the first to give a standard-model, IND-CCA-secure cryptosystem
from any type of lattice assumption—in this case, LWE. Their construction is based around a concept they
called a lossy trapdoor function family, or lossy TDF. In a lossy TDF family, the public key pk of a function
fpk : X → Y from the family can be generated in one of two ways: in injective mode, pk is generated along
with a trapdoor sk, and fpk is an injective function that can be efficiently inverted using sk. (In particular, the

4If Rq is a field or “nearly” so, then the standard leftover hash lemma is sufficient and yields good parameters.
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range Y must be at least as large as the domain X .) In lossy mode, pk is generated without any trapdoor, and
the function fpk is “lossy” in the sense that its image fpk(X) ⊆ Y is much smaller than the domain X . In
other words, fpk has many collisions, and a typical y = fpk(x) has many valid preimages under fpk. Finally,
public keys generated in the two modes are indistinguishable: no efficient adversary has noticeable advantage
in distinguishing between injective and lossy public keys. In particular, this final property can be used to
show that inverting an injective function, or finding a collision in a lossy function, are both infeasible.

Peikert and Waters gave a generic construction of IND-CCA-secure encryption from any lossy TDF, and
also constructed a lossy TDF from LWE (among other assumptions). An important property of their encryption
scheme is that it is witness recovering: the decryption algorithm manages to recover the randomness that
the encryption algorithm used to create the ciphertext, and then recomputes the ciphertext to verify that
it is well formed. This technique departs from prior standard-model IND-CCA-secure constructions, in
which ciphertexts essentially carry zero-knowledge proofs of well-formedness. The LWE-based lossy TDF
construction of [PW08] has roughly the same asymptotic parameters and efficiency as the passively secure
amortized encryption schemes described above in Section 5.2, but with somewhat larger constant and
logarithmic factors.

5.3.2 From Injective Trapdoor Functions

Soon after [PW08], Peikert [Pei09] gave a somewhat simpler and more direct construction of IND-CCA-
secure encryption from LWE. This construction does not rely on any lossiness properties, but is still witness
recovering due to its use of the injective trapdoor functions defined in the work of Gentry, Peikert, and
Vaikuntanathan [GPV08] (described below). The public key and ciphertext sizes of Peikert’s scheme are
roughly a linear factor larger than those in [PW08], due mainly to a more combinatorial (and less algebraic)
description of the trapdoor functions.

Later, Micciancio and Peikert [MP12] gave a direct construction of IND-CCA-secure encryption from
LWE, which has the best asymptotic and concrete parameters of all such constructions to date. The con-
struction closely follows the one of [Pei09] based on injective TDFs, but with more compact, algebraic
“tagged” functions, similar to those originally used in [PW08]. Here the tagged functions are obtained using a
technique from [ABB10], which was originally developed in the context of identity-based encryption. See
Sections 5.4.3 and 5.5 below for more details.

5.4 Lattice Trapdoors

Informally, a trapdoor function is a function that is easy to evaluate and hard to invert on its own, but which
can be generated together with some extra “trapdoor” information that makes inversion easy. There are many
versions of this basic concept, depending on whether the function in question is injective, surjective, bijective,
“lossy,” etc. The prototypical candidate trapdoor function is the RSA function [RSA78] fN,e(x) = xe mod N ,
whereN is the product of distinct primes p, q, and gcd(e, ϕ(N)) = 1. The RSA function is a bijection on Z∗N ,
and the trapdoor is d = e−1 mod ϕ(N), because (xe)d = x mod N . (Alternatively, the factorization p, q
of N is a trapdoor, because one can efficiently compute d from these factors.) There are relatively few
trapdoor function candidates, and for the first few decades of modern cryptography, all commonly accepted
ones relied on the conjectured hardness of integer factorization [RSA78, Rab79, Pai99].

Inspired by the early ideas of Goldreich, Goldwasser, and Halevi (hereafter GGH) [GGH97] (see
Section 3.3), Gentry, Peikert, and Vaikuntanathan (hereafter GPV) [GPV08] showed that certain types of
trapdoor functions can be constructed from lattice problems, and in particular (ring-)SIS/LWE. The work
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of GPV and several follow-ups used these trapdoor functions to construct many powerful cryptographic
applications, including digital signature schemes, (hierarchical) identity-based and attribute-based encryption,
and much more.

In the rest of this subsection we give an overview of lattice trapdoors and the precise kinds of trapdoor
functions they enable. Then in Section 5.5 we describe several cryptographic applications of these functions.

5.4.1 Trapdoor Functionality and Realizations

At a high level, a trapdoor for a lattice enables two main types of cryptographic functionality:

• The ability to solve the bounded-distance decoding problem (Definition 2.2.5), i.e., to find the unique
lattice vector closest to a given target point that is promised to be “rather close” to the lattice. This can
be used to construct injective trapdoor functions, as first described by GGH.

• The ability to sample from a discrete Gaussian distribution of “rather small” width, over any desired
coset of the lattice. This can be used to construct what GPV called preimage sampleable trapdoor
functions (PSFs), which yield digital signature schemes and other applications. Informally, a PSF is a
regular trapdoor function f whose trapdoor allows one to randomly sample a preimage x ∈ f−1(y)
of any range element y under some “canonical” (but not necessarily uniform) distribution. (See
Definition 5.4.3 below for details.)

The literature contains two distinct but closely related notions for what constitutes a lattice trapdoor:

• The first notion, which was used in the seminal works [GGH97, GPV08, CHKP10], is a short basis:
essentially, a lattice basis made up of relatively short lattice vectors. This notion is conceptually very
natural and completely generic—it can be applied to any lattice—so we start in Section 5.4.2 by
describing the high-level intuition and general-purpose algorithms in terms of short bases.

• The second is a “gadget”-based trapdoor, introduced in the work of Micciancio and Peikert [MP12]
and described in Section 5.4.3 below. This notion applies only to q-ary lattices arising from the
(ring-)SIS/LWE problems, so it is somewhat more specialized. But as compared with short bases, gadget
trapdoors are technically simpler to work with in SIS/LWE-based applications, computationally more
efficient, and at least as powerful. For these reasons, in later sections we describe most cryptographic
schemes in terms of gadget trapdoors.

5.4.2 Short Bases

In this subsection we describe how a short basis can serve as a trapdoor for a public lattice specified by a
“bad” basis (or other “hard” representation), and how this yields the trapdoor functionalities mentioned above.

Key generation. First we must consider how to jointly generate a pair of good and bad bases for the
same lattice. Originally, GGH suggested an ad-hoc method that randomly chooses a set S of short linearly
independent vectors to serve as the good basis of the lattice L = L(S), then applies a “random” unimodular
transformation U (having large entries) to obtain a bad basis B = S · U of L. Alternatively, Miccian-
cio [Mic01] suggested using the Hermite normal form basis of L, which is a “hardest possible” basis in a
formal sense, as the public bad basis.

It is important to note that the above methods do not generate lattices from Ajtai’s worst-case-hard
family of q-ary SIS lattices (Equation (4.1.2)), so we lack evidence that these methods yield hard-on-average
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problems, which is needed for security. Ajtai [Ajt99] addressed this gap by showing how to generate a
random lattice from the SIS family along with a relatively short basis. Later works [AP09, MP12] simplified
and improved this method to obtain nearly optimal bounds.

Theorem 5.4.1 ([Ajt99, AP09, MP12]). There is an efficient randomized algorithm that, given positive
integers n, q and m ≥ Cn log q for some universal constant C, outputs a (nearly) uniformly random parity-
check matrix A ∈ Zn×mq specifying the integer lattice L = L⊥(A) = {x ∈ Zm : Ax = 0 (mod q)} ⊆ Zm,
along with a basis S ∈ Zm×m of L whose vectors have norms bounded by poly(n, log q).

Note that because S ⊂ L⊥(A), we have A ·S = 0 (mod q). Of course, the theorem is only interesting if the
norm bound for S is significantly smaller than q (which is the case for typical parameters), because the scaled
standard basis vectors q · ei are trivially in L⊥(A). Finally, note that it is not sufficient to simply choose a
uniformly random A and then attempt to compute short vectors in L⊥(A), because this is exactly the (hard)
SIS problem. Instead, one must somehow generate S along with A, so that the induced distribution of A is
close to uniform.

Injective trapdoor functions from bounded-distance decoding. At the heart of the GGH encryption
scheme is a family of injective trapdoor functions, where inverting a function corresponds to solving the
bounded-distance decoding problem (BDD, Definition 2.2.5) on the average. At a high level, the functions
work as follows: as already mentioned, the public key and trapdoor are respectively a “hard” representation of
a lattice L (e.g., a bad basis) and a short basis S of L. Evaluating the function on a random input corresponds
to choosing a “random” vector v ∈ L∗ in the dual lattice (see Section 2.2) and a short “error” vector e whose
norm is significantly smaller than λ1(L∗), and outputting t = v + e.5 (The reason for using the dual lattice
will become clear in the next paragraph.) Because the error is sufficiently short, the inputs v, e are uniquely
defined by the output t, and recovering them from t is exactly an average-case BDD problem on L∗, which
we may conjecture (or prove) to be hard.

Using a sufficiently short trapdoor basis S for L, one can efficiently invert the function using a standard
lattice decoding algorithm, such as naı̈ve rounding or Babai’s nearest-plane algorithm [Bab85]. For example,
the rounding algorithm, given t = v + e, simply outputs

btt · Se · S−1 = b(vt + et) · Se · S−1 = vt + bet · Se · S−1,

where the second equality holds because vt · S is integral, since v ∈ L∗. So the algorithm correctly finds v
as long as 〈e, si〉 ∈ [−1

2 ,
1
2) for every short basis vector si ∈ S. This indeed holds as long as both e and si

are short enough, e.g., by the Cauchy-Schwarz inequality, or by tail bounds relying on the distribution of e.
(We mention that the nearest-plane algorithm can typically decode from somewhat larger errors using the
same basis, but is computationally less efficient.)

The GPV instantiation of the above template, for which inverting the function is equivalent to the
search-LWE problem (which, to recall, is an average-case BDD problem), is as follows:

• The public key is a uniformly random A ∈ Zn×mq , specifying the lattice L = L⊥(A), generated
together with a relatively short trapdoor basis S ∈ Zm×m of L, for which A · S = 0 (mod q).

5Alternatively, the output can be (the canonical public representative of) the coset e + L∗, which eliminates the need for the
(somewhat ill-defined) “random” lattice vector v.
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• As mentioned in Section 4.2.1, the LWE lattice L(A) := {Ats : s ∈ Znq }+ qZm is the (scaled) dual
lattice of L, i.e., L(A) = q · L∗. So, following the above template, we define the LWE function

gA(s, e) := stA + et mod q,

where one should choose the input s ∈ Znq uniformly at random (corresponding to a “random” lattice
vector v = Ats mod q) and e ∈ Zm from the LWE error distribution χm. Clearly, inverting this
function is syntactically equivalent to the search-LWEn,q,χ,m problem.

• Using the trapdoor S, we can recover s, e from the function output bt = stA+et mod q by computing

yt = bt · S = et · S (mod q),

lifting y to its canonical representative ȳ ∈ [− q
2 ,

q
2)m, and outputting ȳt ·S−1 (where S−1 is computed

over the rationals, not modulo anything) as the desired value of e, from which we can also compute s.
Note that as long as et · S ∈ [− q

2 ,
q
2)m—not modulo anything—which we can ensure by choosing q to

be sufficiently large relative to the norms of e and the si, then we do indeed have ȳt = et · S, and so
we recover e correctly.

Discrete Gaussian sampling. In the GGH signature scheme, signing a message roughly corresponds to
solving an approximate closest vector problem (CVP) on the average, which can be accomplished using
a short basis. In contrast to the injective BDD-based functions described above, here the target can be an
arbitrary point that need not be especially close to the lattice, and it has many valid signatures corresponding
to sufficiently nearby lattice vectors. Recall, however, that the GGH signature scheme and some of its
derivatives (e.g., [HHGP+03]) turned out to be insecure [NR06], because an attacker use a small number of
signatures to efficiently reconstruct the secret trapdoor basis. This is because the signing algorithm implicitly
leaks information about the geometry of the secret basis it uses.

The work of GPV gave a different, randomized approach to signing that provably leaks no information
about the secret basis (apart from a bound on its length, which is already public knowledge). A key property
is that the probability distribution of a signature is the same no matter which short basis is used to produce
it, so signatures reveal nothing about the trapdoor basis (other than that it is sufficiently short). This fact
facilitates a formal proof of unforgeability in the random-oracle model, assuming the average-case hardness
of a CVP-like problem such as SIS.

A key technical ingredient behind the GPV approach is an algorithm for sampling from a discrete Gaussian
distribution, given any sufficiently good basis. More precisely, letting S̃ = {s̃i} denote the Gram-Schmidt
orthogonalization of an ordered set of vectors S = {si}, and letting ‖B‖ := maxi‖bi‖ for any set of vectors
B = {bi}, we have:

Theorem 5.4.2 ([GPV08]). There is a randomized polynomial-time algorithm that, given any basis S of a
lattice L = L(S) ⊂ Rn, any coset c + L, and any Gaussian parameter s ≥ ‖S̃‖ ·

√
logO(n/ε), outputs a

sample whose distribution is within statistical distance ε of the discrete Gaussian Dc+L,s.

