
Abe-Okamoto signature scheme

EPK uses Abe-Okamoto signature scheme with message recovery to validate the product
key and embed information, such as expiration date and type of license.

Abe-Okamoto signature scheme with bits of security and bits payload, produces a
bits signature. The signature scheme works with any cyclic group. EPK uses the 128-bit
elliptic curve secp128r1, and bcrypt as random oracle.

Abe-Okamoto signature scheme was constructed by Masayuki Abe and Tatsuaki Okamoto,
as presented in the paper A Signature Scheme as Secure as Discrete Logarithm.

The signature scheme is provably secure in the random oracle model, against an adaptive
chosen-message attack, under the (elliptic curve) discrete logarithm assumption.

The proposed scheme is outlined below, following the same notation as used in the original
paper. Given a group formed by the elements of an elliptic curve, denotes a base point on
this curve with order .

Let , , and be random oracle functions, in our case bcrypt with the salt
0xc90fdaa22168c234c4c6628b80dc1cd1 and a work factor of 6, except which has a

work factor of 12 (due to security reasons mentioned below). , and should output
a hash truncated to 64 bits. should output a hash truncated to 128 bits.

The signer picks a random 128-bit number as private key and calculates the public key
.

To sign a message , the signer does the following:

1.
2. Pick a random 128-bit number .
3.
4.
5.

Let be the SHA2 hash of the tag truncated to 128 bits or 0 if no tag was supplied. The
signature is the tuple . Since both and are 128-bit numbers, the size of the
signature is 256 bits.

https://helix.stormhub.org/papers/Abe%20M.,%20and%20Okmoto%20T.,%20-%20A%20Signature%20Scheme%20with%20Message%20Recovery%20as%20Secure%20as%20Discrete%20Logarithm.pdf

To verify the signature and recover the message , the verifier does the following:

1. Calculate the SHA2 hash of the tag truncated to 128 bits or 0 if no tag was supplied.
Restore . Let

2.
3. Recover .
4. The signature is valid if holds.

Using a 128-bit elliptic curve for signing, gives us 64 bits of security, which would make the
implementation vulnerable to brute-force attacks. An adversary can always pick a
signature at random, and repeat until a valid signature is found, which on average
would require tries. For each such signature, a valid product key could easily be
constructed by encoding the bits of the signature. To prevent such an attack, we choose a
high work factor for , thus making signature verification slow. Unfortunately, this also
make product key generation slower.

