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Abstract. This paper, for the first time, presents a provably secure sig-
nature scheme with message recovery based on the (elliptic-curve) dis-
crete logarithm. The proposed scheme can be proven to be secure in the
strongest sense (i.e., existentially unforgeable against adaptively chosen
message attacks) in the random oracle model under the (elliptic-curve)
discrete logarithm assumption. We give the concrete analysis of the se-
curity reduction. When practical hash functions are used in place of
truly random functions, the proposed scheme is almost as efficient as the
(elliptic-curve) Schnorr signature scheme and the existing schemes with
message recovery such as (elliptic-curve) Nyberg-Rueppel and Miyaji
schemes.

1 Introduction

1.1 Background: Digital Signature Schemes with Message Recovery

A digital signature scheme with message recovery is useful for many applications
in which small messages (e.g., around 100 bits) should be signed. For example,
small messages including time, date and identifiers are signed in certified email
services and time stamping services. In addition, as shown in [13,14,15], the bene-
fits of the message recovery are: direct use in other schemes such as identity-based
public-key systems or key agreement protocols and natural combination with El-
Gamal type encryption (which may produce the so-called sign-encryption).

The existing digital signature schemes with message recovery are classified
into two types: RSA based schemes (RSA type) and discrete logarithm based
schemes (DL type), where an elliptic curve based signature scheme is one of
the DL type. PSS-R [2] and ISO/IEC 9796-1,9796-2 are signature schemes with
message recovery in the RSA type, and the Nyberg-Rueppel [13,14,15], and
Miyaji [11] schemes are in the DL type.

Recently the security flaws of heuristically designed schemes such as PKCS#1
(Ver.1) and the above-mentioned RSA-based signatures with message recovery,
CoronISO/IEC 9796-1 and 9796-2, have been found [3,5]. Therefore, the provable
security even in the random oracle model is most desirable to assure the security
of a practical scheme.

K. Y. Lam, E. Okamoto and C. Xing (Eds.): ASIACRYPT’99, LNCS 1716, pp. 378–389, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



A Signature Scheme with Message Recovery 379

Among the existing signature schemes with message recovery, only the PSS-R
scheme [2] is provably secure (existentially unforgeable against adaptively cho-
sen message attacks) under reasonable assumptions (the RSA assumption and
random oracle model). In other words, there exists no provably secure signa-
ture schemes with message recovery in the DL type (i.e., no elliptic curve based
signature scheme with message recovery) even in the random oracle model.

Since the overhead (size) of a digital signature based on the integer factoring
should be much larger than such a small message (e.g., 1024 bit signature is much
larger than 100 bit message), an elliptic curve based signature scheme is more
appropriate for applications with small messages because of its small signature
and key sizes.

That is, the most appropriate signature schemes with message recovery should
be elliptic curve based schemes, while there exists no provably secure elliptic
curve based signature scheme with message recovery (even in the random oracle
model).

1.2 Our Result

This paper solves this problem. That is, we, for the first time, present a provably
secure (existentially unforgeable against adaptively chosen message attacks) DL
type (e.g., elliptic curve based) signature schemes with message recovery under
reasonable assumptions, the (elliptic curve) discrete logarithm assumption and
random oracle model. We also give the concrete analysis of the reduction to
prove the security of the proposed signature scheme.

When practical hash functions are used in place of truly random functions,
the proposed scheme is almost as efficient as the (elliptic-curve) Schnorr signa-
ture scheme and the existing schemes with message recovery such as (elliptic-
curve) Nyberg-Rueppel and Miyaji schemes.

1.3 Related Works

Although Miyaji claimed that her scheme [11] is as secure as the elliptic curve
DSA, the security level investigated in [11] is the weakest (i.e., universally un-
forgeable against passive attacks) and it is unlikely that her scheme is prov-
ably secure in a stronger security definition. Note that the security of signature
schemes should be investigated based on the strongest security definition (i.e.,
existentially unforgeable against adaptively chosen message attacks) [9], in order
to ensure the security against various possible attacks.