By setting ε to be, e.g., ε = n−ω(1) for some slightly super-constant function ω(1), we obtain a negligible
statistical distance from Dc+L,s for a parameter s that exceeds ‖S̃‖ by only a small ω(

√
log n) factor.

For cryptographic purposes, the sampling algorithm from Theorem 5.4.2 can be treated as a black box.
However, we briefly mention that the algorithm is simply a randomized variant of Babai’s “nearest-plane”
algorithm [Bab85], where in each iteration we randomly choose a “plane” according to a one-dimensional
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discrete Gaussian over an appropriate coset c+Z, instead of deterministically.6 Subsequent works gave other
sampling algorithms that offer various trade-offs among efficiency, statistical error, and width of the sampled
distribution; we discuss some of these at the end of the subsection.

Preimage sampleable functions. With the above sampling algorithm in hand, we can describe GPV’s
notion of preimage sampleable trapdoor functions (PSFs), a generic lattice-based template, and a concrete
instantiation from the SIS problem. We start with a semi-formal definition of PSFs.

Definition 5.4.3 (Preimage Sampleable Functions). An efficiently computable function f : X → Y , where
domain X is endowed with some efficiently sampleable distribution D, is preimage sampleable if there
exists an efficient randomized algorithm, denoted f−1, such that the following two methods of generating an
input-output pair (x, y = f(y)) produce the same joint distribution (up to negligible statistical error):

• Forward: Choose x← D from the input distribution and let y = f(x).

• Reverse: Choose y ← Y uniformly from the range, then sample a preimage x← f−1(y).

A PSF family is a collection of such functions for which we can efficiently sample (the description of) an f
together with an f−1.

As we shall see, the statistical property from the definition is central to the security of applications. We remark
that any family of trapdoor bijections (e.g., the RSA function family) is also a PSF family: the preimage
“sampling” algorithm is actually deterministic, and merely outputs the unique preimage.

The above definition does not include any security (or hardness) criteria, which are orthogonal to the
sampling functionality and should therefore be considered separately. Typical properties we might ask for
include one-wayness or collision resistance. The former says that it is infeasible, given the description of a
sampled f (but not f−1) and a uniformly random y ← Y , to find any preimage of y under f . The latter says
that it is infeasible, given the description of a sampled f , to find distinct inputs x, x′ such that f(x) = f(x′).

Lattice-based PSFs. We now describe GPV’s generic template for PSFs based on lattices:

• As above, the public description and trapdoor of a function fL are respectively a “hard” representation
(e.g., a bad basis) of a lattice L ⊂ Rm, and a short basis S of L. We also let s denote a public Gaussian
parameter that exceeds the smoothing parameter of L and has an appropriate dependence on S, e.g.,
s ≥ ‖S̃‖ · ω(

√
log n).

• The input distribution is the (continuous) Gaussian Ds over Rm. Evaluating fL on an input x← Ds

merely outputs (the canonical public representative of) the coset x + L, i.e., y = fL(x) := x mod L.

We stress that x is rather short (i.e., ‖x‖ ≤ s
√
m) with overwhelming probability, but x mod L

is almost always represented by a long vector, due to the hard public representation of L. Also,
because s exceeds the smoothing parameter of L, the output y = x + L is essentially uniform over the
range Rm/L, as required. Lastly, finding a valid preimage for a uniform coset y + L (i.e., violating
one-wayness) means finding a sufficiently short vector in y + L, which is essentially an average-case
approximate-CVP problem.

6Interestingly, Klein [Kle00] proposed essentially the same randomized variant of nearest-plane, but for the very different problem
of bounded-distance decoding (BDD), and where the parameter s is smaller than the minimal length of the Gram-Schmidt vectors.
For such parameters, the algorithm’s output distribution is very far from a discrete Gaussian.
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• To sample a preimage for a given coset y + L using the trapdoor basis S, we simply sample from
the discrete Gaussian Dy+L,s, e.g., using the algorithm from Theorem 5.4.2 (which requires s ≥
‖S̃‖ · ω(

√
log n)). A moment’s thought reveals that because the set of preimages is exactly y + L,

and the conditional probability of each x ∈ y + L under Ds is proportional to ρs(x), the input
distribution Ds conditioned on obtaining output y + L is exactly Dy+L,s. Combining this with the
(near) uniformity of y + L ∈ Rm/L, we see that the preimage sampling algorithm does indeed satisfy
the statistical property from Definition 5.4.3.

A concrete instantiation of the above template, whose one-wayness and collision resistance follow directly
from the hardness of the SIS problem, is as follows. It works with integers in place of real numbers, and
hence DZm,s in place of Ds.

• As before, the public key is a uniformly random A ∈ Zn×mq , specifying the lattice L = L⊥(A)
(Equation (4.1.2)), generated together with a relatively short trapdoor basis S ∈ Zm×m of L.

• The function fL is simply the SIS function (Equation (4.1.1))

fA(x) := Ax mod q,

where here the input x ∈ Zm is chosen according to the discrete Gaussian DZm,s. Recall from
Section 4.1.1 that y = Ax ∈ Znq can be seen as a canonical representative of the coset L⊥y (A) =

x + L⊥(A) ∈ Zm/L. Therefore, finding a short preimage of y is syntactically identical to the
(inhomogeneous) SIS problem. Similarly, a valid collision x,x′ ∈ Zm immediately yields a short SIS
solution z = x− x′ 6= 0.

• To sample a preimage of y ∈ Znq using the trapdoor basis S, we merely sample from the discrete
Gaussian DL⊥y (A),s using the algorithm from Theorem 5.4.2 (or any other suitable algorithm).

Extending and randomizing short bases. Cash, Hofheinz, Kiltz, and Peikert [CHKP10] demonstrated
additional useful features of lattice trapdoors, namely, that they can be extended and re-randomized. These
properties were used to construct digital signature and IBE schemes without random oracles, as well as
hierarchical versions of the same, in which secret keys with restricted power can be securely delegated to
subordinates. See Section 5.5.3 for further details on these constructions.

A first main idea in [CHKP10] is that a trapdoor short basis S for a parity-check matrix A can yield an
equally good trapdoor basis for any extension A′ = [A | A1], for arbitrary A1. Specifically, letting W be
any integral solution to AW = −A1 (mod q), we have

[A | A1] ·
[
S W
0 I

]
︸ ︷︷ ︸

S′

= 0 (mod q).

It is not hard to show that S′ is indeed a basis of L⊥(A′), and that its Gram-Schmidt vectors S̃ are no longer
than those of S, because S̃′ = diag(S̃, I).

A second main idea is that a trapdoor basis S for A ∈ Zn×mq can be re-randomized to a new one S′ ∈
Zm×m that reveals nothing about S (except for a bound on its quality). This works simply by using S
to sample independent Gaussian solutions to A · s′ = 0 (i.e., lattice vectors in L⊥(A)) until we have
accumulated a set of m linearly independent vectors, which can then be converted to a basis. Note that the
quality of the resulting basis S′ is about a

√
m factor worse than that of the original S, because the norm of

each sampled solution s′ is roughly ‖S̃‖ ·
√
m.
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Other sampling algorithms. Since the introduction of discrete Gaussian sampling for cryptographic
purposes [GPV08], many refinements and alternative algorithms have been proposed; we discuss some of
them here. (This material is not needed for the rest of the survey, and may be safely skipped.)

The randomized nearest-plane algorithm for discrete Gaussian sampling described in Theorem 5.4.2 is
rather inefficient in general: it requires very high-precision arithmetic to store and operate on (an appropriate
representation of) the Gram-Schmidt orthogonalized basis, and it involves n sequential iterations, each
of which requires an n-dimensional inner product of high-precision vectors. Also, this super-quadratic
runtime persists to the ring setting (e.g., for ring-SIS/LWE), where by contrast all other commonly used ring
operations are only quasi-linear time.

Peikert [Pei10] gave a more efficient and parallel discrete Gaussian sampling algorithm, which is also
quasi-linear time in the ring setting. As an illustrative first attempt, to sample in parallel from c + L using
a short basis S of L, one might try randomly rounding each coefficient of the basis vectors independently,
i.e., let x ← S ·DS−1c+Zn,r for some appropriate r ≥ ηε(Zn). This produces a short random element of
c + L, but unfortunately, the distribution is “skewed” due to the multiplication by S. More formally, it is a
non-spherical discrete Gaussian with covariance matrix E[x · xt] ≈ r2 · SSt, which reveals a lot about S.

The main idea in [Pei10] is to add an appropriately distributed perturbation term to “unskew” the
distribution of x, making it spherical.7 More formally, to sample from Dc+L,s we do the following:

1. In an offline phase (before the desired coset c + L is known), choose a Gaussian perturbation p with
covariance Σp = s2I− r2SSt.

2. In the online phase (when c + L is known), output x← p + S ·DS−1(c−p)+Zn,r.

Notice that the support of x is c + L, as desired. Moreover, a “convolution” lemma from [Pei10] essentially
says that, just as for continuous Gaussians, the covariances of discrete Gaussian addends are additive, thus x is
discrete Gaussian with the desired covariance s2I. Finally, note that the distribution of the perturbation term p
is well-defined exactly when Σp is positive definite, which holds if and only if s > r · s1(S), where s1(S)
denotes the largest singular value (or spectral norm) of S. Therefore, the final Gaussian parameter of the
sampler is proportional to s1(S), rather than ‖S̃‖ as in Theorem 5.4.2.

Subsequently, Ducas and Nguyen [DN12a] gave a technique that optimizes (up to logarithmic factors) the
asymptotic average-case runtime of the randomized nearest-plane algorithm, and the offline phase of Peikert’s
convolutional sampler, using floating-point arithmetic (FPA). Their method combines low and high-precision
FPA via a “laziness” technique that typically remains low precision, and in practice can be implemented
using standard IEEE double precision.

In a different direction, Brakerski et al. [BLP+13] gave an improved version of the randomized nearest-
plane algorithm that uses rejection sampling to sample discrete Gaussians with a parameter as small as
‖S̃‖ ·O(

√
log n) (saving a slightly super-constant ω(1) factor over Theorem 5.4.2), and with a statistical error

that can be made arbitrarily close to zero. However, these sharper bounds come at the expense of somewhat
larger runtime and algorithmic complexity.

Recently, Lyubashevsky and Wichs [LW15] gave algorithms for sampling short vectors from lattice cosets
under distributions other than discrete Gaussians, e.g., uniform within a box. Such samplers can be used to
provide alternative instantiations of preimage sampleable functions. Compared to prior discrete Gaussian
samplers, the primary advantage of these new samplers is their relative simplicity of implementation and
avoidance of high-precision arithmetic. Their primary disadvantage is that the vectors they produce are longer

7This idea of using a perturbation to hide information about S is loosely inspired by, but technically very different from, another
perturbation technique included as part of NTRUSign [HHGP+03], but which was shown to be insecure in [MPSW09, Wan10,
DN12b].
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by a factor up to linear in the lattice dimension, which corresponds to worse security (and thus larger keys to
compensate).

Finally, Ducas and Prest [DP15] recently investigated a “hybrid” of the nearest-plane and convolutional
samplers for lattices defined over rings (e.g., NTRU lattices). They showed that the hybrid approach can
simultaneously obtain nearly the best aspects of both previous algorithms, in terms of sample quality and
asymptotic efficiency.

5.4.3 Gadget Trapdoors

We now turn from short bases as generic lattice trapdoors, to the “gadget”-based trapdoors for q-ary SIS/LWE
lattices as developed in [MP12], building on techniques from several related works [Ajt99, AP09, PW08,
ABB10].

Gadgets. The first main idea is that there are special, structured matrices G, called “gadgets,” for which
solving SIS and LWE is easy. The simplest gadget is as follows: for a given a modulus q, define the vector

g = (1, 2, 4, . . . , 2`−1) ∈ Z`q,

where ` = dlog2 qe.8 Now observe that given any u ∈ Zq, we can find a short solution x ∈ Zm to

〈g,x〉 = gt · x = u (mod q);

for example, let x correspond to the base-two representation of u’s canonical representative in {0, . . . , q− 1}.
In other words, it is easy to solve the SIS problem with respect to the one-row parity-check “matrix” gt.
Moreover, it is easy to randomly sample from a discrete Gaussian over the lattice coset L⊥u (gt) of solutions.

A bit more thought reveals that solving LWE with respect to gt is also easy. For simplicity, suppose
that q = 2`; then given any bt ≈ s · gt (mod q) with errors in the interval [− q

4 ,
q
4), we can recover the

most-significant bit of s ∈ Zq from

b` ≈ s · 2`−1 = msb(s) · q2 (mod q).

We can then recover the next-most-significant bit of s from b`−1 ≈ s ·2`−2 (mod q), etc. (This all generalizes
to non-power-of-two moduli as well, but is a bit more technically involved.)

We extend all of the above to n-dimensional SIS and LWE with respect to the block-diagonal gadget
matrix

G := In ⊗ gt = diag(gt, . . . ,gt) ∈ Zn×n`q ,

just by working blockwise: for LWE, given bt ≈ stG = (s1g, . . . , sng)t, just recover each si from the
corresponding block of b. For SIS, to find a short solution to Gx = u for a given u ∈ Znq , just find short
solutions to gt ·xi = ui for each entry ui and concatenate the results. It is convenient to express this operation
in terms of the “decomposition” function

G−1 : Znq → Zn` (5.4.1)

u 7→ a short solution x to Gx = u (mod q),

8This g can be generalized in a variety of ways, e.g., by using a base other than two, mixed bases, the Chinese Remainder
Theorem, etc.
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where the choice of notation is explained by the relation

G ·G−1(u) = u (mod q).

