IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 2, FEBRUARY 2013 289

Discovery and Verification of Neighbor
Positions in Mobile Ad Hoc Networks

Marco Fiore, Member, IEEE, Claudio Ettore Casetti, Member, IEEE,
Carla-Fabiana Chiasserini, Senior Member, IEEE, and Panagiotis Papadimitratos, Member, IEEE

Abstract—A growing number of ad hoc networking protocols and location-aware services require that mobile nodes learn the position
of their neighbors. However, such a process can be easily abused or disrupted by adversarial nodes. In absence of a priori trusted
nodes, the discovery and verification of neighbor positions presents challenges that have been scarcely investigated in the literature. In
this paper, we address this open issue by proposing a fully distributed cooperative solution that is robust against independent and
colluding adversaries, and can be impaired only by an overwhelming presence of adversaries. Results show that our protocol can
thwart more than 99 percent of the attacks under the best possible conditions for the adversaries, with minimal false positive rates.

Index Terms—Neighbor position verification, mobile ad hoc networks, vehicular networks

1 INTRODUCTION

LOCATION awareness has become an asset in mobile
systems, where a wide range of protocols and applica-
tions require knowledge of the position of the participating
nodes. Geographic routing in spontaneous networks, data
gathering in sensor networks, movement coordination
among autonomous robotic nodes, location-specific services
for handheld devices, and danger warning or traffic
monitoring in vehicular networks are all examples of
services that build on the availability of neighbor position
information.

The correctness of node locations is therefore an all-
important issue in mobile networks, and it becomes
particularly challenging in the presence of adversaries
aiming at harming the system. In these cases, we need
solutions that let nodes 1) correctly establish their location
in spite of attacks feeding false location information, and
2) verify the positions of their neighbors, so as to detect
adversarial nodes announcing false locations.

In this paper, we focus on the latter aspect, hereinafter
referred to as neighbor position verification (NPV for short).
Specifically, we deal with a mobile ad hoc network, where a
pervasive infrastructure is not present, and the location data
must be obtained through node-to-node communication.
Such a scenario is of particular interest since it leaves the
door open for adversarial nodes to misuse or disrupt the
location-based services. For example, by advertising forged

e M. Fiore is with the CITI Laboratory, INRIA, INSA Lyon, Bat. Chappe, 6
Avenue des Arts, 69621 Villeurbanne Cedex, France.

E-mail: marco.fiore@insa-lyon.fr.

e C.E. Casetti and C.-F. Chiasserini are with the Dipartimento di
Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129
Torino, Italy. E-mail: {casetti, chiasserini}@polito.it.

e P. Papadimitratos is with the School of Electrical Engineering at KTH,
KTH Campus, Osquldas v. 10, 100 44 Stockholm, Sweden.

E-mail: papadim@kth.se.

Manuscript received 17 Mar. 2011; revised 26 Sept. 2011; accepted 18 Nowv.

2011; published online 8 Dec. 2011.

For information on obtaining reprints of this article, please send e-mail to:

tmc@computer.org, and reference IEEECS Log Number TMC-2011-03-0143.

Digital Object Identifier no. 10.1109/TMC.2011.258.

1536-1233/13/$31.00 © 2013 IEEE

positions, adversaries could bias geographic routing or data
gathering processes, attracting network traffic and then
eavesdropping or discarding it. Similarly, counterfeit posi-
tions could grant adversaries unauthorized access to loca-
tion-dependent services, let vehicles forfeit road tolls,
disrupt vehicular traffic or endanger passengers and drivers.

In this context, the challenge is to perform, in absence of
trusted nodes, a fully distributed, lightweight NPV proce-
dure that enables each node to acquire the locations
advertised by its neighbors, and assess their truthfulness.
We therefore propose an NPV protocol that has the
following features:

e Itis designed for spontaneous ad hoc environments,
and, as such, it does not rely on the presence of a
trusted infrastructure or of a priori trustworthy nodes;

e It leverages cooperation but allows a node to
perform all verification procedures autonomously.
This approach has no need for lengthy interactions,
e.g., to reach a consensus among multiple nodes,
making our scheme suitable for both low- and high-
mobility environments;

e [t is reactive, meaning that it can be executed by any
node, at any point in time, without prior knowledge
of the neighborhood;

e It is robust against independent and colluding
adversaries;

o Itis lightweight, as it generates low overhead traffic.
Additionally, our NPV scheme is compatible with state-of-
the-art security architectures, including the ones that have
been proposed for vehicular networks [1], [2], which
represent a likely deployment environment for NPV.

The rest of the paper is organized as follows: In Section
2, we review previous works, highlighting the novelty of
our solution. In Section 3, we describe the system model,
while the communication protocol, the objectives of the
verification procedure and our main results are outlined
in Section 4. The details of the NPV protocol and of
verification tests are then presented in Section 5, and the

Published by the IEEE CS, CASS, ComSoc, IES, & SPS

290 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 2, FEBRUARY 2013

resilience of our solution to different attacks is analyzed in
Section 6. Finally, we provide a performance evaluation of
the protocol in a vehicular scenario in Section 7, and draw
conclusions in Section 8.

2 RELATED WORK

Although the literature carries a multitude of ad hoc
security protocols addressing a number of problems related
to NPV, there are no lightweight, robust solutions to NPV
that can operate autonomously in an open, ephemeral
environment, without relying on trusted nodes. Below, we
list relevant works and highlight the novelty of our
contribution. For clarity of presentation, we first review
solutions to some NPV-related problems, such as secure
positioning and secure discovery, and then we discuss
solutions specifically addressing NPV.

Securely determining own location. In mobile environ-
ments, self-localization is mainly achieved through Global
Navigation Satellite Systems, e.g., GPS, whose security can
be provided by cryptographic and noncryptographic
defense mechanisms [3]. Alternatively, terrestrial special-
purpose infrastructure could be used [4], [5], along with
techniques to deal with nonhonest beacons [6]. We remark
that this problem is orthogonal to the problem of NPV. In
the rest of this paper, we will assume that devices employ
one of the techniques above to securely determine their own
position and time reference.

Secure neighbor discovery (SND) deals with the
identification of nodes with which a communication link
can be established or that are within a given distance [7].
SND is only a step toward the solution we are after: simply
put, an adversarial node could be securely discovered as
neighbor and be indeed a neighbor (within some SND
range), but it could still cheat about its position within the
same range. In other words, SND is a subset of the NPV
problem, since it lets a node assess whether another node is
an actual neighbor but it does not verify the location it
claims to be at. SND is most often employed to counter
wormbhole attacks [8], [9], [10]; practical solutions to the
SND problem have been proposed in [11], while properties
of SND protocols with proven secure solutions can be found
in [12], [13].

Neighbor position verification was studied in the
context of ad hoc and sensor networks; however, existing
NPV schemes often rely on fixed [14], [15] or mobile [16]
trustworthy nodes, which are assumed to be always
available for the verification of the positions announced
by third parties. In ad hoc environments, however, the
pervasive presence of either infrastructure or neighbor
nodes that can be aprioristically trusted is quite unrealistic.
Thus, we devise a protocol that is autonomous and does not
require trustworthy neighbors.

In [17], an NPV protocol is proposed that first lets nodes
calculate distances to all neighbors, and then commends
that all triplets of nodes encircling a pair of other nodes act
as verifiers of the pair’s positions. This scheme does not rely
on trustworthy nodes, but it is designed for static sensor
networks, and requires lengthy multiround computations
involving several nodes that seek consensus on a common
neighbor verification. Furthermore, the resilience of the

protocol in [17] to colluding attackers has not been
demonstrated. The scheme in [18] suits static sensor
networks too, and it requires several nodes to exchange
information on the signal emitted by the node whose
location has to be verified. Moreover, it aims at assessing
not the position but whether the node is within a given
region or not. Our NPV solution, instead, allows any node
to validate the position of all of its neighbors through a fast,
one-time message exchange, which makes it suitable to both
static and mobile environments. Additionally, we show that
our NPV scheme is robust against several different
colluding attacks. Similar differences can be found between
our work and [19].

In [20], the authors propose an NPV protocol that allows
nodes to validate the position of their neighbors through
local observations only. This is performed by checking
whether subsequent positions announced by one neighbor
draw a movement over time that is physically possible. The
approach in [20] forces a node to collect several data on its
neighbor movements before a decision can be taken,
making the solution unfit to situations where the location
information is to be obtained and verified in a short time
span. Moreover, an adversary can fool the protocol by
simply announcing false positions that follow a realistic
mobility pattern. Conversely, by exploiting cooperation
among nodes, our NPV protocol is 1) reactive, as it can be
executed at any instant by any node, returning a result in a
short time span, and 2) robust to fake, yet realistic, mobility
patterns announced by adversarial nodes over time.

The scheme in [21] exploits Time-of-Flight (ToF) distance
bounding and node cooperation to mitigate the problems of
the previous solutions. However, the cooperation is limited
to couples of neighbor nodes, which renders the protocol
ineffective against colluding attackers.

To our knowledge, our protocol is the first to provide a
fully distributed, lightweight solution to the NPV problem
that does not require any infrastructure or a priori trusted
neighbors and is robust to several different attacks, includ-
ing coordinated attacks by colluding adversaries. Also,
unlike previous works, our solution is suitable for both low
and high mobile environments and it only assumes RF
communication. Indeed, non-RF communication, e.g., infra-
red or ultrasound, is unfeasible in mobile networks, where
non-line-of-sight conditions are frequent and device-to-
device distances can be in the order of tens or hundreds of
meters. An early version of this work, sketching the NPV
protocol and some of the verification tests to detect
independent adversaries, can be found in [22].

3 SYSTEM AND ADVERSARY MODEL

We consider a mobile network and define as communication
neighbors of a node all the other nodes that it can reach
directly with its transmissions [7]. We assume that each
node knows its own position with some maximum error ¢,,
and that it shares a common time reference with the other
nodes: both requirements can be met by equipping
communication nodes with GPS receivers.! In addition,

1. Small-footprint GPS receivers are commercially available, which
achieve low synchronization and localization errors [23].