Remark: Recently Canetti et al. [4] have demonstrated that it is possible to
devise cryptographic protocols which are provably secure in the random oracle
model but for which no complexity assumption property instantiates the random
oracle modeled hash function. However, the examples they used to make the
random oracle model paradigm fail were very contrived, so the concerns induced
by these examples do not appear to apply any of the concrete practical schemes
that have been proven secure in the random oracle model.
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2 Proposed Scheme

This section introduces our signature scheme with message recovery. Although
we can construct our scheme based on any finite group, as a typical example,
we will present a construction on the group over an elliptic curve because of its
efficiency.

Key generation: Each signer S generates elliptic curve parameters, q for a
finite field Fq; two elliptic curve coefficients a and b, elements of Fq, that
defines an elliptic curve E; a positive prime integer p dividing the number
of points on E; and a curve point G of order p. Here |p| = k, and set (k1, k2)
such that |q| = k1 + k2.
Signer S uniformly selects x ∈ Z/pZ, and calculates a point, Y , on E,
where Y = −x·G. The secret key of the signer is x, and its public-key is
(Fq, E,G, Y ).
The parameters, (Fq, E,G), of the elliptic curve domain can be fixed by the
system and shared by many signers.
(In this paper, we follow the standard notations on the elliptic curve opera-
tion: the elliptic curve addition by +, and G + · · · + G (x times additions)
by x·G.)

Signature generation: S generates the signature, (r, z), of his message m ∈
{0, 1}k2 using public random oracle functions, F1 : {0, 1}k2 → {0, 1}k1, F2 :
{0, 1}k1 → {0, 1}k2, H : {0, 1}k1+k2 → {0, 1}k as follows:

m′ = F1(m)||(F2(F1(m)) ⊕m),

r = (ω·G)X ⊕m′,

c = H(r),

z = ω + cx mod p,

where ω ∈ Z/pZ is uniformly selected. S sends (r, z) to verifier V . Here,
PX denotes the X-coordinate of point P on E, and ⊕ denotes the bit-wise
exclusive-or operation.

Verification: Verifier V recovers the message m from signature (r, z), and
checks its validity as follows:

m′ = r ⊕ (z·G+ c·Y )X ,

m = [m′]k2 ⊕ F2([m′]k1),

and check whether [m′]k1 = F1(m) holds. Here, [m′]k1 denotes the most
significant k1 bits of m′, and [m′]k2 denotes the least significant k2 bits of
m′.
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Remark 1: If (r, z) is correctly generated, m should be recovered correctly and
V accepts (r, z) as valid since

z·G+ c·Y = ω·G+ (cx)·G− (cx)·G = ω·G.

Remark 2: A typical security parameters for the signature scheme are: k =
|p| = 160, |q| = 160, k1 = k2 = 80. Then, the message size, |m|, is 80 bits.

Remark 3: In order to sign a longer message (e.g., |m| > 80) with a fixed size of
parameters of elliptic curve E (e.g., k = |p| = 160, |q| = 160, |k1| = |k2| = 80),
m should be divided into two parts, m1 and m2 and |m1| = k1 (e.g., |m1| = 80).
Then, signer S generates (r, z) as follows:

m′ = F1(m1)||(F2(F1(m1)) ⊕m1),

r = (ω·G)X ⊕m′,

c = H(r,m2),

z = ω + cx mod p.

Signer S sends (r, z,m2) to verifier V . V recovers m1 from (r, z,m2) as follows:

m′ = r ⊕ (z·G+H(r,m2)·Y )X ,

m1 = [m′]k2 ⊕ F2([m′]k1),

and checks whether [m′]k1 = F1(m1) holds.

Remark 4: The essential part in designing the signature scheme is how to
construct the redundancy coding, m′, of message m. Our coding is based on
random functions (oracles), so thatm′ distributes uniformly over the randomness
of the random functions, regardless of the distribution of m. The property based
on random functions is used in the proofs of Lemmas 8 and 12. The property on
the uniform distribution of m′ is used in the proof of Lemma 12 (especially for
Case 2).

3 Security

This section proves that the proposed signature scheme with message recovery
is existentially unforgeable against adaptively chosen message attacks under the
(elliptic-curve) discrete logarithm assumption and the random oracle model.

We will follow the proof methodology, the ID-reduction technique, introduced
by [16] to analyze the reduction cost.
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3.1 Security Definition of the Signature Scheme

We will quantify the security of a signature scheme: Here we assume that the
attacker can dynamically ask the legitimate user S to sign any message, m,
using him as a kind of oracle. This model covers the very general attack of the
signature situations, adaptively chosen message attacks.