We stress that G−1 is not a matrix, but rather a function that maps a mod-q input to a short integer vector.
Depending on the context, the G−1 operation may even be randomized, e.g., it could sample a Gaussian-
distribution solution.

Finally, observe that given any invertible matrix H ∈ Zn×nq , SIS and LWE remain easy with respect to
the matrix HG ∈ Zn×n`q . Specifically, to solve (HG)x = u, simply output x = G−1(H−1 · u), and given
bt ≈ stHG, first recover stH by solving with respect to G, then multiply the solution by H−1.

Trapdoor definition and usage. The next main idea is that a parity-check matrix A can “hide” (a multiple
of) the public gadget matrix G. A trapdoor is merely a short linear transform that unhides the gadget.

Definition 5.4.4. A trapdoor for a parity-check matrix A ∈ Zn×mq is any sufficiently “short” integer matrix
R ∈ Zm×n` such that

AR = HG (mod q) (5.4.2)

for some invertible H ∈ Zn×nq , called the tag of the trapdoor. The quality of the trapdoor is given by its
largest singular value s1(R) := max‖u‖=1‖Ru‖; smaller s1(R) means higher quality.

Note that the tag H is easily computable from A and R, because G contains the identity In as a submatrix.
Suppose we have a trapdoor R for A with tag H, for the moment putting aside the question of how we

construct such matrices. Then we can efficiently solve SIS with respect to A, i.e., for any u ∈ Znq we can
find a short solution x ∈ Zm to Ax = u (mod q). To do this, simply let

x = Rw, where w = G−1(H−1u).

Clearly, x is short because R and w are (specifically, ‖x‖ ≤ s1(R) · ‖w‖), and by Equation (5.4.2),

Ax = ARw = HGw = u (mod q).

Sampling a Gaussian-distributed SIS solution is a bit more subtle. In the above method we could just
sample a Gaussian-distributed solution w, but then the distribution of x = Rw would be “skewed” by,
and hence leak information about, the trapdoor R. To correct for this skew we can use the “convolution”
technique of [Pei10] (described in the final part of Section 5.4.2 above): first choose an appropriately
distributed perturbation vector p ∈ Zm, then sample a Gaussian w← G−1(H−1 · (u−Ap)), and finally
output x = p + Rw. By letting p have the proper distribution, the resulting distribution of x can be made a
discrete Gaussian of any desired parameter exceeding ≈ s1(R).

Similarly, we can use a trapdoor to solve LWE with respect to A. Given bt ≈ stA, we simply transform
it to btR ≈ stAR = stHG, then find s by solving LWE with respect to HG, as described above. Note that
from the first approximation to the second, the error is expanded by up to s1(R), so the error we can handle
with respect to A is about an s1(R) factor smaller than the error we can handle with respect to G.

Trapdoor generation. We now describe how to construct a (nearly) uniformly random parity-check
matrix A together with a trapdoor R having a desired tag H. We start by choosing a uniformly random
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Ā ∈ Zn×m̄q for sufficiently large m̄ (where Ā can be shared among many matrices and trapdoors), and a
short random integer matrix R̄ ∈ Zm̄×n`, e.g., one having discrete Gaussian entries. We then let

A = [Ā | HG− ĀR̄] ∈ Zn×mq ,

where m = m̄+ n`.
By construction, it is immediate that R =

[
R̄
I

]
is a trapdoor for A with tag H. Second, by standard

bounds from random matrix theory (see, e.g., [Ver12]), with very high probability the spectral norm s1(R) is
small, e.g., it is O(s · (

√
m̄+

√
n`)) when the entries of R̄ are subgaussian with parameter s. Finally, for

appropriate choices of m̄ ≈ n log q and distributions of R̄, the matrix A is statistically very close to uniform
over the choice of Ā, R̄. In particular, the choice of tag H is statistically hidden by A itself, which is an
important fact in the security proofs for many applications described later.

Finally, we mention that it is easy to adapt the above construction to get a smaller parity-check matrix that
is computationally pseudorandom under the normal-form LWE assumption, by using [In | Ā] for a uniformly
random square Ā ∈ Zn×nq in place of the rectangular matrix Ā above.

Puncturing. The above construction admits an algebraic “trapdoor puncturing” technique, which is a main
tool in the LWE-based lossy trapdoor functions of [PW08] and the compact (H)IBE of [ABB10], among
many other works. Notice that in the above construction, R =

[
R̄
I

]
remains a trapdoor with tag H−H′ for

the matrix
AH′ := A− [0 | H′G] = [Ā | (H−H′)G− ĀR̄].

By taking H,H′ from a family of matrices in Zn×nq having invertible differences—i.e., the difference between
any two distinct matrices is invertible (over Zq)—we see that the matrices AH′ are “punctured” in the sense
that R is a trapdoor for all but one of them, namely, AH = [Ā | −ĀR̄].

A family of matrices having the invertible differences property can be constructed, e.g., from the finite
field Fqn where q is prime, as follows. View Fqn as an n-dimensional vector space over Fq = Zq with some
fixed basis, and let each h ∈ Fqn correspond to the n-by-nmatrix of the Fq-linear transformation representing
multiplication by h. Because this correspondence is an injective ring homomorphism from Fqn to Zn×nq , and
every nonzero field element is invertible, this family has invertible differences.

Extending and randomizing trapdoors. We conclude this coverage of gadget trapdoors by mentioning
that, just as with short-basis trapdoors, there are very simple methods for extending and re-randomizing
gadget trapdoors, which are useful in hierarchical IBE and other applications.

Given a trapdoor R for A, we have the following:

• The matrix
[
R
0

]
is obviously a trapdoor (having the same tag as R) for any extension A′ = [A | A1].

• It is easy to generate a new random trapdoor R′, having any desired tag H′, that reveals nothing
about R (apart from an upper bound on s1(R)), simply by using R to sample a Gaussian solution to
AR′ = H′G.

• Alternatively, to generate a random trapdoor of the form [ ?I ] (which is needed for the puncturing
technique described above), for an arbitrary extension A′ = [A | A1] we can sample a Gaussian-
distributed solution R′ to

AR′ = H′G−A1.

Then
[
R′
I

]
is a trapdoor for A′ with tag H′.
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5.5 Trapdoor Applications: Signatures, ID-Based Encryption, and More

Here we describe some cryptographic applications, including signature and identity-based encryption schemes,
that immediately arise from the trapdoor functions and techniques described in the previous subsection. (We
cover more advanced trapdoor applications in Section 6.)

5.5.1 Signatures

At a high level, the GPV signature scheme is obtained by plugging the lattice-based preimage sampleable
functions from Section 5.4 into the classical “hash-and-sign” paradigm, which dates back to the early days of
public-key cryptography [DH76, RSA78].9

• The public and secret keys are respectively a “hard” public description of, and trapdoor for, an
m-dimensional lattice L.

• To sign, one hashes the message to a lattice coset y +L using an appropriate public function, then uses
the trapdoor to sample a signature x← Dy+L,s. Here s ≥ η(L) is a public parameter of the scheme
determined by the concrete algorithms used to generate the trapdoor and sample discrete Gaussians.10

Note that by standard tail bounds, ‖x‖ ≤ s
√
m except with exponentially small probability.

• To verify a purported signature x on a message, one hashes the message to obtain the coset y + L, and
simply checks that x ∈ y + L and that ‖x‖ ≤ s

√
m.

A concrete instantiation of the scheme uses the q-ary SIS lattice L = L⊥(A) and function fA(x) = Ax (for
uniformly random A ∈ Zn×mq ) as the underlying preimage sampleable function, as described in Sections 5.4.2
and 5.4.3.

By modeling the public hash function as a “programmable” random oracle, as is typical for the hash-and-
sign paradigm, one can prove the following informally stated theorem:

Theorem 5.5.1. The above scheme is unforgeable under chosen-message attack (in the random-oracle
model), assuming the average-case hardness of finding a nonzero vector of norm at most 2s

√
m in a random

lattice L as produced by the key generator (i.e., SIS with norm bound 2s
√
m for the concrete instantiation).

The proof of the theorem works by demonstrating a reduction that uses a hypothetical forger to find a
short vector in a given random lattice L. The main idea is that by the statistical property in Definition 5.4.3,
the reduction can generate properly distributed signature-hash pairs without needing a trapdoor for L.
Specifically, it can evaluate the function in the forward direction, rather than using the reverse direction and
trapdoor, as the real scheme does. Moreover, the reduction can obtain a short vector in L as the difference
between a forged signature and its own internally prepared signature for the same message.

In a bit more detail, the reduction works as follows: for each message µ on which the forger queries the
hash function H (including all signing queries and the eventual forged message), the reduction internally
chooses an x← Ds and “programs” the hash function as H(µ) := y +L = x+L, where y is the canonical

9We also mention that the properties of preimage sampleable functions and the GPV signature scheme were also used to give
noninteractive statistical zero-knowledge proofs, with efficient provers, for several (worst-case) lattice problems [PV08].

10The very observant reader may notice that when signing the same message multiple times, we should never give out more than
one signature for the same coset y + L, because it would reveal short vectors in L. This issue can be addressed in a few standard
ways, either by hashing with randomness to obtain distinct cosets for repeated messages, or by using state or a pseudorandom
function to obtain “repeatable randomness,” so that we always produce the same signature when signing the same message.
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public representative of x + L. Because s ≥ ηε(L), we know that y + L is a (nearly) uniformly random
coset of L, thus the programmed oracle H behaves as a random oracle. When the forger asks for a signature
on a message µ, the reduction simply returns the corresponding x, which by construction is distributed as
DH(µ)+L,s, just as in the real scheme (up to negligible statistical error). Because all queries are answered
with the same distributions as in the real system, with noticeable probability the forger must eventually output
a forgery (µ∗,x∗). This means that x∗ ∈ H(µ∗) + L and is sufficiently short, and the forger never saw the
reduction’s internally generated signature x ∈ H(µ∗) + L for µ∗. The reduction simply outputs the short
vector x− x∗ ∈ L, which with high probability is nonzero because the value of x is statistically hidden from
the forger’s view. (Note that this proof strategy yields a very “tight” reduction, i.e., the reduction succeeds
with almost exactly the same probability as the forger itself.)

5.5.2 Identity-Based Encryption

Combining GPV signatures with the “dual” LWE cryptosystem (Section 5.2.2) in its multi-user form
immediately yields an identity-based encryption (IBE) scheme (see the end of Section 2.4 for a description
of how IBE operates). Note that the GPV system and its derivatives are the only known IBEs that are
conjectured to be secure against quantum attacks; all others are based on the quadratic residuosity assumption
(e.g., [Coc01, BGH07]) or on bilinear pairings (e.g., [BF01]).

The main idea behind the GPV IBE is that instead of users generating their own Gaussian-distributed
secret keys x ∈ Zm and corresponding public keys u = fA(x) = Ax ∈ Znq , a public key is merely the hash
of the user’s identity string into Znq , and the corresponding secret key is generated by the authority as a GPV
signature on the identity. In more detail:

• The master key is a uniformly random parity-check matrix A, and the master secret key is a trapdoor
for A. Also, a public hash function maps each user identity id to a syndrome uid ∈ Znq , which serves
as part of the user-specific public key Aid := [A | uid].

• To extract a secret key for identity id, we use the trapdoor for A to sample a Gaussian-distributed
solution to Axid = uid, i.e., choose xid from a discrete Gaussian over the coset L⊥uid

(A). (Note that
this is equivalent to signing the message id, and at most one distinct key should be revealed for each
identity.) Following Equation (5.2.4), this xid can be interpreted as a secret key for the public key Aid,
because

Aid · (−xid, 1) = 0.

• Encrypting µ ∈ {0, 1} to an identity id and decrypting are exactly as in the dual LWE system (see
Equations (5.2.5) and (5.2.6)), using the user-specific public key Aid and secret key xid:

ctid ≈ stAid + (0, µ · b q2e)
t

ctid · (−xid, 1) ≈ µ · b q2e.

Of course, for `-bit messages the system can be amortized in the usual way, by hashing each identity to
multiple syndromes u1, . . . ,u`.

By modeling the hash function as a random oracle, and under an appropriate LWE assumption, the above
system can be proved semantically secure. (Recall that the attacker can obtain secret keys for any identities
of its choice, other than its target identity.) The proof proceeds more or less the same as for GPV signatures,
and even admits a tight reduction, though there are some additional technicalities related to the use of LWE.

54



5.5.3 Removing the Random Oracle, and Hierarchical IBE

The signature and IBE schemes described above depend on the random-oracle heuristic for their security
analysis. A work by Cash, Hofheinz, Kiltz, and Peikert [CHKP10] gave lattice-based digital signature and
IBE schemes that are provably secure in the standard model (i.e., without random oracles), along with
hierarchical IBE (HIBE) schemes. In a HIBE, any user can securely use its secret key to delegate a valid
secret key to any subordinate user in a hierarchy (i.e., a tree). We note that the standard-model schemes of
Cash et al. have substantially larger public keys than their random-oracle counterparts, so they cannot be
considered practical.

The HIBE of [CHKP10] can be seen as an extended version of the dual LWE cryptosystem from
Section 5.2.2, and works as follows: consider a hierarchy representing a complete binary tree of depth d,
where each node in the tree naturally corresponds to a string in {0, 1}≤d. (Such a tree can simulate a hierarchy
of larger arity, by considering blocks of several bits for each level of the hierarchy.)