FIORE ET AL.: DISCOVERY AND VERIFICATION OF NEIGHBOR POSITIONS IN MOBILE AD HOC NETWORKS 291

Y amb
p X mp S ; (| | W4
POLL[@™ |
' ' " i anonymous
[: 1 ;| commi
REPLY | ! ® || exch
14—.—' : ' . .
REVEAL [: ; | apping of
i :‘4—.‘ committments
REPORT | | : ; ® | 10 neighbor
‘.—N: ! ; positions
vt vt vt vt

Fig. 1. Message exchange overview, during one instance of the NPV
protocol.

nodes can perform Time-of-Flight-based RF ranging with a
maximum error equal to ¢,. As discussed in [17], this is a
reasonable assumption, although it requires modifications
to off-the-shelf radio interfaces; also, promising techniques
for precise ToF-based RF ranging have been developed [24].

We assume that node positions do not vary significantly
during a protocol execution, since a complete message
exchange takes no more than a few hundreds of milli-
seconds. The relative spatial movements of the nodes
during such a period are taken into account through the
tolerance value ¢,,.

Nodes carry a unique identity” and can authenticate
messages of other nodes through public key cryptography
[27]. In particular, we assume that each node X owns a
private key, kx, and a public key, Kx, as well as a set of
one-time use keys {Ky, K}, as proposed in emerging
architectures for secure and privacy-enhancing commu-
nication [2], [25]. Node X can encrypt and decrypt data
with its keys and the public keys of other nodes; also, it can
produce digital signatures (Sigy) with its private key. We
assume that the binding between X and Kx can be
validated by any node, as in state-of-the-art secure
communication architectures [2], [26].

Nodes are correct if they comply with the NPV protocol,
and adversarial if they deviate from it. As authentication
essentially thwarts external adversaries, we focus on the
more powerful internal ones, i.e., nodes that possess the
cryptographic material to participate in the NPV and try to
exploit it, by advertising arbitrarily erroneous own posi-
tions or inject misleading information. Internal adversaries
cannot forge messages on behalf of other nodes whose keys
they do not have. Thus, attacks against the cryptosystem are
not considered, as correct implementation of cryptographic
primitives makes them computationally infeasible.

We further classify adversaries into: knowledgeable, if at
each time instant they know positions and (temporary)
identities of all their communication neighbors, and
unknowledgeable, otherwise; independent, if they act indivi-
dually, and colluding, if they coordinate their actions.

4 CooPERATIVE NPV: AN OVERVIEW

We propose a fully distributed cooperative scheme for
NPV, which enables a node, hereinafter called the verifier, to
discover and verify the position of its communication
neighbors. For clarity, here we summarize the principles of

2. This can be a permanent identifier or a temporary pseudonym, so as to
ensure user privacy [25].

X Y O verifier
S O correct shared neighbor

M W adversary
v 0 ® U adversary fake position
o

0 verified link
8 incorrect link

Fig. 2. Example of topological information stored by verifier S at the end

of the message exchange and effect of a fake position announcement

by M.

the protocol as well as the gist of its resilience analysis.
Detailed discussions of message format, verification tests,
and protocol resilience are provided in Sections 5 and 6.

A verifier, S, can initiate the protocol at any time instant,
by triggering the 4-step message exchange depicted in
Fig. 1, within its 1-hop neighborhood. The aim of the
message exchange is to let S collect information it can use to
compute distances between any pair of its communication
neighbors. To that end, POLL and REPLY messages are first
broadcasted by S and its neighbors, respectively. These
messages are anonymous and take advantage of the
broadcast nature of the wireless medium, allowing nodes
to record reciprocal timing information without disclosing
their identities. Then, after a REVEAL broadcast by the
verifier, nodes disclose to .S, through secure and authenti-
cated REPORT messages, their identities as well as the
anonymous timing information they collected. The verifier
S uses such data to match timings and identities; then, it
uses the timings to perform ToF-based ranging and
compute distances between all pairs of communicating
nodes in its neighborhood.

Once S has derived such distances, it runs several
position verification tests in order to classify each candidate
neighbor as either:

1. Verified, i.e., a node the verifier deems to be at the
claimed position;

2. Faulty, ie., a node the verifier deems to have
announced an incorrect position;

3. Unwverifiable, i.e., a node the verifier cannot prove to
be either correct or faulty, due to insufficient
information.

Clearly, the verification tests aim at avoiding false negatives
(i.e., adversaries announcing fake positions that are deemed
verified) and false positives (i.e.,, correct nodes whose
positions are deemed faulty), as well as at minimizing the
number of unverifiable nodes. We remark that our NPV
scheme does not target the creation of a consistent “map” of
neighborhood relations throughout an ephemeral network:
rather, it allows the verifier to independently classify its
neighbors.

The basic principle the verification tests build upon is
best explained by means of the example in Fig. 2. There, M
is a malicious node announcing a false location M’, so as to
fraudulently gain some advantage over other nodes. The
figure portrays the actual network topology with black
edges, while the modified topology, induced by the fake
position announced by M, is shown with gray edges. It is
evident that the displacement of M to M’ causes its edges
with the other nodes to rotate, which, in turn, forces edge
lengths to change as well. The tests thus look for
discrepancies in the node distance information to identify
incorrect node positions.

292 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 2, FEBRUARY 2013

TABLE 1
Summary of Notations

Notation Description

kx (Kx) private (public) key of X

Ky (K%) private (public) one-time key of X

tx (t/X) actual (fake) transmission time of a message by X
txy (t’XY) actual (fake) reception time at Y of a message by X
px (Py) actual (fake) position of X

dxy distance between X and Y

ep (€r) position (ranging) error

€m tolerance to node movements during protocol execution
R node proximity range

N x current set of X’s comm. neighbors

Tx random wait interval after POLL reception at X
X nonce sent by X

Sigx digital signature of X

Cx certificate of X

cx commitment of X

ix temporary identifier assigned by S to X

Vx set of verified comm. neighbors of X

Ux set of unverifiable comm. neighbors of X

Fx set of faulty comm. neighbors of X

Wx set of conditionally verified comm. neighbors of X

A malicious node, knowing the protocol, can try to
outsmart the tests in a number of different ways. Section 6
contains a comprehensive discussion of the protocol
resilience, covering conceivable attack strategies that adver-
sarial nodes could adopt. Overall, our analysis proves that:

e An unknowledgeable adversary has no possibility of
success against our NPV protocol;

e An independent knowledgeable adversary M can
move at most two links (with the verifier S and with a
shared neighbor X) without being detected: how-
ever, any additional link (e.g., with another shared
neighbor Y) leads to inconsistencies between dis-
tances and positions that allow to identify the
attacker: this is the situation depicted in Fig. 2. In a
nutshell, independent adversaries, although knowl-
edgeable, cannot harm the system;

e Colluding knowledgeable adversaries can announce
timing information that reciprocally validate their
distances, and pose a more dangerous threat to the
system. However, we prove that an overwhelming
presence of colluders in the verifier neighborhood is
required for an attack to be successful. Additionally,
simulations in realistic scenarios prove the robust-
ness of the NPV protocol even against large groups
of colluding knowledgeable adversaries.

5 NPV ProTocoL

We detail the message exchange between the verifier and its
communication neighbors, followed by a description of the
tests run by the verifier. Table 1 summarizes the notations
used throughout the protocol description.

5.1 Protocol Message Exchange

The value px is the current position of X, and INy is the
current set of its communication neighbors. We denote by
ty the time at which a node X starts a broadcast
transmission and by ¢xy the time at which a node Y starts
receiving it. Note that these time values refer to the actual
instant at which the node starts transmitting/receiving the

first bit of the message at the physical layer. To retrieve
the exact transmission and reception time instants, avoiding
the unpredictable latencies introduced by interrupts trig-
gered at the drivers level, a solution such as that
implemented in [28] is required.’ Furthermore, the GPS
receiver should be integrated in the 802.11 card; software
defined radio solutions combining GPS and 802.11 capabil-
ities are proposed, among others, in [29], [30].

Now, consider a verifier S that initiates the NPV
protocol. The message exchange procedure is outlined in
Algorithm 1 for S, and in Algorithm 2 for any of S s
communication neighbors.

Algorithm 1. Message exchange protocol: verifier.

1 node S do
2 | S—=*:(POLL, K§)
3 S : store tg
4 | when receive REPLY from X € Ng do
5 L S :store txg,Cx
after Th0z + A + Thitter do
L S :mg = {(Cx,ix) ‘ Htxs}
S — * 1 (REVEAL, s, By {h, }, Sigs,Cs)

e N

Algorithm 2. Message exchange protocol: any neighbor.

forall X € Ng do

when receive POLL by S do

X : store tgx

X : extract Tx uniform r.v. € [0, T}az]

1
2

3

4

5 after 7'y do
6 X : extract nonce px

7 X tex = Ex{tsx,px}
8 X = (REPLY,Cx, h)
9 X @ store tx

10 when receive REPLY from Y € Ng NINx do

11 L X : store ty x,Cy

12 | when receive REVEAL from S do
13 X:txy = {(tyx,iy) | thx}
14 X—S5:

(REPORT, Ex {px.tx,tx, px, Sigx,Cx})

POLL message. The verifier starts the protocol by
broadcasting a POLL whose transmission time tg it stores
locally (Algorithm 1, lines 2-3). The POLL is anonymous,
since 1) it does not carry the identity of the verifier, 2) it is
transmitted employing a fresh, software-generated MAC
address, and 3) it contains a public key K taken from S’s
pool of anonymous one-time use keys that do not allow
neighbors to map the key onto a specific node. We stress
that keeping the identity of the verifier hidden is important
in order to make our NPV robust to attacks (see the protocol
analysis in Section 6). Since a source address has to be
included in the MAC-layer header of the message, a fresh,
software-generated MAC address is needed; note that this
is considered a part of emerging cooperative systems [2],
[25]. Including a one-time key in the POLL also ensures
that the message is fresh (i.e., the key acts as a nonce).

3. This leads to a timing precision of around 23 ns, dictated by the
44 MHz clock of standard 802.11a/b/g cards. As mentioned above, we
account for these errors through the ¢, parameter.