Definition 1. A probabilistic Turing machine (adversary) A breaks the proposed
signature scheme with (t, qsig , qF1 , qF2 , qH , ε) if and only if A can forge a signature
of a message with success probability greater than ε . We allow chosen-message
attacks in which A can see up to qsig legitimate chosen signatures participat-
ing in the signature generating procedure, and allow qF1/qF2/qH invocations of
F1/F2/H, within processing time t. The probability is taken over the coin flips
of A,F1, F2, H and signing oracle S.

Definition 2. The proposed signature scheme is (t, qsig, qF1 , qF2 , qH , ε)-secure if
and only if there is no adversary that can break it with (t, qsig , qF1 , qF2 , qH , ε).

3.2 Intractability Definition of the Elliptic Curve Discrete
Logarithm Problem

Definition 3. A probabilistic Turing machine (adversary) A breaks the elliptic
curve discrete logarithm problem, (Fq, E,G, Y ), with (t, ε) if and only if A can
find x from (Fq, E,G, Y ) with success probability greater than ε within processing
time t, where Y = x·G. The probability is taken over the coin flips of A. Here,
Fq denotes a finite field with q elements, E denotes an elliptic curve over Fq,
and G is a point of E with prime order p.

Definition 4. The elliptic curve discrete logarithm problem, (Fq, E,G, Y ), is
(t, ε)-secure if and only if there is no adversary that can break it with (t, ε).

3.3 Identification Scheme Induced from our Signature Scheme

Here we introduce the identification scheme that is induced from the above-
mentioned signature scheme. This identification scheme is useful to analyze the
concrete security of our signature scheme, since the ID Reduction Technique in
[16] with using this induced identification scheme is very effective for the security
analysis.

In the identification scheme, prover P publishes a public key while keeping
the corresponding secret key, and proves his identity to verifier V . Here, functions
F1 and F2 are shared by P and V .
(Identification Scheme)

Key generation: Prover P generates a pair of a secret key, x, and a public
key, (Fq, E,G, Y ), using a key generation algorithm G, where Y = −x·G.

Identification Protocol: P proves his identity, and verifier V checks the va-
lidity of P ’s proof as follows:
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– P selects m and generates r as follows:

m′ = F1(m)||(F2(F1(m)) ⊕m),

r = (ω·G)X ⊕m′,

where ω ∈ Z/pZ is uniformly selected. S sends r to verifier V .
– V generates random challenge c ∈ {0, 1}k and sends it to P .
– P generates an answer z as follows:

z = ω + cx mod p.

P sends z to V
– V checks the validity of (r, z) through whether [m′]k1 = F1(m) holds or

not, where
m′ = r ⊕ (z·G+ c·Y )X ,

m = [m′]k2 ⊕ F2([m′]k1).

3.4 Security Definition of the Identification Scheme

Definition 5. A probabilistic Turing machine (adversary) A breaks an identi-
fication scheme with (t, qF1 , qF2 , ε) if and only if A as a prover can cheat honest
verifier V with a success probability greater than ε within processing time t. A is
allowed to make qF1 (and qF2) invocations of F1 (and F2). Here, the probability
is taken over the coin flips of A, F1, F2 and V .

Definition 6. An identification scheme is (t, qF1 , qF2 , ε)-secure if and only if
there is no adversary that can break it with (t, qF1 , qF2 , ε).

3.5 ID Reduction Lemmas of the Proposed Signature Scheme

ID Reduction Technique introduced by [16] is effective to analyze the security of
a certain class of signature schemes.

We can straightforwardly obtain the following lemma from the corresponding
lemma in [16].

Lemma 7. (ID Reduction Lemma)
1) If A1 breaks the proposed signature scheme with (t, qsig , qF1 , qF2 , qH , ε), there
exists A2 which breaks the signature scheme with (t, qsig, qF1 , qF2 , 1, ε′), where

ε′ =
ε− 1

2k

qH
.