• The master public key consists of a (nearly) uniformly random matrix Ā, generated with a trapdoor;
uniformly random matrices Ai,b for i ∈ {1, . . . , d} and b ∈ {0, 1} having the same dimensions as Ā;
and a uniformly random syndrome u ∈ Znq . The master secret key is the trapdoor for Ā.

• An identity id ∈ {0, 1}≤d of length ` ≤ d corresponds to the matrix

Aid = [Ā | A1,id1 | · · · | A`,id` ].

A secret key for identity id consists of a random trapdoor of sufficient quality for Aid, and a Gaussian-
distributed solution xid to Aid · xid = u. Note that such an xid is merely a secret key for the public
key [Aid | u] in the dual LWE cryptosystem, i.e., [Aid | u] · (−xid, 1) = 0.

A secret key for id can be generated from any trapdoor of sufficient quality for Aid′ for any prefix id′

of id, using the trapdoor sampling, extension, and randomization techniques described in Section 5.4.2
or 5.4.3. Therefore, user id′ can delegate a secret key to user id. (Recall, though, that the quality of the
secret key degrades by some polynomial factor with each delegation.)

• Encryption and decryption to an identity id are exactly as in the dual LWE cryptosystem, using the
public key [Aid | u] and secret key xid, i.e., the ciphertext is ct ≈ st · [Aid | u] + (0, µ · b q2e)

t.

For an appropriate choice of parameters and LWE assumption, the above HIBE system is semantically
secure under a selective identity attack. In such an attack, the adversary must first name the target identity
id∗ ∈ {0, 1}≤d, is then given the master public key and a challenge ciphertext encrypted to id∗, and may
then query secret keys for any identity id that is not a prefix of id∗. (With additional ideas, the system can be
made secure under an adaptive-identity attack, but it becomes even less efficient; see [CHKP10] for details.)

The main ideas behind the security proof are as follows: we design a reduction (a “simulator”) that is
given a source of samples (ai, bi), and aims to determine whether they are LWE-distributed or uniform, using
an adversary that attacks the HIBE scheme. The simulator first obtains a target identity id∗ ∈ {0, 1}` from the
adversary, then generates a master public key that is “punctured” at id∗: it assembles Ā, Ai,id∗i

for 1 ≤ i ≤ `,
and u from the ai components of sufficiently many input samples, and also creates a corresponding challenge
ciphertext from the bi components. It generates all the remaining matrices Ai,b together with secret trapdoors,
and gives all this to the adversary. Now by construction, the reduction can sample properly distributed secret
keys for any queried identity except for prefixes of id∗ (which are anyway disallowed), by extending and
randomizing its secret trapdoors. Finally, notice that if the input samples were LWE-distributed, then this
whole simulation exactly matches the real attack (up to negligible statistical error), whereas if they were
uniform, the challenge ciphertext hides the message information-theoretically. Therefore, the reduction
distinguishes LWE from uniform samples with essentially the same advantage as the HIBE adversary.
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5.5.4 Efficiency Improvements via Algebraic Puncturing

Shortly following [CHKP10], Agrawal, Boneh, and Boyen [ABB10] constructed standard-model (H)IBE
systems in which the master public key contains many fewer parity-check matrices: just one or two per level
of an exponential-arity hierarchy, rather than linearly many as in [CHKP10]. The main idea in [ABB10]
is a more algebraic, as opposed to combinatorial, method of “puncturing” a public key and its trapdoor,
as described in Section 5.4.3. This allows the security reduction to know a trapdoor for all but one of an
exponentially large number of related parity-check matrices, which is sufficient for security under selective-
identity attacks. (A similar technique was used in a different context in [PW08].)

A version of the scheme that uses gadget-based trapdoors (Section 5.4.3) works as follows: consider a
hierarchy representing a complete tree of depth d, where identities correspond to tuples over the tag space
H = {Hi} of the underlying puncturable trapdoor functions. (Recall that we can construct, for example, a
tag space corresponding to nonzero finite field elements Fqn \ {0} when q is prime.)

• The master public key consists of a (nearly) uniformly random matrix Ā, generated with a trapdoor;
uniformly random A1, . . . ,Ad having the same dimensions as the gadget matrix G; and a uniformly
random syndrome u ∈ Znq . The master secret key is the trapdoor for Ā.

• An identity id ∈ H≤d of length ` ≤ d corresponds to the matrix

Aid = [Ā | A1 + Hid1G | · · · | A` + Hid`G].

As above, a secret key for identity id is a random trapdoor of sufficient quality for Aid, and a Gaussian-
distributed solution xid to Aid · xid = u. These can be generated from any trapdoor of corresponding
quality for Aid′ for any prefix id′ of id, using the techniques described in Section 5.4.3.

• Encryption and decryption for an identity id are exactly as above, using [Aid | u] and xid.

Under an appropriate LWE assumption, the scheme is semantically secure under a selective-identity
attack. In the proof, the basic setup of the simulator is essentially the same as in the one above. Given a target
identity id∗ ∈ H`, the simulator constructs Ā from its input samples, and for 1 ≤ i ≤ d it constructs

Ai := −Hid∗i
G− ĀRi

for a short random Ri, where we define Hid∗j
= 0 for j > `. In other words, the reduction knows a trapdoor[

Ri
I

]
with tag −Hid∗i

for [Ā | Ai]. The reduction can therefore answer secret-key queries for any identity id
that is not a prefix of id∗: such a query must differ from id∗ in some position j, therefore the reduction knows
a trapdoor for (any extension of) [Ā | Aj + HidjG]. At the same time, because the master public key is
punctured at id∗, i.e., Ai + Hid∗i

G = −ĀRi, the reduction can use the bt part of its input and its Ri to
generate a challenge ciphertext for [Aid | u] = [Ā | −ĀR1 | · · · | −ĀR` | u], which is either properly
distributed or which statistically hides the message, depending on whether the input is LWE-distributed
or uniform, respectively. (This can be done using the random self-reduction technique of generating fresh
LWE-or-uniform samples from the given input samples, as described at the end of Section 5.2.1.)

Signatures. The above puncturing technique yields a rather compact (H)IBE, but by itself it does not work
for signatures due to the “all but one” nature of the puncturing. Boyen [Boy10] adapted the technique to
signatures, improving upon [CHKP10] in the bit length of the signatures themselves, though still with a
public key that contains a linear number of parity-check matrices. Recently, Ducas and Micciancio [DM14]
gave a variant that reduced the number of matrices in the public key to only logarithmic. Shortly thereafter,
Alperin-Sheriff [Alp15] reduced the number of matrices to only a constant, but at the cost of a substantially
larger norm bound for the underlying SIS problem.
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5.6 Signatures Without Trapdoors

A separate line of research on lattice-based digital signatures [LM08, Lyu08, Lyu09, Lyu12, DDLL13]
has evolved in parallel with the trapdoor and discrete Gaussian-based methods described in Section 5.5.1
above. The first work in this line [LM08] gave a one-time signature based on the ring-SIS problem, which
can be converted to a many-time scheme (in the standard model) using standard tree-hashing techniques;
it is described in further detail in Section 5.6.1. Using the main idea behind the one-time signature as
inspiration, the remaining works adhere to the following template: first design an appropriate kind of
public-coin, interactive identification protocol, then apply the Fiat-Shamir heuristic [FS86] to convert it into
a noninteractive signature scheme in the random-oracle model. Recall that the Fiat-Shamir heuristic is a
generic transformation that replaces the verifier’s random challenge(s) with the output of random oracle on
the transcript of the protocol thus far. More details on this approach are given in Section 5.6.2.

5.6.1 One-Time and Tree-Based Signatures

Lyubashevsky and Micciancio [LM08] constructed an asymptotically quasi-optimal one-time signature from
ring-SIS.11,12 Here “quasi-optimal” means that the key sizes, message length, signature length, and runtimes
of key generation, signing, and verification are all quasi-linear Õ(λ) in the security parameter λ, for a
conjectured λ bits of security under standard assumptions (i.e., the best known attacks require 2λ time).13

Because the scheme is quasi-optimal, and in particular because messages are Ω̃(λ) bits, the one-time signature
can be transformed into a many-time signature (in the standard model) via standard tree-hashing techniques,
with only polylogarithmic overhead. However, the resulting many-time scheme requires a stateful signer, and
the concrete polylogarithmic factors seem to make the scheme unrealistic in practice.

For simplicity, we describe the main idea behind the original one-time signature based on R-SIS for a
degree-n ring R over Z. The public parameter, which could be trusted randomness shared by all users, is a
parity-check vector ~a ∈ R`q, for ` ≈ log q. The secret key is two short vectors of ring elements ~x, ~y ∈ R`,
and the public key is

u = f~a(~x) = ~at · ~x, v = f~a(~y) = ~at · ~y ∈ Rq.

To sign a message, it is interpreted as a short ring element c ∈ R, and the signature is ~s = c · ~x+ ~y ∈ R`. To
verify, one checks that ~at · ~s = c · u+ v, and that ~s is sufficiently short. Note that the verification equation is
satisfied for a properly generated signature, because

~at · (c · ~x+ ~y) = c · (~at · ~x) + (~at · ~y) = c · u+ v.

The main idea behind one-time security is as follows: the simulator is given ~a ∈ R`q as a ring-SIS
challenge and wants to find a short solution ~z ∈ R` to ~at · ~z = 0 ∈ Rq. The simulator chooses its own secret
key ~x, ~y and gives the corresponding public key u, v ∈ Rq to the attacker. Because the simulator knows the
secret key, it can sign on any (short) c ∈ R of the attacker’s choice, producing the signature ~s = c · ~x+ ~y.
Suppose the attacker then produces a forgery ~t ∈ R` for a different (short) c′ 6= c. Then we have

~at · (~t− (c′ · ~x+ ~y)︸ ︷︷ ︸
~z

) = 0 ∈ Rq,

11Recall that a one-time signature scheme remains unforgeable if the attacker is given at most one signature on a message of its
choice, but may not offer any security if the adversary obtains more than one signature under the same key.

12The full version of [LM08] also includes constructions from standard SIS and a coding problem, but these are not quasi-optimal.
13We mention that using the quasi-linear trapdoor generation and discrete Gaussian sampling algorithms of [Pei10, MP12], the

ring-based variant of the GPV signature scheme (in the random-oracle model) is also quasi-optimal.
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so ~z ∈ R` is a short solution to the ring-SIS challenge, provided that it is nonzero. It can be shown that this is
the case with noticeable probability, because some significant information about ~x, ~y is hidden by the one
signature ~s = c · ~x + ~y. (This would be obviously true if ~x, ~y were uniform over Rq, but instead they are
short, so the argument is more subtle.) It follows that the forger cannot reliably guess the value of c′ · ~x+ ~y
for any short c′ 6= c, and so ~z is nonzero with noticeable probability.

5.6.2 Identification Protocols and Fiat-Shamir Signatures

Schnorr-like identification protocol. Lyubashevsky [Lyu08] gave the first three-message identification
scheme based on (ring-)SIS, which has security against active impersonation attacks. The protocol is inspired
by Schnorr’s protocol for proving knowledge of a discrete logarithm [Sch89], but involves more technical
subtleties due to the use of short secrets.

The prover has a secret “very short” uniformly random integer vector x ∈ {0, 1}m, and its public key
is u = fA(x) = Ax ∈ Znq , where the uniformly random matrix A ∈ Zn×mq may be a public parameter
generated by a trusted party. One run of the protocol proceeds as follows:

1. The prover first chooses a “somewhat short” y ∈ {0, . . . , 5m− 1}m uniformly at random, and sends
v = Ay to the verifier.

2. The verifier chooses a uniformly random challenge bit c← {0, 1} and sends it to the prover.

3. The prover responds as follows: if z = c · x + y ∈ Zm is “safe,” i.e., if z ∈ {1, . . . , 5m− 1}m, then
the prover sends z to the verifier. Otherwise, it aborts, and the verifier rejects the interaction.

4. If the prover does send some z, the verifier accepts if Az = c · u + v and z ∈ {1, . . . , 5m − 1}m,
otherwise it rejects. Note that the legitimate prover does convince the verifier, because A(c · x + y) =
c · (Ax) + (Ay) = c · u + v, as required.)

In the full protocol, many instances of the protocol are run in parallel, and the verifier accepts the whole
interaction only if a sufficiently large fraction of the sub-protocols are accepting.

Notice that if the prover did not check for the safety of z, then a passive eavesdropper could learn the
secret key after viewing enough interactions: if an entry of z is zero (respectively, 5m), then the corresponding
entry of the secret key x is zero (resp., one). The size of the “somewhat short” domain is taken to be large
enough so that z is safe with some constant probability, so the prover does not abort too often. Using the
safety check, Lyubashevsky proves that the protocol is (statistically) witness indistinguishable (WI): no matter
which secret key x the prover has for its public key u, the distribution of an interaction with the prover is
the same, up to very small statistical error. Since WI is closed under parallel repetition, the whole protocol
also remains WI. This is the key fact behind the proof of security under the SIS assumption: a simulator can
choose its own secret key and act as the prover, revealing nothing about which of the many valid secret keys
it is using. Moreover, if an adversary successfully impersonates the prover, by rewinding it we can extract a
valid secret key from it. By the WI property, with good probability the extracted secret key must be different
from the simulator’s secret key, and their difference is an SIS solution for A.