FIORE ET AL.: DISCOVERY AND VERIFICATION OF NEIGHBOR POSITIONS IN MOBILE AD HOC NETWORKS 293

REPLY message. A communication neighbor X € INg
that receives the POLL stores its reception time tgy, and
extracts a random wait interval Tx € [0, T,,4,] (Algorithm 2,
lines 2-4). After T'x has elapsed, X broadcasts an anon-
ymous REPLY message using a fresh MAC address, and
locally records its transmission time tx (Algorithm 2, lines
5-9). For implementation feasibility, the physical layer
transmission time cannot be stamped on the REPLY, but it
is stored by X for later use. The REPLY contains some
information encrypted with S's public key (KY), specifically
the POLL reception time and a nonce px used to tie the
REPLY to the next message sent by X: we refer to these data
as X'’s commitment, Cx (Algorithm 2, line 7). The hash A Kl
derived from the public key of the verifier, K, is also
included to bind POLL and REPLY belonging to the same
message exchange.

Upon reception of a REPLY from a neighbor X, the
verifier S stores the reception time ¢xg and the commitment
Cx (Algorithm 1, lines 4-5). When a different neighbor of S,
eg.,Y,Y € NgNINy, broadcasts a REPLY too, X stores the
reception time ¢yx and the commitment Cy (Algorithm 2,
lines 10-11). Since REPLY messages are anonymous, a node
records all commitments it receives without knowing their
originators.

REVEAL message. After a time T, + A + Tjiyer, the
verifier broadcasts a REVEAL message using its real MAC
address (Algorithm 1, line 6). A accounts for the propaga-
tion and contention lag of REPLY messages scheduled at
time 7)., and Tjye, is a random time added to thwart
jamming efforts on this message. The REVEAL contains: 1) a
map Img, that associates each commitment Cy received by
the verifier to a temporary identifier i x (Algorithm 1, line 7);
2) a proof that S is the author of the original POLL through
the encrypted hash Ej, {h, }; 3) the verifier identity, i.e., its
certified public key and signature (Algorithm 1, line 8).
Note that using certified keys curtails continuous attempts
at running the protocol by an adversary who aims at
learning neighbor positions (i.e., at becoming knowledge-
able) or at launching a clogging attack (see Section 6.4).

REPORT message. Once the REPORT message is broad-
cast and the identity of the verifier is known, each neighbor
X that previously received S’s POLL unicasts to S an
encrypted, signed REPORT message. The REPORT carries
X’s position, the transmission time of X’s REPLY, and the
list of pairs of reception times and temporary identifiers
referring to the REPLY broadcasts X received (Fig. 2,
lines 12-14). The identifiers are obtained from the map mg
included in the REVEAL message. Also, X discloses its own
identity by including in the message its digital signature
and certified public key; through the nonce px, it correlates
the REPORT to its previously issued REPLY. We remark that
all sensitive data are encrypted using S s public key, K, so
that eavesdropping on the wireless channel is not possible.
At the end of the message exchange, only the verifier knows
all positions and timing information. If needed, certified keys
in REPORT messages allow the matching of such data and
node identities (temporary or long-term, with the help of an
authority if needed [2]).

5.2 Position Verification

Once the message exchange is concluded, S can decrypt
the received data and acquire the position of all neighbors

that participated in the protocol, i.e., {px,VX € INg}. The
verifier S also knows the transmission time t¢g of its POLL
and learns that of all subsequent REPLY messages, i.e.,
{tx,VX € Ng}, as well as the corresponding reception
times recorded by the recipients of such broadcasts, i.e.,
{txy,VX,Y € Ng U {S}}. Applying a ToF-based technique,
S thus computes its distance from each communication
neighbor, as well as the distances between all neighbor
pairs sharing a link. More precisely, by denoting with ¢
the speed of light, the verifier computes, for any
communicating pair (X,Y) with XY € NgU{S}, two
distances: dyy = (txy —tx)-¢, from the timing informa-
tion related to the broadcast message sent by X, and
dyx = (tyx —ty) - ¢, from the information related to the
broadcast message by Y.

Once such distances have been computed, S can run the
following three verification tests to fill the sets IFg, |V,
and Wy with, respectively, faulty, verified and unverifiable
nodes.

5.2.1 The Direct Symmetry Test (DST)

DST is the first verification performed by S and is detailed
in Algorithm 3. There, || denotes the absolute value
operator and ||px — py|| the euclidean distance between
locations px and py. In the DST, S verifies the direct links
with its communication neighbors. To this end, it checks
whether reciprocal ToF-derived distances are consistent
1) with each other, 2) with the position advertised by the
neighbor, and 3) with a proximity range R. The latter
corresponds to the maximum nominal transmission range,
and upper bounds the distance at which two nodes can
communicate. More specifically, the first check verifies that
the distances dsy and dyg, obtained from ranging, do not
differ by more than twice the ranging error plus a tolerance
value ¢, (Algorithm 3, line 4), accounting for node spatial
movements during the protocol execution. The second
check verifies that the position advertised by the neighbor is
consistent with such distances, within an error margin of
2¢, + € (Algorithm 3, line 5). Although trivial, this check is
fundamental since it correlates positions to computed
distances: without it, an attacker could fool the verifier by
simply advertising an arbitrary position along with correct
broadcast transmission and reception timings. Finally, as a
sanity check, S verifies that dgx is not larger than R
(Algorithm 3, line 6). The verifier tags a neighbor as faulty if
a mismatch is found in any of these checks,* since this
implies an inconsistency between the position px and the
timings announced by the neighbor (tsx, tx) or recorded by
the verifier (txs, ts).

Algorithm 3. Direct Symmetry Test (DST)

1 node S do

2 S : H‘_S — @

3 forall X € Ng do

4 if |dsx*dxs > 2€¢, + €, OF
5

6

7

llps — px|l — dsx| > 2¢, + €, or
dsx > R then
| $:Fs« X

4. The latter two checks are performed on both dsx and dxg, however in
Algorithm 3 they are done on dgx only, for clarity of presentation.

294 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 2, FEBRUARY 2013

5.2.2 The Cross-Symmetry Test (CST)

In Algorithm 4, implements cross verifications, i.e., it checks
on the information mutually gathered by each pair of
communication neighbors. The CST ignores nodes already
declared as faulty by the DST (Algorithm 4, line 5) and only
considers nodes that proved to be communication neigh-
bors between each other, i.e., for which ToF-derived mutual
distances are available (Algorithm 4, line 6). However, pairs
of neighbors declaring collinear positions with respect to S
are not taken into account (Algorithm 4, line 7, where
line(px,py) is the line passing by points px and py). As
shown in the next section, this choice makes our NPV
robust to attacks in particular situations. For all other pairs
(X,Y), the CST verifies the symmetry of the reciprocal
distances (Algorithm 4, line 9), their consistency with the
positions declared by the nodes (Algorithm 4, line 10), and
with the proximity range (Algorithm 4, line 11). For each
neighbor X, S maintains a link counter /x and a mismatch
counter mx. The former is incremented at every new cross-
check on X, and records the number of links between X and
other neighbors of S (Algorithm 4, line 8). The latter is
incremented every time at least one of the cross-checks on
distance and position fails (Algorithm 4, line 12), and
identifies the potential for X being faulty.

Algorithm 4. Cross-Symmetry Test (CST)

1 node S do

2| S :Ug+ 0, Wg <+ 0

3 | forall X € Ng, X ¢ Fgs do

4 LS:lxzo,mX:0

forall (X,Y) | X, Y eNg, X, Y ¢[Fs, X #Y do

5
6 if 3dxy,dyx and

7 ps ¢ line(px,py) then

8 Silx=Ilx+1Lly=Ily+1

9 if |dxy — dy x| > 2¢, + €, or

10 llpx — pyll — dxv| > 2¢, + €, or
n dxy > R then

2 LStmx:mx+1,my:my+1
13 forall X € Ng, X ¢ Fg do

14 iflx <2then S:Lg<+ X

15 else switch ’;’TX do

16 case’l”'—xx>6 S :Fs«+ X

17 case%:é S:lg«+ X

18 case%<5 S Wg+ X

Once all neighbor pairs have been processed, a node X
is added to the unverifiable set Wy if it shares less than two
non-collinear neighbors with S (Algorithm 4, line 14).
Indeed, in this case, the information available on the node
is considered to be insufficient to tag the node as verified
or faulty (see Section 6 for details). Otherwise, if S and X
have two or more noncollinear common neighbors, X is
declared as faulty, unverifiable, or conditionally verified,
depending on the percentage of mismatches in the cross-
checks it was involved in (Algorithm 4, lines 15-18).
Specifically, X is added to IFg or Wg, depending on
whether the ratio of the number of mismatches to the
number of checks is greater or equal to a threshold 6. If
such a ratio is less than ¢, X is added to a temporary set
Wy for conditionally verified nodes.

We point out that the lower the ¢, the higher the
probability of false positives, while the higher the §, the
higher the probability of false negatives. In the following,
we set 6 = 0.5 so that the verifier makes a decision on the
correctness of a node by relying on the opinion of the
majority of shared (noncollinear) communication neigh-
bors. As shown later, this choice makes our NPV highly
resilient to attacks, unless the presence of adversaries
becomes overwhelming.

5.2.3 The Multilateration Test (MLT)

MLT, in Algorithm 5, ignores nodes already tagged as
faulty or unverifiable and looks for suspect neighbors in
Ws. For each neighbor X that did not notify about a link
reported by another node Y, with X,Y € Wy, a curve
Lx(S,Y)is computed and added to the set ILx (Algorithm 5,
lines 5-7). Such a curve is the locus of points that can
generate a transmission whose Time Difference of Arrival
(TDoA) at S and Y matches that measured by the two
nodes, i.e., [txs — txy|. Itis easy to verify that such a curve is
a hyperbola, with foci in pg and py, and passing through the
actual position of X.