2) If A2 breaks the proposed signature scheme with (t, qsig , qF1 , qF2 , 1, ε′), there
exists A3 which breaks the signature scheme with (t′, 0, qF1 , qF2 , 1, ε

′′), where ε′′ =
ε′ − qsig

2k and t′ = t+ (the simulation time of qsig signatures).
3) If A3 breaks the proposed signature scheme with (t′, 0, qF1 , qF2 , 1, ε′′), there
exists A4 which breaks the induced identification scheme with (t′, qF1 , qF2 , ε

′′)
We neglect the time of reading/writing data on (random, communication,

etc.) tapes, simple counting, and if-then-else controls. (Hereafter in this paper,
we assume them.)
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To analyze our scheme, the following lemma is additionally required, since
random oracles F1 and F2 are used and shared by P and V .
Lemma 8. (Additional Reduction Lemma)
If A4 breaks the identification scheme with (t′, qF1 , qF2 , ε

′′), there exists A5 which
breaks the identification scheme with (t′, 1, 1, ε′′′), where ε′′′ = 1

qF1
(ε′′−max{ 1

2k1 ,
1

2k2 }).
Proof. Let Qi be the i-th query from A4 to random oracle F1 and ρi be the i-th
answer from F1 to A4. Let Rj = ρi be the query from A4 to random oracle F2,
which is consistent with Qi.

Construct A5 using A4 as follows:
1. Select integer i with 1 ≤ i ≤ qF1 randomly.
2. Run A4 with random oracles, F1 and F2, and a random working tape, Θ,

where only the i-th query, Qi, to F1 and the related consistent query, Rj ,
to F2 are asked to F1 and F2, and the remaining (qF1 − 1) queries to F1

and (qF2−1) queries to F2 are asked to Θ. Here Θ contains (qF1 − 1) k2-bit-
random-strings and (qF2 −1) k1-bit-random-strings used for answers from Θ.

3. Output the same as that of A4 (i.e., A5 succeeds if A4 succeeds) if (r, z)
output by A4 satisfies the following:

m = Qi, [m′]k1 = Rj ,

where
m′ = r ⊕ (z·G+ c·Y )X ,

m = [m′]k2 ⊕ F2([m′]k1).

Otherwise A5 fails and halts.
If A4 succeeds in making V accept (r, z) there are two cases: 1) m was asked

to random oracle F1 and [m′]k1 was asked to random oracle F2, 2) otherwise.
In the latter case, the success probability of A4 is at most max{1/2k1, 1/2k2},

because of the randomness of the random oracle. Thus

Pr[A5 succeeds]

≥
qF1∑
i=1

Pr[A5 selects i] Pr[A4 succeeds ∧ (m = Qi, [m′]k1 = Rj)]

=
qF1∑
i=1

1
qF1

Pr[A4 succeeds ∧ (m = Qi, [m′]k1 = Rj)]

=
1
qF1

qF1∑
i=1

Pr[A4 succeeds ∧ (m = Qi, [m′]k1 = Rj)]

=
1
qF1

(Pr[A4 succeeds]− Pr[A4 succeeds ∧A4 makes no query to F1 or F2])

≥ 1
qF1

(ε′′ −max{ 1
2k1
,

1
2k2

}),

because Pr[A4 succeeds] ≥ ε′′.
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3.6 Security of the Induced Identification Scheme

A Boolean matrix and heavy row will be introduced in order to analyze the
security of the above-mentioned identification scheme induced from the proposed
signature scheme. Assume that there is a cheater A who can break a one-round
identification scheme with (t, 1, 1, ε).

Here there are two cases: (Case 1) A’s query to F1 is made before sending r,
and (Case 2) A’s query to F1 is made after sending r.

Let ε1 + ε2 = ε, and A’s success probability with Case 1 is at least ε1 and A’s
success probability with Case 2 is at least ε2.

Definition 9. (Boolean Matrix of (A, V ))
Let’s consider the possible outcomes of the execution of (A, V ) as a Boolean
matrix H((RA,F1, F2), c) whose rows correspond to all possible choices of (RA,
F1, F2), where RA is a private random tape of A; its columns correspond to all
possible choices of c, which means c ∈ RV , where RV is a random tape of V .
Its entries are 0 if V rejects A’s proof or V accepts A’s proof with Case 2, and
1 if V accepts A’s proof with Case 1.