Efficiency in the ring setting. The full protocol described above is very inefficient in communication and
runtime, because many parallel executions are needed to achieve completeness and security. A follow-up
work by Lyubashevsky [Lyu09] significantly improved these efficiency measures in the ring setting, using
the ring-SIS function f~a : Rm → Rq defined as f~a(~x) = ~at · ~x (Equation (4.3.1)). The main idea is to
expand the domain of the challenge c from {0, 1} to all sufficiently short elements in R, of which there
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are exponentially many. (Arguably, this version of the protocol is a closer analogue to Schnorr’s original
identification protocol.) Because f~a is R-linear, it is easy to check that all the verification equations work
out as required, and an analogous security proof can be obtained for appropriate bounds on the various short
objects and an appropriate safety test. Using several additional optimizations, the signature scheme obtained
from applying the Fiat-Shamir heuristic to Lyubashevsky’s protocol comes closer to being practical: for
example, signatures are about 60 kilobits, for estimated security levels of about 80 bits.

Back to SIS, and further refinements. A subsequent work by Lyubashevsky [Lyu12] showed that to
obtain an identification protocol with good communication complexity, SIS itself is actually sufficient (though
ring-SIS is still important for obtaining practical key sizes and runtimes). This work also included various
refinements that reduce the norms of the short objects by small polynomial factors (roughly

√
m), which

yields better concrete parameters, and milder assumptions via tighter worst-case approximation factors.
The basic idea is that the prover’s secret key is now a short integer matrix X ∈ Zm×`, and its public key

is U = AX. A run of the protocol proceeds as follows:

1. The prover chooses a “somewhat short” integer vector y ∈ Zm from a certain distribution, and sends
v = Ay to the verifier.

2. The verifier chooses a short challenge vector c ∈ Z`, and the prover computes z = Xc + y ∈ Zm.

3. The prover then applies an appropriate rejection rule to z, and either sends it to the verifier or aborts.

4. If the prover does send some z, the verifier checks that Az = Uc + v and that z is sufficiently short.
Note that the legitimate prover does convince the verifier, because Az = A(Xc + y) = Uc + v.

For reasonable parameters, only a small constant numbers of parallel runs of the protocol are necessary to
establish adequate completeness and security.

In contrast with the prior works, which used an all-or-nothing “safety check” on z, here the rejection
rule is a more refined probabilistic test, based on rejection sampling. Essentially, the goal is to ensure that
the distribution of z = Xc + y conditioned on not rejecting is independent of X. This is done by using
rejection sampling to “recenter” the distribution of z to be a discrete Gaussian centered at zero, rather than
at Xc. To ensure that z is not rejected too often, we let y have a discrete Gaussian distribution with a
parameter proportional to (an upper bound on) ‖Xc‖. This ensures that the discrete Gaussians centered at
zero and at Xc have sufficient overlap. A further refinement of this idea uses “bimodal” Gaussians [DDLL13],
essentially by letting the prover randomly choose between ±Xc. This yields slightly more overlap, and
allows the Gaussian parameter of y to be reduced by roughly a

√
log(1/ε) factor, for statistical distance ε.

Practical implementations. Using several additional optimizations and engineering tricks, a programmable
hardware (FPGA) implementation of the scheme with unimodal Gaussians was presented in [GLP12]. For an
estimated security level of about 80 bits, its public and secret keys are respectively about 12 and 2 kilobits,
and signatures are about 9 kilobits. A software implementation of the ring-based bimodal scheme, called
BLISS, was also given in [DDLL13]. For estimated security levels of 128 bits, its public and secret keys are
respectively about 7 and 2 kilobits, and signatures are about 5.6 kilobits. Signing and verifications times are
competitive with (or even better than) those of RSA-2048.
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5.7 Pseudorandom Functions

Pseudorandom functions (PRFs), introduced by Goldreich, Goldwasser, and Micali (GGM) [GGM84], are a
cornerstone of symmetric-key cryptography. A PRF family is a set F = {Fs : D → R} of functions indexed
by an index s, usually called the secret key or seed, mapping a common finite domain to a common finite
range. The pseudorandomness property is that a function Fs ← F chosen at random from the family (under
a specified distribution) cannot be efficiently distinguished from a uniformly random function U : D → R,
given oracle access. That is, for some fixed key s chosen at the start of the experiment, the adversary may
adaptively query distinct values xi ∈ D to receive answers yi = Fs(xi), and the values yi should appear
uniformly random and independent (even though they are actually computed determinisically from the seed s
and inputs xi). An example candidate PRF family is AES-128, where s ∈ {0, 1}128 and D = R = {0, 1}128

as well.14

Previous PRF constructions. GGM gave the first formal definition of PRFs and the first provably secure
construction, based on any length-doubling pseudorandom generator (PRG) G : {0, 1}n → {0, 1}2n. (Such a
generator can be constructed from any generator that expands by just a single bit.) Let G0, G1 : {0, 1}n →
{0, 1}n respectively denote G with its output restricted to the first and last halves. Then for s ∈ {0, 1}n and
any ` = poly(n), the GGM PRF Fs : {0, 1}` → {0, 1}n is defined as

Fs(x) = Gx`(· · ·Gx2(Gx1(s)) · · · ),

where xi denotes the ith bit of x. In words: starting with the key s we iteratively apply G, taking either the
first or last half of its output as indicated by the bits of the PRF input x. Note that this function is highly
sequential: its circuit depth is proportional to the PRF input length `.

Naor and Reingold (and Rosen) [NR95, NR97, NRR00] gave highly parallel constructions of PRFs based
on a generic object they called a synthesizer, and even lower-depth PRFs from specific number-theoretic
assumptions like the hardness of the decisional Diffie-Hellman (DDH) and factoring problems. The latter
constructions are defined as “exponentials of subset-products:” for input domain D = {0, 1}`, the key
consists of ` elements si ∈ Zp and a generator g of some public multiplicative group G of order p. An
input x ∈ {0, 1}` specifies the subset-product sx =

∏
i s
xi
i , and the output is gsx ∈ G.

5.7.1 Learning With Rounding and Lattice-Based PRFs

The pseudorandomness inherent in the decision-LWE problem immediately yields a PRG, but it is rather
complex and inefficient in its use of input randomness, because it needs to use the input bits to sample errors
from a Gaussian-like distribution. And as for PRFs, the GGM construction negates the good parallelism
inherent to LWE. This motivates the search for alternative constructions of lattice-based PRGs and PRFs.

Learning With Rounding. Banerjee, Peikert, and Rosen (hereafter BPR) [BPR12] constructed more
efficient PRGs and the first non-generic PRFs from lattice problems, namely, LWE. Their first contribution
is a problem called learning with rounding (LWR), which is essentially a “derandomized” version of LWE
in which the errors are deterministic. As with LWE, in LWR there is a secret s ∈ Znq , and the goal is to

14In fact, each function in the AES family is actually a bijection on {0, 1}128, and knowing s allows one to efficiently compute F−1
s

as well. In general, a PRF need not have these properties.
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distinguish “noisy” random inner products with s from uniformly random. The difference is that in LWR, the
samples are generated as rounded inner products

(ai , bi = b〈s,ai〉ep) ∈ Znq × Zp,

where ai ∈ Znq is uniformly random, and b·ep : Zq → Zp for p < q is the modular “rounding function,”
defined as bx+ qZep := bx · (p/q)e+pZ. Intuitively, in LWE the less-significant information about the inner
product is concealed by random small error, whereas in LWR the same effect is achieved by deterministic
rounding.

BPR prove that for super-polynomial q/p ≥ (αq) ·nω(1), LWR is at least as hard as LWE with modulus q
and error rate α ≤ n−ω(1). Interestingly, it seems likely that LWR is hard for much smaller ratios q/p
(where p divides q to avoid rounding bias), though no proof based on worst-case lattice problems is yet
known. We note that follow-up work by Alwen et al. [AKPW13] and Bogdanov et al. [BGM+16] obtained
partial results in this direction for a bounded number m of LWR samples, depending on the ratio q/p and the
underlying LWE error rate. These results suffice for the security of certain applications, but unfortunately not
for PRFs.

Pseudorandom functions. BPR use the LWR problem to construct very simple and randomness-efficient
PRGs, which yield more practical GGM-like PRFs, as well as very simple log-depth synthesizers, which
yield polylogarithmic-depth PRFs following the paradigm of Naor and Reingold [NR95]. Finally, BPR also
give an analogue of the lowest-depth PRF constructions from [NR97, NRR00]. Instead of an exponential
of a subset-product, the construction is a rounded subset-product, where the product is over a collection of
secret matrices. More specifically, for domain {0, 1}` the functions are defined as

Fa,{Si}(x) =

⌊
at ·

∏̀
i=1

Sxii

⌉
p

, (5.7.1)

where the secret key consists of a uniformly random a ∈ Znq and ` short Gaussian-distributed matrices
Si ∈ Zn×n. BPR prove that this function is a secure PRF under the LWE assumption, but for a very small
error rate α = n−Ω(`). This induces a rather large modulus q = nΩ(`) and dimension n, and correspondingly
large key sizes.

Interestingly, and similarly to the LWR problem, the function in Equation (5.7.1) might be a secure PRF
even for much smaller parameters, e.g., a sufficiently large q = poly(n) that is divisible by p. While no
security proof is known for these parameters, neither is any effective attack, beyond generic attacks on LWE.
A practical instantiation and software implementation of the above construction’s ring-based analogue was
given in [BBL+14].

5.7.2 Key-Homomorphic PRFs

Following [BPR12], Boneh et al. (hereafter BLMR) [BLMR13] gave the first standard-model constructions
of key homomorphic PRFs (KH-PRFs), using lattices/LWE. (Previously, the only constructions of KH-PRFs
were in the random-oracle model [NPR99].) A KH-PRF family is a PRF family {Fk} with the additional
property that Fk1+k2(x) = Fk1(x) + Fk2(x) for all keys k1, k2 and inputs x, where both the key space and
output range are interpreted as finite additive groups. As shown in [NPR99, BLMR13], KH-PRFs have
many useful applications, such as distributing the operation of a key-distribution center, and updatable
symmetric-key encryption.
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In the BLMR construction, the secret key is just a uniformly random vector r ∈ Zmq for m ≈ n log q, and
there are two short (e.g., binary or Gaussian) random square matrices B0,B1 ∈ Zm×m, which are treated
as shared randomness common to all keys. Alternatively, we may see these matrices as Bb = G−1(Ab)
for some public uniformly random Ab ∈ Zn×mq , where the decomposition function G−1(·) is as defined in
Equation (5.4.1). Like the BPR construction, for input domain {0, 1}` the BLMR function is defined as the
rounded subset-product

Fr(x) =

⌊
rt ·
∏̀
i=1

Bxi

⌉
p

.

It is easy to verify that this construction is “almost” key-homomorphic, in that Fr1(x)+Fr2(x) and Fr1+r2(x)
differ by at most one in each coordinate, due to the different order of rounding in the two cases.

BLMR prove that their construction is a secure PRF under the n-dimensional LWE assumption, for
error rates α = n−Ω(`), and hence for parameters that are comparable to those of the lowest-depth BPR
construction (Equation (5.7.1)). The main idea used in the proof is that LWE with a “large” secret r ∈ Zmq
and short public B = G−1(A) ∈ Zm×m is as hard as LWE in dimension n ≈ m/ log q. This is because

st ·A = (stG)︸ ︷︷ ︸
rt

·G−1(A),

so we can efficiently transform regular LWE samples with secret s into those of the form described above.
(The same idea has been used in many other works and contexts, such as [BV11b, MP12, BLP+13, GSW13].)

Following [BLMR13], Banerjee and Peikert [BP14] gave key-homomorphic PRFs from substantially
weaker LWE assumptions, e.g., error rates of only α = n−Ω(log `) or even α = n−ω(1), which yields
better key sizes and runtimes. For example, the key sizes were reduced from Õ(λ3) to Õ(λ) bits, and
the shared randomness was reduced from Õ(λ6) bits to Õ(λ2) bits, with comparable improvements for
ring-based constructions. These improvements come at the expense of slightly worse parallelism, specifically,
a logarithmic factor in the depth of the “publicly computable” subset-product part of the function. The main
idea in the construction from [BP14] is that instead of letting the PRF input x define a subset-product of the
short matrices Bb = G−1(Ab), we let it define a matrix Ax ∈ Zn×mq via a predefined scheduling of matrix
multiplications and G−1(·) decompositions. In particular, a product of decomposed matrices may itself be
decomposed, in a nested fashion. This has the effect of better controlling the expansion of the error terms in
the security proof, allowing for the use of smaller parameters. These ideas inherit from recent literature on
fully homomorphic and attribute-based encryption [BV14, BGG+14, AP14], as described next in Chapter 6.

Finally, we mention that recent independent works of Banerjee et al. [BFP+15] and Brakerski and
Vaikuntanathan [BV15] generalized the construction of [BP14] in different ways to give key-homomorphic
constrained PRFs. Constrained PRFs, introduced in the concurrent and independent works [KPTZ13, BW13,
BGI14], allow for delegation of secret keys that allow the PRF to be evaluated on inputs satisfying certain
predicates, while at the same time preserving the pseudorandomness of the function outputs on all other
inputs.
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Chapter 6

Advanced Constructions

In this chapter we survey a selection of very powerful cryptographic objects, namely, fully homomorphic
encryption and attribute-based encryption for arbitrary circuits. To date, the only known constructions of such
objects are based on lattice problems of various kinds. Here we mainly restrict our attention to constructions
based on the LWE problem.