Algorithm 5. Multilateration Test (MLT)

1 node S do
2 S:VSFQ
3 forall X € Wg do
4 L S Lx —0
5 | forall (X,Y) |X,Y eWs, X #Y do
6 if 3txy and # ty x then
7 LSZL)((—L)((S,Y)
8 forall X € Wg do
9 if |Lx| > 2 then
10 S
P = argmin, o llp— Lin L
11 if ||pX fpﬁ'('“” > 2¢, then
12 LSIFs%X,WS:WS\X
13 S:\/S:WS

Once all couples of nodes in Wg¢ have been checked,
each node X for which two or more unnotified links, hence
two or more hyperbolas in ILy, exist is considered as
suspect (Algorithm 5, line 9). In such a case, S exploits the
hyperbolae in ILx to multilaterate X s position, referred to
as pi'*, similarly to what is done in [17] (Algorithm 5,
line 10). Note that ILx must include at least two hyperbolae
for S to be able to compute p¥, and this implies the
presence of at least two shared neighbors between S and X.
pM¥ is then compared with the position advertised by X, px
(Algorithm 5, line 11). If the difference exceeds an error
margin 2¢,, X is moved to the faulty set IFg. At the end of
the test, all nodes still in W are tagged as verified and

moved to [V (Algorithm 5, lines 12-13).

6 RESILIENCE ANALYSIS

We analyze the robustness of our scheme against different
types of internal adversaries. We classify the conceivable
attacks into two classes, depending on the goal of the
adversaries:

FIORE ET AL.: DISCOVERY AND VERIFICATION OF NEIGHBOR POSITIONS IN MOBILE AD HOC NETWORKS 295

e Attacks where the adversaries aim at letting the
verifier validate their own fake position;

e Attacks where the adversaries aim at disrupting the
verification of correct node positions.

We focus on attacks of the first category in Sections 6.1 and
6.2, where we discuss the case of independent and
colluding adversaries, respectively. In case of attacks of
this first type, adversaries can tamper with the timing
information in the REPLYs and REPORTs they generate, so
that these confirm their false advertised locations. By
considering the geometrical properties of the ToF-based
ranging, we analyze the entire space of attacks against NPV.
The effects of combinations of attacks of the first type is then
investigated in our performance evaluation.

Attacks of the second category are analyzed in Section 6.3,
where adversaries try to induce the verifier to tag a correct
neighbor as faulty or unverifiable.

Finally, in Section 6.4 we discuss the robustness of our
NPV scheme to generic attacks that are not specific to NPV.
It is worth remarking that the NPV verification tests
disregard nodes for which incomplete information is
received, e.g., due to link or node failures. Such failures,
when involving correct nodes, have the effect of degrading
the number of nodes that corroborate other nodes legitimate
claims. We have taken into account message losses in our
simulation study of the protocol (Section 7). In this section,
instead, we evaluate the NPV resilience level considering
only the behavior of nodes participating in the whole
message exchange, that is, for which the verifier has
collected all the required information.

6.1 Faking Own Position: Independent Adversaries

We start by analyzing the attacks of the first type that can be
launched by a single independent adversary in diverse
network conditions, and explain the NPV protocol reactions
they trigger. The discussion on the effects of the presence of
multiple independent adversaries follows.

6.1.1 Basic Attack

In the simplest scenario, a verifier S runs the NPV protocol
in presence of an adversary M, with which it shares no
common neighbor. Let p}, be the fake position that M
advertises: as briefly mentioned above, A/ can announce a
fake timing t{,, in its REPLY, and a fake timing ¢}, in its
REPORT, so that p), is accepted by the verifier (i.e.,
M e [Vy).

More precisely, the DST run by S on M verifies that the
reciprocal distances are consistent, i.e., that |dsy — das| <
2¢, + €, Or:

[(tsp — ts) - ¢ — (tars — thy) - c| < 26, + €, (1)

and that positions are also coherent with the distances, which
implies |||p5 - p’UH - dgM| < 2¢, + ¢, or, equivalently:

’HPS - pl\l” — (tsp — ts) - C‘ < 2¢ F 6 (2)

Therefore, the adversary must forge ¢}, and ts,,, so that (1)-
(2) still hold after its real position py is replaced with p/;.
Solving the equation system obtained by setting the error
margin to zero in (1)-(2) and expressing the ToF using the
node positions, we obtain

; — ph — P s —),
£ = tars — Ips CPMH _tyy 4 P CPM” _llps CPMH (3)

= to+ HPS —PQ\JH _
c

toy =ts _llps ;pMH T lps — P || - (

C

tsu 4)
Note that p, is chosen by M, and that M knows ¢, in (3)
(since this is the actual transmission time of its own REPLY)
and tgys in (4) (since this is the time at which it actually
received S’s POLL). Thus, we have a system of two
equations in the two unknowns ¢}, and ts,,; M can solve
it if it knows pg. We call this forging of transmission and
reception timings with respect to S the basic attack.

We stress that, in order to know pg, M must be a
knowledgeable adversary, which implies two conditions:
first, M must have previously run the NPV protocol to
discover the identity and position of its neighbors; second,
the position of the verifier must have not changed since
such discovery procedure. Clearly, as M cannot foresee
when S starts the NPV protocol, such a condition is not easy
to fulfill, especially in highly mobile environments. Never-
theless, if aware of S’s location, M could successfully run a
basic attack, provided that the advertised position pj, is
within the proximity range R. As a consequence, the NPV
marks isolated neighbors as unverifiable in the CST.

Let us now add to the previous scenario n > 1 nodes,
Xi,...,X,, which are correct neighbors common to S and
M. The discussion above still holds, since the fake position
advertised by M must still pass the DST. Thus, M has to
know S s current position and to forge t), and tj,,
according to ps and p), as in (3)-(4). However, the presence
of common neighbor(s) introduces two additional levels of
security, which make the basic attack ineffectual.

First, the POLL and REPLY messages are anonymous;
hence, upon their reception, even a knowledgeable M does
not know which node among S, Xi,..., X, is the verifier.
Nevertheless, in order to take part in the protocol, M is
forced to advertise the fake POLL reception time ts,, in its
REPLY, before receiving the REVEAL and discovering the
identity of the verifier. The only option for M is then to
randomly guess who the verifier is and properly change
tsy into ty,,, as in (4). This implies a probability of success
in guessing the actual sender of the POLL equal to 1/(n + 1).

Second, in presence of shared (noncollinear) neighbors, S
can run the CST on the (M, X;) pairs, with i =1,...,n. As
the basic attack only forges messages transmission and
reception timings with respect to S, the fake position p,
will present discrepancies with the reciprocal reception
times of REPLY messages at M and X;. This will result in a
CST failure, revealing and thus preventing the attack.

6.1.2 RepLY-Disregard Attack

Whenever there are n neighbors Xj,..., X, common to S
and M, a possible strategy for the adversary, provided that
it correctly guesses the identity of the verifier, is not to
announce one or more of the common neighbors. That is, M
will not include the (tx,,%x,) data in its REPORT, thus
deliberately denying to have received X;’s REPLY. We name
this REPLY-disregard attack.

It follows that S cannot perform a cross-check on the pairs
(M, X;) in the CST. However, a REPLY-disregard attack

296 IEEE TRANSACTIONS ON MOBILE COMPUTING,

does not bring any significant advantage to M. Indeed, the
exclusion of (some or all of) the common neighbors reduces
the system to one of the scenarios discussed for the basic
attack, hence the adversary is at most tagged as unverifiable
by S. More importantly, the maximum number of REPLYs an
adversary can disregard is exactly one, otherwise it is
classified as faulty in the MLT.

6.1.3 Hyperbola-Based Attack

This attack again attempts to fool the CST. More specifi-
cally, it scales up the basic attack by also forging the timings
relative to the shared neighbor(s).

First, consider that S and M share a noncollinear common
neighbor X. The CST on the (M, X) pair at S requires that
ldxam — dux| <26, + € and |[|lpx — pull — dxul| < 2¢, + €.
Applying the same substitutions as in (3) and (4), this means
that M is forced to advertise the following fake timings:

- llpx ;pMH lpx =2l 7 (5)

thy =t
M c

lpx ;pM” n [px =Pl . (©)

A
txm = txum c

If M is knowledgeable, and thus aware of X’s current
position py, it can solve (6) and announce the forged t'y,, in
its REPORT to S. However, (5) introduces a second expres-
sion for t),;, while M can advertise only one t), in its REPORT.
In order to pass both the DST and the CST, M needs to
announce a t}, that satisfies (3) and (5), which implies

Ips — pull = ||ps — Pl = llpx — parll = ||lox = Pyfl]- - (7)

In other words, M is constrained to choose locations
with the same distance increment (or decrement) from S
and X. In (7), ps, px, and py; are fixed and known, hence
the distances between pgs and p,;, and between px and py,,
can be considered as constant. We thus rewrite (7) as
|lpx — Pl = ||ps — Phy|| = k- This is the equation, with the
unknown pj,, of a hyperbola with foci in pg and px that
passes through py;. It follows that only positions p}, on
such hyperbola can satisfy the four constraints in (3), (4),
(5), and (6). As a conclusion, the hyperbola-based attack
consists in advertising a fake position that lies on the
aforementioned curve, as well as message transmission and
reception times that validate such a position. An example is
provided in Fig. 3a.

Note that, in order to successfully perform a hyperbola-
based attack, an adversary has to 1) know the position of
both S and X, 2) correctly guess the identity of the verifier,
and 3) advertise a fake position only along a specific curve.
Although these are restrictive conditions, the CST still
marks as unverifiable the nodes that passed the DST but
share only one neighbor with the verifier, so as to avoid any
possibility of successful hyperbola-based attack.