Definition 10. (Heavy Row)
A row of matrix of H is heavy if the fraction of 1’s along the row is at least ε1/2,
where the success probability of A with Case 1 is at least ε1.

Lemma 11. (Heavy Row Lemma)
The 1’s in H are located in heavy rows of H with a probability of at least 1

2 .

Lemma 12. (Security of the identification scheme induced from the
signature scheme)
Let ε ≥ 10

2k . Suppose that the elliptic curve discrete logarithm problem, (Fq, E,G,
Y ), is (t∗, ε∗)-secure. Then the identification scheme induced from the signature
scheme is (t, 1, 1, ε)-secure, where

t∗ =
6(t+ Φ1)
ε− 2/p

+ Φ3 and ε∗ =
1
2

(
1 − 1

e

)2

>
9
50
.

Here Φ1 is the verification time of the identification protocol, Φ3 is the calculation
time of x in the final stage of the reduction, and e is the base of the natural
logarithm.

Proof. Assume that there is a cheater A who can break an identification with
(t, 1, 1, ε). We will construct a machine A∗ which breaks the elliptic curve discrete
logarithm problem, (Fq, E,G, Y ), with (t∗, ε∗) using A.

First, we assume that ε1 ≥ ε/2, where either case occurs, ε1 ≥ ε/2 or ε2 > ε/2,
since ε1 + ε2 = ε. (Later we consider the case when ε2 > ε/2.)

We will discuss the following probing strategy of H to find two 1’s along the
same row in H [8]:
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1. Probe random entries in H to find an entry a(0) with 1. Let c(0) be V ’s
challenge message corresponding to a(0). We denote the row where a(0) is
located in H by H(0).

2. After a(0) is found, probe random entries along H(0) to find another entry
with 1. We denote it by a(1) and c(1) is V ’s challenge message corresponding
to a(1). If c(1) ≡ −c(0) (mod p), then discard it and find another entry with 1.

a(i) represents (r(i), z(i)). Here, [m(i)′]k1 = F1(m(i)) holds, since a(i) is an
entry with 1, where

m(i)′ = r(i) ⊕ (z(i)·G+ c(i)·Y )X ,

m(i) = [m(i)′]k2 ⊕ F2([m(i)′]k1).

Two 1’s, a(0) and a(1), in the same row H(0) means r(1) = r(0), m(1)′ = m(0)′,
and m(1) = m(0). Therefore,

(z(1)·G+ c(1)·Y )X = (z(0)·G+ c(0)·Y )X ,

where c(0) �= c(1). That is,

z(1)·G+ c(1)·Y = ±(z(0)·G+ c(0)·Y ).

Hence if this strategy succeeds, x with Y = x·G can be computed by

x = −z
(1) ∓ z(0)
c(1) ∓ c(0) mod p,

since p is prime and c(1) �≡ −c(0) (mod p).
Then we will show that this strategy succeeds with constant probability in

just O(1/ε1) probes, using Lemma 11 concerning a useful concept, heavy row,
defined in Definition 10.

Let p1 be the success probability of step 1 with 1
ε1

repetition. p1 ≥ 1 −
(1 − ε1)1/ε1 = p′1 > 1 − 1

e >
3
5 , because the fraction of 1’s in H is at least

ε1. Let p2 be the success probability of step 2 with 2
ε1−1/p repetition. p2 ≥

1
2 ×

(
1 − (1 − ε1−1/p

2 )2/(ε1−1/p)
)

= p′2 >
1
2 (1 − 1

e ) >
3
10 , because the probability

that H(0) is heavy is at least 1
2 by Lemma 11 and the fraction of 1’s (with

c(1) �≡ −c(0) (mod p)) along a heavy row is at least ε1−1/p
2 .

Let ε∗1 be the success probability of the above-mentioned procedure and t∗1
be the running time for procedure. Then

ε∗1 = p1 × p2 ≥ p′1 × p′2 >
1
2
(1 − 1

e
)2 >

9
50
,

t∗1 ≤ (t+ Φ1)× (
1
ε1

+
2

ε1 − 1/p
) + Φ3

<
3(t+ Φ1)
ε1 − 1/p

+ Φ3
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≤ 6(t+ Φ1)
ε− 2/p

+ Φ3.