6.1 Fully Homomorphic Encryption

In 1978, Rivest, Adleman, and Dertouzos [RAD78] proposed a concept which has come to be known as
fully homomorphic encryption, or FHE. (At the time they called it a “privacy homomorphism.”) In brief, an
FHE scheme allows computation on encrypted data, or more concisely, homomorphic computation: given
a ciphertext that encrypts some data µ, one can compute a ciphertext that encrypts f(µ) for any desired
(efficiently computable) function f . We emphasize that this is possible without ever needing to decrypt the
data or know the decryption key.

Fully homomorphic encryption was known to have abundant applications in cryptography, but for three
decades no plausibly secure scheme was known. This changed in 2009, when Gentry proposed a candidate
FHE scheme based on ideal lattices [Gen09b, Gen09a]. Gentry’s seminal work generated tremendous
excitement, and was quickly followed by many works (e.g., [vDGHV10, Gen10b, SV11, BV11a, CMNT11,
BV11b, BGV12, CNT12, GHS12b, Bra12, GHPS12, CCK+13, GSW13], among others) that offered various
improvements in conceptual and technical simplicity, efficiency, security guarantees, etc. In this section
we give an overview of the main ideas behind recent LWE-based FHE schemes, building on the tools
described in the previous sections. For additional details, see the earlier surveys by Gentry [Gen10a] and
Vaikuntanathan [Vai11].

6.1.1 FHE from LWE

The earliest “first generation” FHE constructions [Gen09b, vDGHV10] were based on ad-hoc average-
case assumptions about ideal lattices and the “approximate GCD” problem, respectively. In a sequence
of works, Brakerski and Vaikuntanathan (hereafter BV) [BV11a, BV11b] gave a “second generation” of
FHE constructions, which were based on standard assumptions supported by worst-case hardness, namely,
(ring-)LWE. Here we describe the main ideas behind the LWE-based scheme from [BV11b], with additional
improvements from a subsequent work with Gentry [BGV12].
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The BV scheme encrypts a single bit per ciphertext, and supports homomorphic addition and multiplica-
tion modulo two.1 With some important caveats (as explained below), this is sufficient for FHE because by
composing such operations, one can homomorphically evaluate any boolean circuit. In the BV system, a
secret key is an LWE secret, and an encryption of a bit is simply an LWE sample for an odd modulus q, where
the error term e encodes the message as its least-significant bit. More precisely, a ciphertext that encrypts
µ ∈ Z2 under a secret key s ∈ Zn is a vector c ∈ Znq such that

〈s, c〉 = st · c = e (mod q), (6.1.1)

where e ∈ Z is some small error such that e = µ (mod 2), i.e., e ∈ µ+ 2Z. To decrypt c using s, one just
computes 〈s, c〉 ∈ Zq, lifts the result to its unique representative e ∈ Z ∩ [− q

2 ,
q
2), and outputs µ = e mod 2.

Notice that by taking s = (−s̄, 1), a ciphertext vector c = (c̄, c) is just an LWE sample with an
(n − 1)-dimensional secret s̄ and error term e, because c = 〈s̄, c̄〉 + e (mod q). In the symmetric-key
setting, such a ciphertext can be produced directly using s̄; in the asymmetric-key setting we can just add a
random combination of LWE samples with respect to s̄, which are given in the public key. (Note that this is
essentially how all LWE public-key encryption schemes work; see Section 5.2.) Using these observations
it is straightforward to show that ciphertexts are pseudorandom, hence the encryption is passively secure,
assuming the hardness of decision-LWE.

We remark that the decryption relation expressed in Equation (6.1.1), where e ∈ µ+ 2Z, is sometimes
called the “least significant bit” encoding of the message, as opposed to the “most significant bit” encoding
used throughout Chapter 5, where 〈s, c〉 ≈ µ · b q2e (mod q). It turns out that the two encodings are equivalent
when the plaintext and ciphertext moduli are coprime, because one can easily and losslessly switch between
them without knowing the secret key; see [AP13, Appendix A] for a simple proof.

Homomorphic operations. We now describe homomorphic addition and multiplication. For i = 1, 2,
let ci ∈ Znq be a ciphertext that encrypts µi ∈ Z2 under secret key s, with small error term ei ∈ µi + 2Z.
Homomorphic addition is simple: c1 + c2 ∈ Znq encrypts µ1 + µ2 ∈ Z2, because

〈s, c1 + c2〉 = 〈s, c1〉+ 〈s, c2〉 = e1 + e2 (mod q),

and of course e1 + e2 ∈ (µ1 + µ2) + 2Z is still small. Notice, however, that we cannot add an unbounded
number of ciphertexts, because eventually the magnitude of the error will grow larger than q/2, in which case
decryption may fail; we return to this issue shortly.

Homomorphic multiplication is a bit trickier. We start with the observation that the tensor (or Kronecker)
product c1 ⊗ c2 = (c1,i · c2,j)i,j ∈ Zn2

q is a valid encryption of µ1µ2 ∈ Z2 under an alternative secret key
s⊗ s ∈ Zn2

q , i.e., the secret key tensored with itself. This is because by the mixed-product property of tensor
products,

〈s⊗ s, c1 ⊗ c2〉 = 〈s, c1〉 · 〈s, c2〉 = e1 · e2 (mod q),

and e1 · e2 ∈ µ1µ2 + 2Z is still rather small, as long as the original errors were small enough to begin with.
So just as with homomorphic addition, the number of homomorphic multiplications is bounded a priori.

Key switching. Homomorphic multiplication as described above has an even more significant problem
than the error growth: the dimension of the ciphertext also grows extremely fast, i.e., exponentially with the

1The scheme is easily generalizable to a message space of Zp for any small integer p.
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number of multiplied ciphertexts, due to the use of the tensor product. To resolve this issue, BV introduced a
clever dimension reduction—also called key switching—technique. Suppose we have an nin-dimensional
ciphertext cin (e.g., cin = c1 ⊗ c2 as above) that encrypts some message µ under a secret key sin (e.g.,
sin = s⊗ s as above), under the “most-significant bit” encoding:

〈sin, cin〉 = stin · cin ≈ µ · b q2e (mod q).

We wish to convert cin to an nout-dimensional ciphertext cout that still encrypts µ, but with respect to some
possibly different secret key sout. The first main insight is that

〈sin, cin〉 = stin · cin = (stinG) ·G−1(cin) ≈ µ · b q2e (mod q), (6.1.2)

where G is the gadget matrix with nin rows as defined in Section 5.4.3; also recall that G−1(cin) is a short
integer vector. Key-switching is made possible by publishing a suitable “encryption” of sin under sout, namely,
a matrix K over Zq such that

stoutK ≈ stinG (mod q), (6.1.3)

where the approximation hides small errors. Essentially, the columns of K are LWE samples with respect
to sout, with stinG added to the last row. Assuming the hardness of LWE, it is easy to prove that such a K is
pseudorandom and hence safe to publish, as long as sin and sout are independent.2

To key-switch the ciphertext cin using K, we simply output cout = K ·G−1(cin). Combining this with
Equations (6.1.2) and (6.1.3), we see that

stout · cout = (stoutK) ·G−1(cin) ≈ (stinG) ·G−1(cin) ≈ µ · b q2e (mod q),

where the first approximation holds by Equation (6.1.3) and because G−1(cin) is a short integer vector.
Therefore, cout encrypts µ under sout, as desired.

Error management and modulus switching. Recall from above that homomorphic addition and multi-
plication increase the magnitude of the error terms in the resulting ciphertexts; in particular, the error in a
homomorphic product of ciphertexts is the product of the individual errors (plus a little more, due to key-
switching). This severely limits the homomorphic capacity and the hardness/efficiency tradeoff of the scheme:
the modulus q must be larger than the error in the final ciphertext, so freshly encrypted ciphertexts must have
very small error rate relative to q. More specifically, the scheme as described so far can homomorphically
evaluate circuits of only a fixed logarithmic depth d = O(log λ) in the security parameter λ, because the
modulus must be q = λΩ(2d).

A very simple but powerful modulus reduction technique, first used in [BV11b] and then exploited to
its full potential in [BGV12], greatly extends the homomorphic capacity to circuits of any a-priori bounded
polynomial depth d = poly(λ) in the security parameter. The idea is that by strategically scaling down
the modulus by some poly(n) factor (typically, before homomorphic multiplication), we can decrease the
absolute error |e| to some small fixed polynomial, even though the relative error rate |e|/q remains essentially
unchanged. Because the absolute error is what determines the error growth in homomorphic multiplication,
modulus reduction yields an arbitrage that allows us to evaluate a depth-d circuit with an (original) modulus
of only q = λΩ(d). More specifically, after evaluating d layers of a circuit, our original modulus q shrinks to

2Note that if we want to switch from key sin = s⊗ s back to the original sout = s, then the keys are not independent. In such a
case we can simply make the “circular security” assumption that publishing K is safe, though this assumption is still not very well
understood.
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q/nO(d) while the absolute error remains poly(n). So it suffices to set the original modulus as q = nΘ(d) in
order to ensure correct decryption after a depth-d computation.

The modulus reduction technique relies on the normal form of the LWE problem, where the secret s ∈ Zn
is a rather short integer vector drawn from the error distribution (see Section 4.2.1). The main idea is that
rounding an LWE sample (having a short secret) from Zq to Zq′ scales the absolute error by a q′/q factor,
plus a small additive term:

〈s, c〉 ∈ e+ qZ =⇒ 〈s, bceq′〉 ∈
〈
s, q

′

q · c + [−1
2 ,

1
2 ]n
〉
⊆ ( q

′

q · e+ ‖s‖
√
n · [−1

2 ,
1
2 ]) + q′Z.

In the FHE context, one can verify that the above rounding also preserves the encrypted message, when the
ciphertext is in most-significant bit form (i.e., 〈s, c〉 ≈ µ · b q2e (mod q)).

We also mention that Brakerski [Bra12] gave an alternative “scale invariant” method of homomorphic
multiplication that increases the error rate by only a fixed poly(n) factor, regardless of the absolute error of
the input ciphertexts. Using this method, modulus reduction becomes optional. However, it can still be useful
because the ciphertext sizes and computation times become smaller as the modulus shrinks.

6.1.2 Bootstrapping

Even with all of the above techniques, homomorphic operations still always increase the error rate of a
ciphertext, by as much as a polynomial factor per operation. Therefore, the schemes described so far can
only homomorphically evaluate circuits of an a-priori bounded depth; such systems are frequently called
“somewhat homomorphic” or “leveled” (we ignore the precise technical distinction between these terms).

A beautiful idea from Gentry’s original work [Gen09b, Gen09a], called bootstrapping or sometimes
refreshing, makes it possible to reduce the error rate of a ciphertext, thus enabling unbounded homomorphic
computation. Suppose we have a ciphertext c that encrypts some (unknown) message µ under a secret key s,
where the error rate of c is too large to perform further homomorphic operations on it. The idea behind
bootstrapping is to homomorphically evaluate the decryption function on a low-error encryption cs = Enc(s)
of the secret key s, which is included as part of the public key. More specifically, we homomorphically
evaluate the function fc(·) = Dec(·, c) on the ciphertext cs. (Note that the ciphertext c to be refreshed is
“hard-coded” into the function fc(·), whereas the secret key is treated as the function argument.) Because
fc(s) = Dec(s, c) = µ, it follows that homomorphic evaluation of fc on an encryption of s (namely, cs)
produces an encryption of µ. Moreover, as long as the circuit depth of fc and the error rate of cs are small
enough, the error rate of the output ciphertext will be substantially smaller than that of the input ciphertext c,
as desired. In particular, decryption can be performed in O(log λ) depth, so it suffices for cs to have some
λ−O(log λ) error rate.

Because bootstrapping involves the homomorphic evaluation of a somewhat complex function, it is not
very efficient (see, e.g., [GH11b]). However, bootstrapping has been intensively studied and improved in var-
ious ways [GH11a, BGV12], culminating in ring-LWE-based methods that run in only polylogarithmic Õ(1)
time per encrypted bit [GHS12a, AP13], where the hidden logO(1)(λ) factors are not exceedingly large.

We conclude this discussion by noting that, in order to yield unbounded homomorphic operations,
bootstrapping requires a “circular” encryption of the secret key under itself. It is unknown whether it is
provably secure (under a standard assumption) to reveal such an encryption, but nor are any attacks known.
So to date, all unbounded FHE schemes require an additional assumption of circular security for the secret
key.
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6.1.3 Third-Generation FHE

In 2013, Gentry, Sahai, and Waters (hereafter GSW) [GSW13] proposed an interesting LWE-based FHE
scheme that has some unique and advantageous properties. For example, homomorphic multiplication
does not require any key-switching step, and the scheme can be made identity-based. Moreover, as shown
in [BV14, AP14], the GSW scheme can be used to bootstrap with only a small polynomial-factor growth in
the error rate, as opposed to quasi-polynomial λΘ(log λ) growth for the system described above. This yields
unbounded FHE based on LWE with just an inverse-polynomial n−O(1) error rate (plus a circular-security
assumption). We describe these results in some detail next.