We now consider a second correct, noncollinear node
Y € INg NN, and show that, in such a scenario, also the
hyperbola-based attack becomes futile. Note that no
assumption is made on the connectivity between the two
neighbors X and Y. By extending the previous reasoning,
in presence of two common correct neighbors, X and Y, M
has to forge four time values, i.e., t), t's;;, t'y,,, and ty,,, so

VOL. 12, NO. 2, FEBRUARY 2013

M
v v Oy
8
S X S X
Q\U/Q X O\U/O N
M M

(a) One shared neighbor (b) Two shared neighbors

Fig. 3. Hyperbola-based attack: (a) If it correctly guesses S’s identity, a
knowledgeable adversary M can forge timings with respect to S and X
(black lines), so that they agree with any fake position M’ lying on the
hyperbola with foci in S, X, and passing by M. M is unverifiable. (b) M
can only forge timings in agreement with fake positions that lie on both
hyperbolae of foci in S, X, and S, Y, and passing by M. The only such
point, i.e., the intersection, matches M s actual position. When moving
on the hyperbola of foci S and X, the timing with respect to Y (crossed
gray line) is not verified.

that six equations are satisfied, i.e., (3), (4), (5), (6) and two
additional equations® corresponding to the cross-check
with the second common neighbor Y. This implies that
the fake REPLY transmission time t), announced by M
must now fulfill three constraints, or, equivalently, M must
advertise a position p), that is equally farther from (or
closer to) S, X, and Y with respect to its actual location p;.
The only point satisfying such a condition lies at the
intersection of three hyperbolae with foci in pg and px, ps
and py, px, and py, respectively, and it corresponds to the
real position of the adversary, py;. In other words, if it
shares two neighbors with S, an adversary cannot success-
fully claim to be at any location other than its actual one,
not even if it is knowledgeable, it correctly guesses the role
of all other nodes, and it performs a hyperbola-based
attack. An example is provided in Fig. 3b. We also stress
that the presence of additional shared neighbors simply
introduces other constraints on ¢},, and thus further binds
M to its actual position.

Similarly, combining a hyperbola-based attack with a
REPLY-disregard attack yields no chance of success. As a
matter of fact, ignoring REPLY messages from one or
multiple shared neighbors results in reverting the system
to one of the cases previously analyzed, with the adversary
being tagged at best as unverifiable.

6.1.4 Collinear Attack

The above discussion shows that the presence of two or
more correct common neighbors, which can be used to
perform the cross-checks in the CST, is a condition that foils
all the attack strategies introduced so far. There exists
however a last type of attack, which we name collinear
attack, that we need to discuss.

The collinear attack builds on the following geometrical
property: if three points are collinear (i.e., lie on the same
line), the hyperbola having as foci two of the points (one of
which is that in the middle) and passing by the third
degenerates into the half-line originating at the intermediate
point and passing by the third one. This property implies
that, if two shared neighbors X and Y lie between S and the
adversary M, and all four nodes are collinear, the
hyperbolae that pin the actual position of the adversary
pu degenerate to partially overlapping half-lines. This
allows M to forge timings relative to .S, X, and Y consistent

5. The latter two equations can be obtained from (5)-(6) by replacing px,
txn, and ty,,, respectively, with py, tyy, and t),.

FIORE ET AL.: DISCOVERY AND VERIFICATION OF NEIGHBOR POSITIONS IN MOBILE AD HOC NETWORKS 297

J
K
s x/Y M M s Z[X M
M
R R

(a) Two shared neighbors (b) Multiple shared neighbors

Fig. 4. Collinear attack: (a) The hyperbola of foci in S, X (Y) and passing
by M degenerates into a half-line with origin in X (V). The hyperbolae
intersection region, over which M can announce a fake position M’ with
correct timings, becomes the segment originating at Y and bounded by
R (dashed gray line). M is unverifiable. (b) M can announce timings that
are consistent with its fake position M’ with respect to the three collinear
neighbors X, Y, and Z (black lines). This is not possible with respect to
J and K (crossed-out gray lines). As a countermeasure, collinear
neighbors are not cross-checked in the CST. M is tagged as faulty.

with any fake position over the segment originating at the
shared collinear neighbor that is closer to M, passing by py,
and bounded by R. An example is given in Fig. 4a.

In the more general case of any number of common
neighbors to S and M, the collinear attack would allow an
adversary to appear correct to the shared neighbors that are
collinear with it and S, as in Fig. 4b. Again, this requires the
adversary to be knowledgeable, to correctly guess the origin
of POLL and REPLY messages it receives, and to limit the
choice of its fake position to a specific segment.

As a countermeasure to collinear attacks, in the CST S
discards pairs of neighbors that announce collinear posi-
tions with it (Algorithm 4, line 7). When collinear neighbors
are dropped, a collinear attack results, for instance, in the
adversary being tagged as unverifiable in Fig. 4a (since
there are no noncollinear shared neighbors) and as faulty in
Fig. 4b (since there are two noncollinear shared neighbors).

We remark that, on the one hand, not allowing cross-
checks that involve collinear nodes prevents collinear
attacks. On the other, it reduces the number of correct
neighbors that can contribute to identifying adversarial
nodes. However, as shown in Section 7, this approach
ensures high resilience to attacks as well as reliability in
identifying correct nodes as verified.

6.1.5 Multiple Independent Adversaries

Multiple independent adversaries in the neighborhood of
the verifier just damage each other, by announcing false
positions that reciprocally spoil the time computations
discussed in the previous sections. Thus, all cross-checks on
pairs of noncolluding adversaries result in mismatches in
the CST, increasing their chances to be tagged as faulty by
the verifier.

Where multiple independent adversaries can harm the
system is in the verification of correct neighbors. As a
matter of fact, a node is tagged as verified if it passes the
strict majority of cross-checks it undergoes. A correct node
surrounded by several adversaries can thus be marked as
faulty (unverifiable), if it shares with the verifier a number
of noncollinear independent adversaries greater than (equal
to) the number of noncollinear correct nodes. However,
situations where a correct node shares mostly uncoordi-
nated adversarial neighbors with the verifier are unlikely to
occur in realistic scenarios, as also shown by our perfor-
mance evaluation.

6.1.6 Summary

We conclude that a single independent adversary cannot
perform any successful attack against the NPV scheme.
Indeed, in presence of a limited number of noncollinear
neighbors in common with the verifier, a knowledgeable
adversary can attempt one of the strategies outlined before,
but it is tagged at most as unverifiable. When the shared
neighborhood increases in size, the probability that the
adversary is tagged as faulty rapidly grows to 1. Multiple
independent adversaries can only harm each other, thus
reducing their probability of successfully announcing a
fake position.

6.2 Faking Own Position: Colluding Adversaries

We assume that colluders share out-of-band links with
negligible latency, through which they exchange informa-
tion, and can perform complex distributed computations.
This notwithstanding, in the following we show that our
scheme is resistant to coordinated attacks® as well, unless
the presence of colluding adversaries in the neighborhood
of the verifier becomes overwhelming.

6.2.1 Basic Attack

The simplest way adversarial nodes can cooperate to make
the verifier S trust the fake positions they announce is by
extending the basic attack introduced in Section 6.1.1. More
precisely, other than individually announcing POLL recep-
tion timings that agree with their fake positions, colluding
adversaries can mutually validate the false information they
generate. They can forge the reception times of reciprocal
REPLY messages, so that all cross-checks in the CST
involving the colluders are passed. A perfect cooperation
thus results in the colluding adversaries ability to alter all
distances between them without being noticed.

We remark that the adversaries still need to know S’s
position in order to compute and advertise timings that
confirm their fake position. This time, however, if at least
three adversaries cooperate to perform the attack, they do
not need to be knowledgeable. As a matter of fact, they can
exploit their real positions and POLL reception times to
multilaterate the coordinates of the verifier.

Our NPV correctly identifies such a basic attack through
the CST, as long as the majority of the (noncollinear)
neighbors shared by S and an adversary are not colluding
with the latter. An example is shown in Fig. 5.

6.2.2 RepPLY-Disregard Attack

As in the case of independent adversaries, multiple
colluders can gain advantage by ignoring REPLY messages
from noncolluding nodes. This lets them avoid cross-checks
that could result in mismatches, and, eventually, in being
tagged as faulty. Indeed, n > 3 colluders could disregard
the REPLY received from all noncolluding nodes and still
advertise a number n —1>2 of neighbors that would
report consistent timings with theirs—a sufficient condition
to pass the CST. This behavior, however, is properly
handled in our NPV by the MLT, which tags as faulty a
neighbor that disregarded (intentionally or not) two or
more REPLY messages and announced a location other than
the multilaterated one.

6. Note that, since our NPV exploits ToF-based ranging, wormhole
attacks reduce to Sybil attacks, as discussed in Section 6.4.

298 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 2, FEBRUARY 2013

%OY

Fig. 5. Cooperative basic attack. The colluding adversaries M;, M,
and M; can forge timings that validate their fake positions M7, M},
and Mj; with respect to S, as well as to each other (black lines).
However, cross-checks with noncolluding neighbors fail (crossed-out
gray lines). M, sharing with S the other two colluders and X, is
tagged as verified. M,, sharing with .S the other two colluders and X,
Y, is unverifiable. M3, sharing with .S the other two colluders and X, Y,
Z, is marked as faulty.

6.2.3 Hyperbola-Based Attack

The colluding attackers agree not only on the position of the
verifier (either guessed or multilaterated), but also pick a
noncollinear common neighbor, X, that they share with S:
each colluder then computes the hyperbola with foci S, X,
and passing through its own real position, and announces a
fake location on such a curve. This allows the adversaries to
announce correct links 1) with the verifier, 2) among
themselves, and 3) with the selected neighbor X, which
becomes an involuntary ally in the attack. Again, the location
of X mustbe randomly guessed by two colluders, while it can
be multilaterated by three or more cooperating adversaries.

In presence of such a hyperbola-based attack, the CST
correctly tags an adversary M as faulty if the noncollinear
common neighbors between the verifier and M that do not
collude with M outnumber the colluding ones by 3. Note
that the two additional correct neighbors are required to
counter the effect of X unintentionally taking part into the
attack. An example is depicted in Fig. 6.

6.2.4 Collinear Attack
Unlike independent adversaries (Section 6.1.4), multiple
colluders can take advantage of a collinear attack. In
particular, one or more adversaries can purposely announce
positions that are collinear with those of some noncolluding
neighbors, so as to avoid cross-checks with them. Then, they
can rely on colluders that declared noncollinear positions to
pass the CST, as in Fig. 7.