Next, we consider the case when ε2 > ε/2. Then A’s success probability with
Case 2 (A’s query to F1 is made after sending r) is greater than ε/2.

Execute random trials of ((RA,F1, F2), c) to find a value of ((RA,F1, F2), c)
in which A succeeds with Case 2. Here in each trial, the replies of F1 and F2 are
set as follows: F1’s reply: [m′]k1 , and F2’s reply: [m′]k2 , where m′ = (δ·G)X ⊕ r
and δ is uniformly selected from Z/pZ. Here note that although the distribution
of m′ is not guaranteed to be uniform (since (δ·G)X is not uniform), A succeeds
with Case 2 only when the values of m′ is in the distribution of (δ·G)X ⊕ r.
Therefore, the success probability of A with Case 2 under the above-mentioned
strategy of F1 and F2 is at least that under the uniform distribution of F1 and
F2 (i.e., greater than ε/2).

If a value of ((RA,F1, F2), c) in which A succeeds with Case 2 is found, x
with Y = x·G can be computed by x = (−z± δ)/c mod p, since (z·G+ c·Y )X =
m′ ⊕ r = (δ·G)X .

Let ε∗2 be the success probability of the above-mentioned procedure and t∗2
be the running time for procedure.

ε∗2 ≥ 1 − (1 − ε/2)2/ε = p′1 > 1 − 1
e
>

3
5
,

t∗2 ≤ (t+ Φ1) × 2
ε

+ Φ3.

Since the first step in the probing stage with Case 1 and the probing stage
with Case 2 can be merged as the unified probing stage, we can obtain the total
success probability and running time as follows:

t∗ =
6(t+ Φ1)
ε− 2/p

+ Φ3 and ε∗ =
1
2

(
1 − 1

e

)2

>
9
50
,

because t∗1 > t∗2 and ε∗1 < ε∗2.

3.7 Security of the Proposed Signature Scheme

The following theorem is proven by combining Lemmas 7, 8 and 12.

Theorem 13. (Security of the proposed signature scheme)
Let ε ≥ qH(10qF1+qsig

2k + max{ 1
2k1
, 1

2k2
}) + 1

2k . Suppose that the elliptic curve
discrete logarithm problem, (Fq, E,G, Y ), is (t∗, ε∗)-secure. Then the proposed
signature scheme with message recovery is (t, qsig, qF1 , qF2 , qH , ε)-secure, where

t∗ =
6t′

ε′′′ − 2/p
+ Φ3 and ε∗ =

1
2

(
1− 1

e

)2

>
9
50
.

Here

t′ = t+ Φ1 + Φ2 and ε′′′ =
1
qF1

(
ε− 1

2k

qH
− qsig

2k
−max{ 1

2k1
,

1
2k2

})
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where Φ1 is the verification time of the identification protocol, Φ2 is the simula-
tion time of qsig signatures, Φ3 is the calculation time of x in the final stage of
the reduction.

Remark: This theorem implies in an asymptotic sense that the proposed signa-
ture scheme with message recovery is existentially unforgeable against adaptively
chosen massage attacks in the random oracle model, if the elliptic curve dis-
crete logarithm (ECDL) problem, (Fq, E,G, Y ), is intractable. This is because:
if ECDL is intractable (i.e., t∗ is not within kc1 for constant c1 with constant
ε∗), it is not true that t is within kc2 for constant c2 and ε is at least 1

kc3 for
constant c3, where qsig , qF1 , qF2 , qH are at most polynomials in k, and k1 = c4k
and k2 = c5k for constants c4 and c5.

4 Conclusion

This paper presented a provably secure signature scheme with message recovery
based on the (elliptic-curve) discrete logarithm. The proposed scheme is proven
to be secure in the strongest sense (i.e., existentially unforgeable against adap-
tively chosen message attacks) in the random oracle model under the (elliptic-
curve) discrete logarithm assumption. We provided the concrete analysis of the
security reduction. When practical hash functions are used in place of truly ran-
dom functions, the proposed scheme is almost as efficient as the (elliptic-curve)
Schnorr signature scheme and the existing schemes with message recovery such
as (elliptic-curve) Nyberg-Rueppel and Miyaji schemes (because the additional
computation of our scheme compared with the Schnorr signature scheme is just
the function evaluation of F1 and F2, and data comparison).