Homomorphic trapdoors. The GSW scheme is presented most simply in terms of the gadget-based trap-
doors described in Section 5.4.3. (The presentation here has evolved through [BGG+14, AP14, GVW15b].)
At the heart of GSW are the following additive and multiplicative homomorphisms for tags and trapdoors.
Let Ā ∈ Zn×m̄q be arbitrary, and for i = 1, 2 let

Ai = xiG− ĀRi (6.1.4)

for some integer xi and short integer matrix Ri. In other words,
[
Ri
I

]
is a trapdoor with tag xi (or more

accurately, tag xiI) for the matrix [Ā | Ai].
Applying Equation (6.1.4), it is easy to verify that

A1 + A2 = (x1 + x2)G− Ā(R1 + R2), (6.1.5)

and

A1 ·G−1(A2) = (x1G− ĀR1) ·G−1(A2)

= x1A2 − Ā ·R1G
−1(A2)

= x1x2G− Ā (R1G
−1(A2) + x1R2)︸ ︷︷ ︸

R

. (6.1.6)

In other words,
[
R1+R2

I

]
is a trapdoor with tag x1 + x2 for the matrix [Ā | A1 +A2], and

[
R
I

]
is a trapdoor

with tag x1x2 for the matrix [Ā | A1 ·G−1(A2)]. Note that in the latter case, we need x1 to be a small
integer in order to get a good-quality trapdoor.

One very important property of homomorphic multiplication is that the growth of the resulting trapdoor
matrix R is asymmetric and quasi-additive: while R1 is expanded by some polynomial factor due to the
multiplication by G−1(A2), the R2 term is only multiplied by x1. We discuss the implications of this below.

Fully homomorphic encryption. The GSW FHE scheme works as follows. As in prior systems, the public
key is a matrix Ā ∈ Zn×m̄q whose columns are LWE samples with some secret s̄ ∈ Zn−1, i.e.,

stĀ ≈ 0 (6.1.7)

where s = (−s̄, 1) is the secret key. An encryption of an integer x is a matrix

A = xG− ĀR
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for some sufficiently short random R. As usual, semantic security follows by a lossiness argument: encrypting
under a uniformly random (“malformed”) public key Ā statistically hides the message, because [Ā | ĀR] is
very close to uniformly distributed.

To decrypt a ciphertext A using the secret key s, one just computes

stA ≈ x · stG,

where the approximation holds by Equation (6.1.7), and because R is short. Since it is easy to solve LWE
with respect to G, we can recover x · st and hence x (modulo q). In fact, if x is known to be just a bit, then
because one of the rightmost entries of stG is far from zero modulo q, we can recover x simply by testing
whether st · a ≈ 0 for an appropriate column a of A.

To homomorphically add or multiply ciphertexts A1,A2 that encrypt small messages, one just computes
A1 + A2 or A1 ·G−1(A2), respectively. As shown above in Equations (6.1.5) and (6.1.6), the resulting
ciphertext is a valid encryption for the sum or product of the messages, respectively. Because it is important
for noise growth that messages remain small integers, we typically only use operations that maintain the
messages as {0, 1}-values. For example, the binary NAND operation, which is sufficient for expressing
arbitrary computations, can be written as (x1 NAND x2) = 1− x1x2.

Bootstrapping. As first shown by Brakerski and Vaikuntanathan [BV14], the asymmetric and quasi-
additive growth of the trapdoor matrices under homomorphic multiplication allows certain computations—in
particular, decryption for the purpose of bootstrapping—to be performed with rather small error growth.
The first main observation is that by Equation (6.1.6), any polynomial-length chain of homomorphic bit-
multiplications on fresh ciphertexts, if done in a right-associative manner, incurs only polynomial error
growth. The same also holds when multiplying a sequence of permutation matrices (or more generally,
orthonormal integer matrices), where each matrix is encrypted entry-wise.

The second main idea is that by using Barrington’s Theorem [Bar86], any depth-d circuit can be converted
into a length-4d branching program of permutation matrices. In particular, the O(log λ)-depth decryption
circuit can be computed homomorphically in polynomial time and with polynomial error growth, albeit
for rather large polynomials. The subsequent work of Alperin-Sheriff and Peikert [AP14] significantly
improved the runtime and growth to small polynomials, by avoiding Barrington’s Theorem and instead
expressing decryption as an arithmetic function that can be embedded directly into permutation matrices.
Ducas and Micciancio [DM15] devised and implemented a version of this method incorporating additional
ideas, yielding a system that evaluates a complete “bootstrapped NAND gate” in less than a second on
standard desktop hardware.

Fully homomorphic signatures. Gorbunov, Vaikuntanathan, and Wichs [GVW15b] showed how homo-
morphic trapdoors can also be used to obtain fully homomorphic signatures (FHS). The precise model and
security goals for FHS are beyond the scope of this survey, but the basic idea is the following: the signer
signs some initial data x ∈ {0, 1}` under its public key, producing a signature σx. Then, given only the public
key, x, and σx, an untrusted worker can apply an arbitrary function f to x and compute a corresponding
signature σf,y for the value y = f(x). A verifier, given only the public key, f , y, and σf,y (but not x itself!),
can verify that y is indeed the value of f on some data x that the signer originally signed.

Fully homomorphic signatures arise quite naturally from the above homomorphic trapdoors.3 The public
key is a uniformly random Ā, along with ` more uniformly random matrices Ai, one for each bit of the

3Indeed, this construction can be seen as a direct analogue of the GSW encryption scheme and a related attribute-based encryption
scheme of Boneh et al. [BGG+14], described below in Section 6.2.2.
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original data to be signed. The secret key is a trapdoor for Ā. To sign data x ∈ {0, 1}`, the signer uses the
trapdoor to sample a Gaussian-distributed Ri satisfying Ai = xiG− ĀRi, and the signature is the collection
of all these Ri.

Homomorphic operations on signatures, and signature verification, are defined as follows. For any
predicate f : {0, 1}` → {0, 1}, expressed without loss of generality as an arithmetic circuit of addition and
multiplication gates, we define a matrix Af which is computed recursively as follows:

• If f(x) = xi for some i, define Af = Ai.

• If f(x) = f1(x) + f2(x) for some predicates f1, f2, let Af = Af1 + Af2 .

• Otherwise, f(x) = f1(x) · f2(x) for some predicates f1, f2; let Af = Af1 ·G−1(Af2).

Given some x and the corresponding signature components Ri, to homomorphically derive a signature
attesting that f(x) = y for some predicate f , one just computes Af along with, via Equations (6.1.5)
and (6.1.6), a short Rf,y that satisfies Af = yG− ĀRf,y. The verifier likewise computes Af from the Ai

and f alone (without needing to know x), and can verify that the presented Rf,y is sufficiently short and
satisfies the above relation.

6.2 Attribute-Based Encryption

The concept of attribute-based encryption (ABE), introduced in [SW05, GPSW06], is a generalization of
identity-based encryption. In one main variant of ABE, a ciphertext is encrypted under a set of attributes,
and the master secret key can be used to generate secret keys for any predicate in a particular class. If a
ciphertext’s attributes satisfy a secret key’s predicate, then the secret key can decrypt the ciphertext; otherwise
the underlying message should remain hidden. (Identity-based encryption is the special case in which
attributes correspond to the bits of an identity, and a predicate is an equality test with a particular identity.)
Many ABE schemes have been devised based on cryptographic groups admitting bilinear pairings, starting
from [GPSW06]. Soon after the identity-based lattice encryption schemes of [GPV08, CHKP10, ABB10],
generalizations of these systems to the attribute-based setting emerged.

6.2.1 ABE for Inner-Product Predicates

A first example of ABE from lattices is a system for inner-product predicates over (large) finite fields F, due to
Agrawal, Freeman, and Vaikuntanathan [AFV11], with improvements by Xagawa [Xag13]. The construction
inherits from the HIBE of [ABB10] described in Section 5.5.3, but key generation and decryption for a
predicate involve linearly homomorphic operations on the master public key and ciphertext. Here we describe
a version of these constructions.

• Recall from Section 5.4.3 that for prime q, the finite field F = Fqn is isomorphic to a certain matrix
subringH ⊆ Zn×nq . In particular, the difference between any two distinct matrices inH is invertible.

• The master public key consists of a (nearly) uniformly random Ā ∈ Zn×m̄q that is generated with a
trapdoor; a uniformly random

A = [A1 | · · · | A`] ∈ Zn×w`q

where each Ai ∈ Zn×wq has the same dimensions as the gadget matrix G, and ` is the length of the
attribute vectors over F; and a uniformly random syndrome u ∈ Znq . The master secret key is the
trapdoor for Ā ∈ Zn×m̄q . (We describe secret keys for predicates after describing encryption.)
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• For an attribute vector ~h = (H1, . . . ,H`) ∈ H`, define the matrices G~h
= [H1G | · · · | H`G] and

A~h
= A + G~h

.

To encrypt a bit µ under ~h, we simply encrypt as in the dual LWE cryptosystem to the key [Ā | A~h
| u]:

[c̄t | ct~h | c] ≈ st · [Ā | A~h
| u] + (0, µ · b q2e)

t, (6.2.1)

where s is a random LWE secret, the approximation hides appropriate small errors, and the compo-
nents c̄, c~h, c correspond to Ā,A~h

,u as expected.

• To generate a secret key x~p for a predicate vector ~p = (P1, . . . ,P`) ∈ H` using the trapdoor for Ā,
define the short integer matrix

S~p =

G
−1(P1G)

...
G−1(P`G)

 ,
define B~p = A · S~p, and generate a Gaussian-distributed solution x~p to

[Ā | B~p] · x~p = u.

• For decryption, observe that for any ~h, ~p ∈ H`, we have

A~h
· S~p = (A + G~h

) · S~p = B~p + 〈~h, ~p〉 ·G.

Therefore, to decrypt a ciphertext (c̄, c~h, c) having attribute vector ~h using a secret key x~p for some
predicate vector ~p such that 〈~h, ~p〉 = 0, we compute

[c̄t | ct~h · S~p] · x~p ≈ st · [Ā | B~p] · x~p = st · u ≈ c− µ · b q2e

and recover µ, where the approximations hold by Equation (6.2.1) and because S~p and x~p are short.

(Notice also that if 〈~h, ~p〉 6= 0, then A~h
· S~p includes a nonzero multiple of G with B~p, which prevents

decryption using x~p.)

Under an appropriate LWE assumption, the above scheme is semantically secure under a selective attribute
attack, in which the adversary must name the target attribute vector ~h∗ ∈ H` before seeing the master public
key, and may request a secret key for any predicate vector ~p ∈ H` such that 〈~h∗, ~p〉 6= 0. The security proof
closely mirrors the one described in Section 5.5.4: the simulator constructs the matrix Ā to come from
its input samples, and constructs the remaining master public key matrices as Ai = −H∗iG − ĀRi, thus
statistically hiding the tags of ~h∗ in these matrices. This setup “punctures” the public key so that for any legal
predicate query ~p ∈ F` (for which 〈~h∗, ~p〉 6= 0), the reduction knows a short trapdoor

R~p =
∑
i

Ri ·G−1(PiG) for [Ā | B~p] = [Ā | −〈~h∗, ~p〉G− ĀR~p],

so the reduction can generate a properly distributed secret key x~p. Moreover, because the master public key
is punctured at ~h∗, the reduction can use its LWE challenge and the Ri to generate a challenge ciphertext for
[Ā | A~h

| u] = [Ā | −ĀR1 | · · · | −ĀR` | u] which is either properly distributed or which statistically
hides the message, depending on whether the challenge is LWE-distributed or uniform, respectively.
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6.2.2 ABE for Arbitrary Circuits

In prior works on ABE from bilinear pairings, the class of supported predicates was somewhat limited, to
boolean formulas. A work of Gorbunov, Vaikuntanathan, and Wee [GVW13] constructed from LWE an ABE
for arbitrary predicates expressed as circuits of any a priori bounded depth, which is fixed at system setup. In
this system, the secret key for a predicate grows proportionally to the size of the circuit, and corresponds
roughly to a “garbled circuit” for the predicate, for which a ciphertext and its attributes provides the “garbled
input.”

Soon after [GVW13], Boneh et al. [BGG+14] combined ideas from GSW fully homomorphic encryption
(Section 6.1.3) and the ABE for inner-product predicates (Section 6.2.1) to construct an ABE for arbitrary
circuits of any a priori bounded depth. In contrast to [GVW13], here the secret key size grows only with the
depth (not the size) of its predicate. Here we describe a version of the construction from [BGG+14].

• Setup is exactly as in the system from Section 6.2.1: the master public key consists of a (nearly)
uniformly random matrix Ā, generated with a trapdoor; uniformly random matrices A1, . . . ,A`

having the same dimensions as G, where ` is the number of attribute bits; and a uniformly random
syndrome u ∈ Znq . The master secret key is a trapdoor for Ā. (We discuss secret keys for predicates
after describing encryption.)

• Encryption is essentially the same as in the ABE from Section 6.2.1, except that here we use only binary
attributes/tags. Specifically, to encrypt a message bit µ ∈ {0, 1} under an attribute vector x ∈ {0, 1}`,
output a ciphertext of the form

[c̄t | ct1 | · · · | ct` | c] ≈ st · [Ā | A1 − x1G | · · · | A` − x`G | u] + (0, µ · b q2e)
t,

where s ∈ Znq is a random LWE secret, the approximation hides appropriate small errors, and the
ciphertext components c̄, c1, . . . , c`, c correspond to Ā,A1, . . . ,A`,u in the expected way.