In other words, colluders can launch a collinear attack
as a legal mean to avoid unwanted neighbors. Such a gain
comes at the cost of a restricted freedom of movement,

Mj ¥

Fig. 6. Cooperative hyperbola-based attack: If two colluding adversaries,
M, and M, are knowledgeable and correctly guess the identity of .S,
they can forge timings with respect to .S and X as well as to each other
(black lines) and announce the fake positions A/ and M, respectively.
M (M}) can be any point on the hyperbola with foci in .S, X, and passing
by M; (M,). However, M; shares four correct and one colluding,
noncollinear neighbors with S, while M, shares two correct and one
colluding, noncollinear neighbors with .S, hence 1/ is tagged as faulty
and M, is tagged as verified.

Fig. 7. Cooperative collinear attack. The adversary M; announces a
fake position M] that is collinear with the verifier S and the
noncolluding neighbors X, Y, avoiding cross-checks with the latter
two. M, and M3, colluding with M;, declare noncollinear false locations
(M, Mj), thus guaranteeing to M; a majority of validated cross-
checks. The adversary M is tagged as verified, while M, and M3 are
marked as faulty.

since the fake position must lie on a specific segment (see
Section 6.1.4). The robustness of our NPV to this kind of
attacks depends on the network layout: environments
where nodes tend to form straight topologies (such as
vehicular ones) are more prone to suffer from collinear
attacks. In general, the NPV is resistant to collinear attacks
as long as the majority of the shared neighbors are not
colluding or collinear.

6.2.5 Summary

As a conclusion on coordinated attacks, it is the nature of
the neighborhood that determines the performance of the
NPV scheme in presence of colluders. However, the
simulation results in Section 7 show that, in realistic
environments, our solution is very robust even to attacks
launched by large groups of knowledgeable colluders.

6.3 Discrediting Other Neighbors

A different objective of the adversary can be to discredit
other nodes by inducing the verifier to tag them as faulty or
unverifiable. To this end, an adversary M needs to
announce a fake timing ¢y,, (i.e., the time at which M
claims it has received X’s REPLY), for any neighbor X €
INg N INj that it wants to discredit. By doing so, M can
disrupt the cross-checks made by S on the pair (X, M) in
the CST. When launched by a single adversary, such an
attack can succeed if there are only two additional correct
nodes (which are tagged as unverifiable by S). In all other
configurations, a single adversary cannot affect the assess-
ment of other correct nodes.

When launched by multiple adversaries, no matter
whether they are independent or colluding, the effect of
this attack is the same as the one highlighted in Section 6.1.5.
We recall that our NPV protocol provides protection to a
correct node X, as long as the number of adversarial
neighbors it shares with the verifier S is lower than that of
correct common neighbors. Vice versa, if the number of
adversarial shared neighbors trying to discredit X is greater
than (equal to) the number of correct common neighbors, X
is tagged as faulty (unverifiable).

6.4 Other Attacks

6.4.1 Jamming

This is the only external attack that can harm the system.
Any adversary (internal or external) can jam the channel
and erase REPLY or REPORT messages. However, to
succeed, M should jam the medium continuously for a
long time, since it cannot know when exactly a node will

FIORE ET AL.: DISCOVERY AND VERIFICATION OF NEIGHBOR POSITIONS IN MOBILE AD HOC NETWORKS 299

transmit its REPLY or REPORT. Or, M could erase the
REVEAL, but, again, jamming should cover the entire Tje,
time. Overall, there is no easy point to target: a jammer has
to act throughout the NPV execution, which implies a high
energy consumption and is a disruptive action possible
against any wireless protocol. In addition, mobility makes it
harder to repeatedly jam different instances of the NPV
protocol run by the same verifier.

6.4.2 Clogging

An adversary could initiate the NPV protocol multiple
times in a short period and get repeated REPLY and REPORT
messages from other nodes, so as to congest the channel. In
particular, REPORTs are larger in size, thus likely cause the
most damage. However, NPV has a way of preventing that:
the initiator must unveil its identity before such messages
are transmitted by neighbors. An exceedingly frequent
initiator can be identified, and its REVEALs ignored, thanks
to the use of certified keys. REPLYs instead are small in size
and are broadcast messages (thus require no ACK): their
damage is limited, but their unnecessary transmission is
much harder to thwart. Indeed, REPLY messages are sent
after an anonymous POLL; such an anonymity is a hard-to
dismiss requirement, since it is instrumental for keeping the
identity of the verifier hidden. As a general rule, correct
nodes can reasonably self-limit their responses if POLLs
arrive at excessive rates.

6.4.3 Adversarial Use of Directional Antennas

Assume that adversaries are equipped with directional
antennas and multiple radio interfaces. As a correct node S
starts the NPV protocol, a knowledgeable adversary M can
send different REPLYs through each interface at different
time instants: any correct neighbor X would record a time
thx, compliant with the fake position pj,, allowing M to
pass the cross-check with X in the CST. If M can fool a
sufficient number of neighbors, it is tagged as verified.
However, M needs as many directional antennas and radio
interfaces as the number of neighbors it wants to fool,
hoping that no two such neighbors are within the beam of
the same antenna. The complexity, cost, and chances of
failure make this attack hardly viable. We also remark that,
since our approach exploits ToF-based ranging, such an
attack cannot be launched by using a steerable antenna,
which takes an exceedingly long time to swap from one
sector to another.

6.4.4 Sybil and Relay (Wormhole) Attacks

An adversary can assume several trusted identities,
M ={M,..., M}, if 1) it owns several certificated pairs
of public/private keys (Sybil attack), or 2) it impersonates
colluding adversaries at the end of wormholes. The
availability of several identities could be used by an
adversary to acquire its neighbor positions, i.e., to become
knowledgeable. However, as shown in Section 6.1, attacks
launched by independent, knowledgeable adversaries have
no chance of success. Furthermore, by announcing timings
that are consistent among the identities in M, the adversary
can behave as a group of colluders of size /. The analysis in
Section 6.2 thus applies to such attacks as well, except for
the fact that the adversary cannot acquire the position of

other nodes through triangulation. A verifier suspecting’
that this attack is being launched can run the MLT to
determine whether messages from nodes in M come from
the same location.

7 PERFORMANCE EVALUATION

We evaluated the performance of our NPV protocol in a
vehicular scenario. Results obtained in a pedestrian
scenario are available as supplemental material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TMC. 2011.258.

We focus on knowledgeable adversaries whose goal is to
make the verifier believe their fake positions, and we
describe the best attack strategy they can adopt in Section 7.1.
Such a strategy, which depends on the neighborhood of the
adversary and builds on a combination of the attacks
described in Sections 6.1 and 6.2, will be assumed while
deriving the results shown in Section 7.2.

The results, which therefore represent a worst case
analysis of the proposed NPV, are shown in terms of the
probability that the tests return false positives and false
negatives as well as of the probability that a (correct or
adversary) node is tagged as unverifiable. In addition, we
plot the average difference between the true position of a
successful adversary and the fake position it advertises, as
well as the overhead introduced by our NPV scheme. The
results on attacks aimed at discrediting the position of other
nodes are omitted, since they are very close to those we
present later in this section.

7.1 Adversaries Attack Strategy

The adversary decision on the kind of attack to launch is
driven by the tradeoff between the chances of success and
the freedom of choice on its fake position. The basic attack
allows the adversary to choose any false position, but it
requires a high percentage of colluders in the neighborhood
in order to be successful. The hyperbola-based attack
implies less freedom of choice but has higher chances of
success. The collinear attack pins the adversary into a
precise angle with the verifier, and strictly bounds its
distance from the verifier itself. However, if the network
topology features a sufficient number of collinear nodes,
this attack has the highest success probability.

It follows from Section 6 that the best strategy that an
adversary can adopt depends on its neighborhood. First, if
it colludes with other adversaries outnumbering the
noncolluding neighbors, a basic attack is launched. Other-
wise, if the ratio between colluding and noncolluding
neighbors is not greater than (but close enough to) 1, a
hyperbola-based attack is attempted. As a third option, if
noncolluding neighbors greatly outnumber the colluding
ones, but some of the former are collinear with the verifier
and among themselves, the adversary launches a collinear
attack. Through it, the adversary can have the noncolluding,
collinear neighbors thrown out of the cross-checks in the
CST. If none of the above conditions are met, the adversary
picks a hyperbola-based attack, i.e., the one with the

7. An example of suspect situation is the case where the neighborhood of
the verifier is split into groups of nodes, whose members pass the cross-
checks in the CST only with the nodes belonging to the same group.

300 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 2, FEBRUARY 2013

Fig. 8. Road layout of the 7 x 3 km? vehicular scenario.

highest chances of success in absence of noncolluding,
collinear neighbors. Also, an adversary always runs a
REPLY-disregard on one noncolluding neighbor, avoiding a
mismatch with it. Recall that disregarding just one REPLY
does not trigger the MLT on the adversary.

7.2 Results

We employed movement traces representing vehicle traffic
over a real-world road topology. More precisely, we
considered car movements within a 20 km? portion of the
Karlsruhe urban area depicted in Fig. 8, extracting 3 hours
of vehicular mobility that reproduce mild to heavy traffic
density conditions. These synthetic traces were generated
using the IDM-LC model of the VanetMobiSim simulator,
which takes into account car-to-car interactions, traffic
lights, stop signs, and lane changes, and has been proven
to realistically reproduce vehicular movement patters in
urban scenarios [31].

In our simulations, we set T}, = 200 ms, Tjjer = 50 ms,
A =1 ms and assume that CSMA /CA is used to access the
wireless medium, hence messages can be lost due to
collisions. Unless otherwise specified, we fix the proximity
range, R, which is equal to the maximum nominal transmis-
sion range, to 250 m (resulting in an average neighborhood
size of 73.4 nodes), while ¢, =6.8m, ¢, =10 m, and the
tolerance value ¢,, = 5 m (roughly corresponding to the case
of two vehicles moving at 50 km/h in opposite directions).