References

1. M. Bellare and P. Rogaway, “Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols,” Proc. of the First ACM Conference on Computer and
Communications Security, pp.62–73, 1993.

2. M. Bellare and P. Rogaway, “The Exact Security of Digital Signatures –How
to Sign with RSA and Rabin,” Proc. of Eurocrypt’96, Springer-Verlag, LNCS,
pp.399–416, 1996. 378, 379

3. D. Bleichenbacher, “Chosen Ciphertext Attacks Against Protocols Based on the
RSA Encryption Standard PKCS #1,” Proc. of Crypto’98, LNCS 1462, Springer-
Verlag, pp. 1–12, 1998. 378

4. R. Canetti, O. Goldreich and S. Halevi, “The Random Oracle Methodology, Re-
visited,” Proc. of STOC, ACM Press, pp.209–218, 1998. 379

5. J.S. , D. Naccache and J.P. Stern, “On the Security of RSA Padding,” Proc. of
Crypto’99, Springer-Verlag, LNCS, 1999. 378

6. T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms,” IEEE Transactions on Information Theory, IT-31, 4, pp.469–
472, 1985.

7. A. Fiat and A. Shamir, “How to Prove Yourself,” Proc. of Crypto’86, Springer-
Verlag, LNCS, pp.186–194.



A Signature Scheme with Message Recovery 389

8. U. Feige, A. Fiat and A. Shamir, “Zero-Knowledge Proofs of Identity,” J. of Cryp-
tology, 1, p.77–94, 1988. 385

9. S. Goldwasser, S. Micali and R. Rivest, “A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks,” SIAM J. on Computing, 17, pp.281–
308, 1988. 379

10. N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of Computation, 48,
pp.203–209, 1987.

11. A. Miyaji, “A Message Recovery Signature Scheme Equivalent to DSA over Elliptic
Curves,” Proc. of Asiacrypt’96, Springer-Verlag, LNCS, pp. 1–14, 1996. 378, 379

12. M. Naor and M. Yung, “Universal One-Way Hash Functions and Their Crypto-
graphic Applications,” Proc. of STOC, pp.33–43, 1989.

13. K. Nyberg and R.A. Rueppel, “A New Signature Scheme Based on the DSA
Giving Message Recovery,” Proc. of the First ACM Conference on Computer and
Communications Security, 1993. 378

14. K. Nyberg and R.A. Rueppel, “Message Recovery for Signature Schemes Based on
the Discrete Logarithm Problem,” Proc. of Eurocrypt’94, Springer-Verlag, LNCS,
pp.182–193, 1995. 378

15. K. Nyberg and R.A. Rueppel, “Message Recovery for Signature Schemes Based on
the Discrete Logarithm Problem,” Designs, Codes and Cryptography, 7, pp.61–81,
1996. 378

16. K. Ohta and T. Okamoto, “On the Concrete Security Treatment of Signatures
Derived from Identification,” Proc. of Crypto’98, Springer-Verlag, LNCS, 1998.
381, 382, 383

17. D. Pointcheval and J. Stern, “Security Proofs for Signature Schemes,” Proc. of
Eurocrypt’96, Springer-Verlag, LNCS, pp.387–398, 1996.

18. J. Rompel, “One-Way Functions are Necessary and Sufficient for Secure Signa-
ture,” Proc. of STOC, pp.387–394, 1990.

19. R. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital Signatures
and Public Key Cryptosystems,” Communications of ACM, 21, 2, pp.120-126,
1978.

20. C.P. Schnorr, “Efficient Identification and Signatures for Smart Card,” Proc. of
Eurocrypt’89, Springer-Verlag, LNCS, pp.235–251, 1990.


	Introduction
	Background: Digital Signature Schemes with Message Recovery
	Our Result
	Related Works

	Proposed Scheme
	Security
	Security Definition of the Signature Scheme
	Intractability Definition of the Elliptic Curve Discrete Logarithm Problem
	Identification Scheme Induced from our Signature Scheme
	Security Definition of the Identification Scheme
	ID Reduction Lemmas of the Proposed Signature Scheme
	Security of the Induced Identification Scheme
	Security of the Proposed Signature Scheme

	Conclusion
	References