• For a predicate f : {0, 1}` → {0, 1}, viewed without loss of generality as a binary circuit of XOR
(addition) and AND (multiplication) gates, we recursively define a matrix Af exactly as in the fully
homomorphic signature scheme of Section 6.1.3:

– In the base case where f(x) = xi for some i, let Af = Ai. Clearly, for any x ∈ {0, 1}` we have

Ai − xiG = Af − f(x)G. (6.2.2)

– If f = f1 +f2 for some predicates f1, f2, let Af = Af1 +Af2 . Observe that for any x ∈ {0, 1}`,
we have

[Af1 − f1(x)G | Af2 − f2(x)G] ·
[
I
I

]
︸︷︷︸
short

= Af − f(x)G. (6.2.3)

– Otherwise, f = f1 · f2 for some predicates f1, f2, and we let Af = Af1 ·G−1(Af2). Observe
that for any x ∈ {0, 1}`, we have

[Af1 − f1(x)G | Af2 − f2(x)G] ·
[
G−1(Af2)
f1(x)I

]
︸ ︷︷ ︸

short

= Af − f(x)G. (6.2.4)
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To generate a secret key for a predicate f using the trapdoor for Ā, we sample a Gaussian-distributed
integer solution kf to

[Ā | Af ] · kf = u. (6.2.5)

• To decrypt a ciphertext (c̄, c1, . . . , cl, c) having known attributes x ∈ {0, 1}` using a secret key kf for
some predicate f where f(x) = 0, we first operate on the cti ≈ st(Ai − xiG) components to compute

ctf,x ≈ st(Af − f(x)G) = stAf ,

in a manner described below. We then recover the message from

(c̄, cf,x)t · kf ≈ st[Ā | Af ] · kf = st · u ≈ c− µ · b q2e,

where the approximation holds because kf is short. (Note that if f(x) 6= 0, the nonzero G-multiple
appearing in cf,x prevents decryption using kf .)

To obtain cf,x, we just recursively apply Equations (6.2.2), (6.2.3), and (6.2.4) to obtain

ctg,x ≈ st(Ag − g(x)G)

for every sub-predicate g involved in the computation of f . For example, if g = g1 · g2 then we define

ctg,x = [ctg1,x | c
t
g2,x] ·

[
G−1(Ag2)
g1(x)I

]
.

Note that the approximations are maintained because the matrices we multiply by in Equations (6.2.3)
and (6.2.4) are short. Note also that to apply Equation (6.2.4), we need to know the value of g1(x),
which is why the attribute vector x needs to be known to the decryption algorithm.

Under an appropriate LWE assumption, the above scheme is semantically secure under a selective-
attribute attack, in which the adversary must name the target attribute vector x∗ before seeing the master
public key, and may request a secret key for any predicate f such that f(x∗) 6= 0. The security proof proceeds
very similarly to the ones described in Sections 5.5.4 and 6.2.1, but here the simulator can do arbitrary
(rather than just linear) operations on the tags and hidden trapdoors. More specifically, the matrix Ā is
constructed from the simulator’s input samples, and the simulator sets up the remaining master public key
as Ai = x∗iG − ĀRi for some short matrices Ri. This setup “punctures” the master public key so that
for any legal predicate query f (for which f(x∗) = 1 6= 0), by using Equations (6.1.5) and (6.1.6) with
its Ri the simulator can compute a short Rf for which Af = f(x∗)G − ĀRf . Therefore, the simulator
knows a short trapdoor for [Ā | Af ], which allows it to answer the query by sampling a Gaussian solution to
Equation (6.2.5). Moreover, because the master public key is punctured at x∗, the simulator can use the bt

component of its input and the Ri to generate a challenge ciphertext which is either properly distributed or
which statistically hides the message, depending on whether the challenge is LWE-distributed or uniform,
respectively.

Predicate encryption. We conclude this chapter by mentioning that a recent work of Gorbunov, Vaikun-
tanathan, and Wee [GVW15a] constructs predicate encryption (PE) based on the LWE assumption. In brief,
predicate encryption is a strengthening of attribute-based encryption in which the attributes associated with a
ciphertext remain hidden from (any coalition of) users who are not authorized to decrypt the ciphertext. In the
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construction of Gorbunov et al., the encryption algorithm uses an FHE to encrypt the attribute vector x (under
a fresh key, chosen by the encrypter), while the decryption algorithm performs a homomorphic evaluation
of the predicate f on the encrypted x. Of course, the resulting value f(x) ∈ {0, 1} remains encrypted, yet
recovery of the message should be conditioned on this bit. This issue is addressed as follows: recall that FHE
decryption is a relatively lightweight process, consisting of a rounded mod-q inner product of the ciphertext
with the secret key. Also recall that we have attribute-hiding ABE schemes for inner-product predicates
(see Section 6.2.1). Therefore, we augment the PE encryption algorithm to also include the FHE secret key
coordinates as hidden attributes, and correspondingly extend the PE decryption algorithm to compute an
inner product of the secret key with the final FHE ciphertext encrypting f(x). Finally, rounding the inner
product is done by shifting it by each of the roughly q/2 values in Zq that correspond to an encryption of
zero. Note that to do this, the decrypter needs a separate secret key for each shift, and learns the exact value
of the inner product when decryption succeeds; this is why the PE scheme hides attributes from unauthorized
users, but not authorized ones.
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Chapter 7

Open Questions

There are many fascinating questions and open problems relating to (ring-)SIS/LWE and their applications.
In this chapter we describe a small selection.

7.1 Foundations

Learning with errors or rounding. Recall from Section 4.2 that LWE with Gaussian error of rate α < 1
and any modulus q ≥ 2

√
n/α is quantumly at least as hard as the GapSVPγ and SIVPγ problems, for

γ = Õ(n/α) [Reg05]. By contrast, the known classical reduction from [Pei09] works only for GapSVP, not
SIVP, and requires an exponentially large modulus q (or a dimension-modulus tradeoff that does not decrease
the bit length of the samples [BLP+13]). This state of affairs leaves open the following important problem.

Question 1. Is there a classical worst-case hardness reduction for LWE that fully subsumes the known
quantum reduction?

Recall from Section 5.7.1 that for appropriate parameters, the learning with rounding (LWR) problem is at
least as hard as LWE. However, the known reductions [BPR12, AKPW13] involve either a super-polynomial
modulus q and inverse error rate 1/α for LWE (corresponding to super-polynomial approximation factors for
lattice problems), or an a priori bound on the number of LWR samples (which affects the underlying LWE
parameters). However, LWR appears to be hard for much more aggressive parameters, e.g., sufficiently large
and integral q/p = poly(n). The situation is similar for all the LWE-based pseudorandom function (PRF)
constructions of [BPR12, BLMR13, BP14].

Question 2. Do LWR, and more generally, existing PRF constructions from LWE, have worst-case hardness
for polynomially bounded q and an unbounded number of samples?

Ideal lattices and ring-LWE. Turning now to ring-based cryptography, perhaps the most important ques-
tion for security is whether the additional algebraic structure of ideals and modules over rings opens the door
to any new kinds of attacks on the relevant lattice problems. For ring-SIS/LWE cryptography in particular, a
central question is the following:

Question 3. For worst-case problems on ideal lattices, especially in cyclotomic rings, are there (possibly
quantum) algorithms that substantially outperform the known ones for general lattices? If so, do these attacks
also extend to work against the ring-SIS and ring-LWE problems themselves?
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For ring-LWE, no meaningful analogue of the classical LWE hardness reduction of [Pei09] is known,
because GapSVP for ideal lattices is easy for the relevant polynomial approximation factors. This leads to
the following very important question.

Question 4. Is there a meaningful classical worst-case hardness reduction for ring-LWE?

While the known worst-case reduction for the search version of ring-LWE works in arbitrary number
fields (see [LPR10, Theorem 4.1]), the search-decision equivalence from [LPR10, Section 5] relies centrally
on cyclotomic number fields—specifically, the fact that they are Galois (they have many automorphisms),
which is a rather rare property.

Question 5. Is there a search-to-decision reduction for ring-LWE, or some other hardness reduction for
decisional ring-LWE, in number fields that do not have many automorphisms?

The known worst-case hardness reduction for the search version of ring-LWE involves a family of
elliptical error distributions. For this reason, the search-decision reduction (for cyclotomic rings) involves a
decision problem where the error distribution either has n random and secret parameters, or is spherical with
a parameter that depends on the number of samples available to the distinguisher (see [LPR10, Theorems 5.1
and 5.2]). It would be preferable to demonstrate that the search problem is hard for a fixed spherical error
distribution, because, in addition to its simplicity, for spherical error the search and decision problems are
equivalent, with no degradation in the width of the error (see [LPR10, Theorem 5.3]).

Question 6. Is there a worst-case hardness reduction for ring-LWE (either search or decision) with a narrow
spherical error distribution, where the amount of error does not need to grow with the number of samples?

(We mention that a standard “noise flooding” technique can prove hardness for spherical error having super-
polynomial width, but using this technique comes at an unsatisfactory cost in efficiency and worst-case
approximation factors.)

The known search-decision reductions for ring-LWE from [LPR10, Section 5] convert a distinguisher
that solves the decision problem with some non-negligible advantage into an algorithm that solves the search
problem with high probability, but using many more samples than the distinguisher needs. This increase is not
a problem as far as worst-case hardness is concerned, but it is undesirable for relating the pseudorandomness
of ring-LWE to its one-wayness as a cryptographic function. For plain LWE, a work by Micciancio and
Mol [MM11] (building on [IN96] for the subset-sum function) gave a sample-preserving search-decision
reduction, in which the solver of the search problem uses the same number of samples as the distinguisher
(and has success probability polynomially related to the distinguisher’s advantage).

Question 7. Is there a sample-preserving search-decision equivalence for ring-LWE?

NTRU. Recall from Section 5.2.4 that Stehlé and Steinfeld [SS11] proposed a variant of the NTRU
cryptosystem in which the public key g/f ∈ Rq is statistically close to uniformly random (owing to the
relatively large sizes of f, g), and proved it to be passively secure under a ring-LWE assumption. However,
NTRU is typically defined so that the public key is statistically very far from uniform, but is conjectured to
be pseudorandom—yet we currently have little theoretical evidence to support this conjecture. Indeed, we do
not even know of a search-decision equivalence for problems associated with NTRU.

Question 8. Is there a worst-case hardness reduction, or a search-to-decision reduction, for an NTRU-like
problem?
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7.2 Cryptographic Applications

Adaptive security. The identity-based, attribute-based, and predicate encryption schemes (in the standard
model) described in Chapters 5 and 6 are analyzed under somewhat artificial model of selective attacks, in
which the adversary must name the identity or attributes it intends to attack before seeing any of the public
parameters. A more realistic model is adaptive security, wherein the adversary can name its target after
seeing the master public key and making queries. While some lattice-based IBE schemes can be adapted to
obtain adaptive security (without using random oracles; see, e.g., [CHKP10]), this comes at a rather high
cost in the size of the master public key and the tightness of the security reduction, and it is unclear whether
similar techniques work for ABE/PE. In the literature on bilinear pairings, the “dual system” methodology of
Waters [Wat09] (further developed in many follow-up works) yields adaptively secure IBE/ABE systems that
are comparably efficient to their selectively secure precursors. However, a lattice analogue of the dual-system
methodology has so far remained elusive.

Question 9. Are there standard-model, adaptively secure lattice-based IBE/ABE/PE schemes that have
comparable efficiency and concrete security to the existing selectively secure ones? Is there an analogue of
the dual-system methodology for lattices?

Unbounded FHE. Recall from Section 6.1.2 that all known fully homomorphic encryption (FHE) schemes
follow the same basic template from Gentry’s initial work [Gen09b, Gen09a]: first, one constructs a “some-
what homomorphic” scheme that supports only a bounded amount of homomorphic computation on fresh
ciphertexts, then one applies a “bootstrapping” transformation to convert the scheme into one that can handle
unbounded homomorphic computation. Despite significant advances, bootstrapping is computationally quite
expensive, because it involves homomorphically evaluating the entire decryption function. In addition,
bootstrapping for unbounded FHE requires one to make a “circular security” assumption, i.e., that it is secure
to reveal an encryption of (a suitable encoding of) the secret key under itself. To date, such assumptions
are poorly understood, and we have little theoretical evidence to support them (in particular, no worst-case
hardness).

Question 10. Is there an unbounded FHE scheme that does not rely on bootstrapping? Is there a version of
bootstrapping that uses a lighter-weight computation than full decryption?

Question 11. Is there an unbounded FHE scheme that can be proved secure solely under a worst-case
complexity assumption?

Unbounded attribute-based encryption and fully homomorphic signatures. Recall from Section 6.2
that the known attribute-based and predicate encryption schemes for arbitrary circuits are “leveled,” i.e.,
for every circuit depth, there is a scheme that supports any access policy computable in that depth. The
fully homomorphic signature scheme described in Section 6.1.3 is subject to a similar caveat. As a matter
of theoretical feasibility, it would be preferable to have a single scheme that can handle any efficiently
computable access policy. In the context of fully homomorphic encryption, bootstrapping provides a way
to “reverse the quantifiers” for a leveled scheme. But despite the strong similarities between FHE and
ABE/PE/FHS schemes, to date no bootstrapping technique is known for the latter.

Question 12. Is there an ABE/PE/FHS scheme for all efficiently computable functions? Can such schemes
be “bootstrapped?”
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