To evaluate the performance of our NPV, at every
simulation second we randomly select 1 percent of the
nodes as verifiers. Then, for each verifier, we compare the
outcome of the verification tests with the actual nature of
the neighbors. We consider colluding adversaries acting in
groups, referred to as clusters. Note that a colluding cluster
size equal to 1 corresponds to independent attacks. Also,
adversaries are knowledgeable, i.e., they perfectly know the
identity and location of all colluding and noncolluding
neighbors, and always adopt the best attack strategy as

10° 10°
e} =B= C faulty =l= C unverifiable
S M/Bas verified M/Bas unverifiable
2 M/Hyp verified M/Hyp unverifiable
4 M/Col verified o M/Col unverifiable
2 10" S 407
@ o
g o B
(= e}
B 3
o £
= (1)
G 107 z 102
a E >
[0 [’
7] t -
@ e
w =

103 f . i . 103

0 2 4 6 8 10 0 2 4 6 8 10

Colluding cluster size Colluding cluster size

(a) (b)

described in Section 7.1. In the following, unless otherwise
specified, adversaries amount to 5 percent of the overall
nodes and are divided into clusters of five colluders each.

In the legend of the plots, C stands for correct node (e.g.,
the label “C faulty” refers to the probability of false positives),
while M/Bas, M/Hyp, and M/Col stand for adversaries
launching, respectively, the basic, hyperbola-based and
collinear attack (e.g., the label “M/Bas verified” refers to the
probability of false negatives due to basic attacks).

We first examine the NPV protocol performance for
different values of colluding cluster sizes and R = 250 m
(Figs. 9a and 9b).

The false negative/positive probability in Fig. 9a clearly
shows that 1) the chance of wrong classification reaches 0.01
only for a very large adversarial cluster size, namely 10, 2) the
hyperbola-based and the collinear attacks are the most
threatening and 3) an attack by the colluders is most effective
in passing themselves off as verified when there are at least
three of them. The cluster size also affects the colluders
ability to disrupt the positioning of correct nodes, which
exhibit as high as a 0.4 percent chance to be tagged as faulty.

Conversely, as shown in Fig. 9b, the cluster size does
not cause more correct nodes to be unverifiable, since the
main reason for correct nodes to be tagged as unverifiable
is the lack of noncollinear neighbors that can verify them.
The chance for an adversary to be unverifiable increases
with the cluster size, although it is significant only in case
of collinear attacks. This is in agreement with the fact that
the outcome of the collinear attack is the avoidance of a
sizable number of cross-checks between the adversary and
correct nodes, thus likely leading the adversary to be
tagged as unverifiable.

The neighborhood size proves to play an important role,
as evident in Figs. 9c and 9d where we consider a 5-colluder
cluster and vary the transmission range. A small R (hence
few neighbors) affects the NPV capability to correctly tag a
node. Widening the transmission range with a fixed
colluding cluster size significantly favors the verifier,
allowing it to reach a conclusive and exact verdict on either
correct or adversary nodes: the larger the R, the higher the
number of cross-checks involving correct nodes in the CST.
We note that, for transmission ranges larger than 300 m, we
obtain false positive/negative probabilities that are smaller
than 0.001. Below 150-m ranges (corresponding to an
average neighborhood size of 12 nodes), such probabilities
are still 0.01.

10° 10°
=B= C faulty
M/Bas verified

== C unverifiable
M/Bas unverifiable
M/Hyp unverifiable

M/Hyp verified

el
o
s
§ M/Col verified o M/Col unverifiable
£ 10" € 10"
@ o
& o
(= e}
@ 8
$ £
= & 9 "
g 10% & z 102
S Rl =)
8 ~
e N

103 . i S 102 . .

100 200 300 400 100 200 300 400

Transmission range (m) Transmission range (m)

(© (d)

Fig. 9. Probability that a neighbor is tagged incorrectly or as unverifiable, versus the colluder cluster size (a,b), and versus R (c,d). C: correct; M/Bas,
M/Hyp, and M/Col: adversaries launching the basic, hyperbola-based and collinear attack, each combined with the REPLY-disregard attack.

FIORE ET AL.: DISCOVERY AND VERIFICATION OF NEIGHBOR POSITIONS IN MOBILE AD HOC NETWORKS 301

10° 10°
g == C faulty == C unverifiable
< M/Bas verified M/Bas unverifiable
g M/Hyp verified M/Hyp unverifiable
o M/Col verified e} M/Col unverifiable
£ 10" e 10"
© Q F:
& o "
(=4 o
@ 8
¢ 5
g 107 & z 102k
S =)
Q re
@2
©
w

-3 -3

0 0.05 0.1 0.15 0.2 0.25 0.3
Malicious nodes ratio

0 0.05 0.1 0.15 0.2 0.25 0.3
Malicious nodes ratio

(a) (b)

10° 10°
o == C faulty == C unverifiable
[} M/Bas verified M/Bas unverifiable
% M/Hyp verified M/Hyp unverifiable
o M/Col verified g M/Col unverifiable
£ 107 e 10"
© (=%
5 o
g g
£ E
3 107 z 102
o
= >
g ==]
K T/ 5]
1073 . . .

0 5 10 15 20 0 5 10 15 20
Poisitioning error (m) Poisitioning error (m)

(c) (d)

Fig. 10. Probability that a neighbor is tagged incorrectly or as unverifiable, versus the ratio of adversaries (a,b), and position error (c,d). C: correct;
M/Bas, M/Hyp, and M/Col: adversaries launching the basic, hyperbola-based, and collinear attack, each combined with the REPLY-disregard

attack.

Beside the impact of the cluster size and of the
transmission range, it is important to understand the effect
of the percentage of adversaries in the vehicular network.
Thus, in Fig. 10a we fix R to 250 m and the cluster size to 5,
and we show the robustness of our NPV to the density of
adversaries: the probability that adversaries are verified
increases ever so slightly with their density. The highest
effect is on the probability of correct nodes being tagged as
faulty, which however reaches its highest value (0.1) only for
30 percent of adversaries in the network. A further effect of
the growing presence of adversaries, as shown in Fig. 10b, is
the unverifiable tag being slapped onto more correct nodes.
A final observation can be made looking at the false
positive/negative probability as the positioning error varies
(Figs. 10c and 10d). Interestingly, for any positioning error
different from 0, the metrics are only marginally affected.

Finally, we further increase the level of detail of our
analysis and study the advantage obtained by adversaries
that perform a successful attack against the NPV protocol.
Such an adversarial gain is expressed in terms of spatial
displacement, i.e., difference of position between the real
and fraudulently advertised locations of the successful
attacker: clearly, a larger displacement range implies a
higher freedom of movement, which, in turn, enables
potentially more dangerous actions against the system.
The results in Fig. 11a are broken down based on the type of
attack launched by the successful adversary, and are limited
to the impact of the transmission range, since the other
parameters did not show significant influence on the
displacement of successful attackers.

500

— . —~ 100
£ M/Bas 2 == NPV
3 M/Hyp 8 non-secure
2 400 - M/Col = 80
2 5
s k]
€ 300 | S 60
B § /
o —
%_ 200 Q 40
2)]
3 2
;.j, 100 - ;:) 20
o ©
E ‘ ‘ oo ; ‘
100 200 300 400 100 200 300 400

Transmission range (m)

(@) (b)

Transmission range (m)

Fig. 11. Displacement gain of adversaries running a successful attack
against the NPV (a) and traffic load induced by one instance of the
protocol (b).

We can observe that successful collinear attacks yield
small advantage for adversaries, who are forced to
announce positions quite close to their real locations.
Moreover, we recall that these attacks constrain adversaries
to advertise fake positions along a precise axis, thus further
limiting their freedom of movement. We can conclude that
collinear attacks, typically those with the highest chances of
success as previously discussed, are also those resulting in
the smallest gain for the adversaries. Conversely, basic
attacks allow the largest average displacements, but we
showed that they have extremely low success probability.
The hyperbola-based attacks appear then to be the most
dangerous ones, if the displacement gain is taken into
consideration. However, such a gain becomes significant
only for large transmission ranges, in presence of which we
already observed that the actual success probability of the
attacks becomes negligible.

Finally, we comment on the overhead introduced by our
scheme. The NPV protocol generates at most 2n+ 2
messages for one execution initiated by a verifier with
n communication neighbors. Also, NPV messages are
relatively small in size: with SHA-1 hashing and ECDSA-
160 encryption [27], the length of signatures is 21 bytes
(with coordinates compression). Assuming that messages
include headers with 4-byte source and destination
identifiers and 1-byte message type field, POLL, REPLY,
and REVEAL are 26, 71, and 67 bytes in size, respectively.
The REPORT length depends on the quantity of common
neighbor data it carries, amounting to 4 bytes per shared
neighbor: information on more than 360 neighbors can thus
fit in a single IP packet.

Fig. 11b portrays the traffic induced on the network by
one instance of the NPV protocol. The plot only accounts
for transmission range variations since, once more, the
other parameters do not have an impact on the overhead.
We can observe that security comes at a cost, since the
traffic load of the NPV protocol is higher than that of a basic
nonsecure neighbor position discovery, consisting of only
one poll and associated position replies from neighbors.
More precisely, the NPV protocol overhead is comparable
to that of the nonsecure discovery for smaller transmission
ranges, while the difference tends to increase for larger
ranges. However, the cost of the NPV protocol is affordable
in absolute terms, since one run requires just a few tens of
kbytes to be exchanged among nodes, even in presence of
dense networks and large transmission ranges. Note that
the results above do not take into account the overhead

302

induced by the distribution of certificates, as it is out of the
scope of this work (the interested reader can refer to [26]).

Summary. Given that we assumed the best possible
conditions for the adversaries, the above results prove our
NPV to be highly resilient to attacks. Indeed, we observed
typical probabilities of false positives/negatives below
1 percent, while that of a node being tagged as unverifiable
is below 5 percent. Moreover, we showed that a significant
portion of the successful attacks yields small advantage to
the adversaries in terms of displacement. Finally, the
overhead introduced by the NPV protocol is reasonable,
as it does not exceed a few tens of kbytes even in the most
critical conditions.

8 CONCLUSION

We presented a distributed solution for NPV, which allows
any node in a mobile ad hoc network to verify the position
of its communication neighbors without relying on a priori
trustworthy nodes. Our analysis showed that our protocol
is very robust to attacks by independent as well as colluding
adversaries, even when they have perfect knowledge of the
neighborhood of the verifier. Simulation results confirm
that our solution is effective in identifying nodes advertis-
ing false positions, while keeping the probability of false
positives low. Only an overwhelming presence of colluding
adversaries in the neighborhood of the verifier, or the
unlikely presence of fully collinear network topologies, can
degrade the effectiveness of our NPV. Future work will aim
at integrating the NPV protocol in higher layer protocols, as
well as at extending it to a proactive paradigm, useful in
presence of applications that need each node to constantly
verify the position of its neighbors.

ACKNOWLEDGMENTS

This work was supported by the Regione Piemonte
through the IoT | Tol project, which is part of the second
call of POR F.E.S.R. 2007/2013.

REFERENCES

[1] 1609.2-2006: IEEE Trial-Use Standard for Wireless Access in Vehicular
Environments - Security Services for Applications and Management
Messages, IEEE, 2006.

[2] P. Papadimitratos, L. Buttyan, T. Holczer, E. Schoch, J. Freudiger,
M. Raya, Z. Ma, F. Kargl, A. Kung, and J.-P. Hubaux, “Secure
Vehicular Communications: Design and Architecture,” IEEE
Comm. Magazine, vol. 46, no. 11, pp. 100-109, Nov. 2008.

[3] P. Papadimitratos and A. Jovanovic, “GNSS-Based Positioning:
Attacks and Countermeasures,” Proc. IEEE Military Comm. Conf.
(MILCOM), Nov. 2008.

[4] L. Lazos and R. Poovendran, “HiRLoc: High-Resolution Robust
Localization for Wireless Sensor Networks,” IEEE]. Selected Areas
in Comm., vol. 24, no. 2, pp. 233-246, Feb. 2006.

[5] R.Poovendran and L. Lazos, “A Graph Theoretic Framework for
Preventing the Wormhole Attack,” Wireless Networks, vol. 13,
pp- 27-59, 2007.

[6] S.Zhong, M. Jadliwala, S. Upadhyaya, and C. Qiao, “Towards a
Theory of Robust Localization against Malicious Beacon Nodes,”
Proc. IEEE INFOCOM, Apr. 2008.

[71 P. Papadimitratos, M. Poturalski, P. Schaller, P. Lafourcade, D.
Basin, S. Capkun, and J.-P. Hubaux, “Secure Neighborhood
Discovery: A Fundamental Element for Mobile Ad Hoc Networks,”
IEEE Comm. Magazine, vol. 46, no. 2, pp. 132-139, Feb. 2008.

[8] Y.-C.Hu, A. Perrig, and D.B. Johnson, “Packet Leashes: A Defense
against Wormhole Attacks in Wireless Networks,” Proc. IEEE
INFOCOM, Apr. 2003.

]

(10]

(1]

(12]

(13]

(14]

(15]

[10]

(171

(18]

(19]

[20]

(21]

(22]

(23]

(24]
[25]

[20]

[27]

(28]

[29]

(30]

B31]

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 2, FEBRUARY 2013

J. Eriksson, S. Krishnamurthy, and M. Faloutsos, “TrueLink: A
Practical Countermeasure to the Wormhole Attack in Wireless
Networks,” Proc. IEEE 14th Int’l Conf. Network Protocols (ICNP),
Nov. 2006.

R. Maheshwari, J. Gao, and S. Das, “Detecting Wormhole Attacks
in Wireless Networks Using Connectivity Information,” Proc.
IEEE INFOCOM, Apr. 2007.

R. Shokri, M. Poturalski, G. Ravot, P. Papadimitratos, and J.-P.
Hubaux, “A Practical Secure Neighbor Verification Protocol for
Wireless Sensor Networks,” Proc. Second ACM Conf. Wireless
Network Security (WiSec), Mar. 2009.

M. Poturalski, P. Papadimitratos, and J.-P. Hubaux, “Secure
Neighbor Discovery in Wireless Networks: Formal Investigation
of Possibility,” Proc. ACM Symp. Information, Computer and Comm.
Security (ASIACCS), Mar. 2008.

M. Poturalksi, P. Papadimitratos, and J.-P. Hubaux, “Towards
Provable Secure Neighbor Discovery in Wireless Networks,” Proc.
Workshop Formal Methods in Security Eng., Oct. 2008.

E. Ekici, S. Vural, J. McNair, and D. Al-Abri, “Secure Probabilistic
Location Verification in Randomly Deployed Wireless Sensor
Networks,” Elsevier Ad Hoc Networks, vol. 6, no. 2, pp. 195-209,
2008.

J. Chiang, J. Haas, and Y. Hu, “Secure and Precise Location
Verification Using Distance Bounding and Simultaneous Multi-
lateration,” Proc. Second ACM Conf. Wireless Network Security
(WiSec), Mar. 2009.

S. Capkun, K. Rasmussen, M. Cagalj, and M. Srivastava, “Secure
Location Verification with Hidden and Mobile Base Stations,”
IEEE Trans. Mobile Computing, vol. 7, no. 4, pp. 470-483, Apr. 2008.
S. Capkun and J.-P. Hubaux, “Secure Positioning in Wireless
Networks,” IEEE]. Selected Areas in Comm., vol. 24, no. 2, pp. 221-
232, Feb. 2006.

A. Vora and M. Nesterenko, “Secure Location Verification Using
Radio Broadcast,” IEEE Trans. Dependable and Secure Computing,
vol. 3, no. 4, pp. 377-385, Oct.-Dec. 2006.

J. Hwang, T. He, and Y. Kim, “Detecting Phantom Nodes in
Wireless Sensor Networks,” Proc. IEEE INFOCOM, May 2007.

T. Leinmidiller, C. Maihofer, E. Schoch, and F. Kargl, “Improved
Security in Geographic Ad Hoc Routing through Autonomous
Position Verification,” Proc. ACM Third Int'l Workshop Vehicular Ad
Hoc Networks (VANET), Sept. 2006.

J.-H. Song, V. Wong, and V. Leung, “Secure Location Verification
for Vehicular Ad-Hoc Networks,” Proc. IEEE Globecom, Dec. 2008.
M. Fiore, C. Casetti, C.-F. Chiasserini, and P. Papadimitratos,
“Secure Neighbor Position Discovery in Vehicular Networks,”
Proc. IEEE/IFIP 10th Ann. Mediterranean Ad Hoc Networking
Workshop (Med-Hoc-Net), June 2011.

Fed. Highway Administration, “High Accuracy-Nationwide
Differential Global Positioning System Test and Analysis: Phase
II Report,” FHWA-HRT-05-034, July 2005.
http://www.nanotron.com/EN/pdf/Factsheet_nanoLOC-
NAS5TR1.pdf, 2012.

PRECIOSA: Privacy Enabled Capability in Co-Operative Systems
and Safety Applications, http://www .preciosa-project.org, 2012.
G. Calandriello, P. Papadimitratos, A. Lioy, and J.-P. Hubaux, “On
the Performance of Secure Vehicular Communication Systems,”
IEEE Trans. Dependable and Secure Computing, vol. 8, no. 6, pp. 898-
912, Nov./Dec. 2011.

IEEE Standard Specifications for Public-Key Cryptography - Amend-
ment 1: Additional Techniques, IEEE 1363a 2004, 2004.

M. Ciurana, F. Barcelo-Arroyo, and F. Izquierdo, “A Ranging
System with IEEE 802.11 Data Frames,” Proc. IEEE Radio and
Wireless Symp., Jan. 2007.

F. Carpenter, S. Srikanteswara, and A. Brown, “Software Defined
Radio Test Bed for Integrated Communications and Navigation
Applications,” Proc. Software Defined Radio Technical Conf., Nov.
2004.

E. Del Re, LS. Ronga, L. Vettori, L. Lo Presti, E. Falletti, and M.
Pini, “Software Defined Radio Terminal for Assisted Localization
in Emergency Situations,” Proc. First Int’l Conf. Wireless Comm.,
Vehicular Technology, Information Theory and Aerospace Electronic
Systems Technology (CTIF Wireless Vitae), May 2009.

J. Harri, M. Fiore, F. Filali, and C. Bonnet, “Vehicular Mobility
Simulation with VanetMobiSim,” Trans. Soc. Modeling & Simula-
tion, 2009.

FIORE ET AL.: DISCOVERY AND VERIFICATION OF NEIGHBOR POSITIONS IN MOBILE AD HOC NETWORKS 303

)

Marco Fiore received two MSc degrees from
the University of lllinois at Chicago and the
Politecnico di Torino in 2003 and 2004, respec-
tively, and the PhD degree from the Politecnico
di Torino in 2008. He is an assistant professor
at INSA Lyon and an INRIA researcher within
the SWING team hosted by the CITI Lab. He
has been a visiting researcher at Rice Uni-
versity and the Universitat Politecnica de
Catalunya. His research interests are in the

field of mobile networking with a focus on vehicular networks. He is a

member of the IEEE.

Claudio Ettore Casetti received the graduate
degree in electrical engineering from the Poli-
tecnico di Torino in 1992 and the PhD degree in
electronic engineering from the same institution
in 1997. He is an assistant professor in the
Dipartime‘nto di Elettronica at the Politecnico di
Torino. He has coauthored more than 130 journal
and conference papers in the fields of networking
and holds three patents. His interests focus on
ad hoc wireless networks and vehicular net-

works. He is a member of the IEEE.

Carla-Fabiana Chiasserini received the PhD
degree from Politecnico di Torino in 2000. She
has worked as a visiting researcher at UCSD
in 1998-2003, and she is currently an associ-
ate professor at Politecnico di Torino. Her
research interests include architectures, proto-
cols, and performance analysis of wireless
networks. She has published more than 190
papers in prestigious journals and leading
international conferences, and she serves as

an assomated editor of several journals. She is a senior member of
the |IEEE and the IEEE Computer Society.

Panagiotis Papadimitratos received the PhD
degree from Cornell University, lthaca, New
York. He was a postdoctoral fellow at Virginia
Tech, Blacksburg, VA, a scientist at EPFL,
Lausanne, Switzerland, and a visiting faculty
member at Politecnico di Torino. He is now an
associate professor in the School of Electrical
Engineering at KTH, Stockholm, Sweden. His
research is concerned with security and net-
worked systems, with more than 70 related

technlcal publications. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

