
Elliptic curve cryptography

Elliptic Curve Cryptography (or ECC for short) is cryptography based on arithmetics over
elliptic curves.

What is an elliptic curve? Imagine that you have an ellipsis. If you squeeze it on the middle,
and cut it open on the right end, bending the two ends of the ellipsis outward, you get an
elliptic curve. The curve might look a bit different depending on how much you “squeeze
and “bend”.

Definition of an elliptic curve

An elliptic curve is described by the Weierstrass equation  for a
particular .

From any (smooth) elliptic curve, we can construct an algebraic group  consisting of all
points  on the curve. Remember that this group with unary operator  should have
the following properties:

1. Closure – 
2. Associativity – 
3. Identity element – 
4. Inverse – 

Before verifying that  is a group we will try to define the unary operator . This operator
has a very nice graphical interpretation over , so let us go from there.
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Point addition

Say we want to calculate the quantity  over the curve , i.e we want to add the points
 and  on . To do this, we draw a line  crossing  and . Since

the curve is a polynomial of third degree, this line will (with one exception) intersect  at a
third point . We then define  as .

The coordinates  and  can be described using the formula  and 
 where  and .

When  we use  to calculate the slope as . This is called point

doubling, and it is a special case of point addition. Here, the variable  comes from the
Weierstrass equation.

If  and  we will end up with a vertical line, without a third intersection
point. To fix this “problem” we introduce a point  outside the curve, called the point at
infinity. We then say that  is the sum of these two points.
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The point at infinity can be represented in any way you like, as long as it is not a point on
the curve. It might be more convenient to use homogeneous coordinates. However, if we
stick with carthesian coordinates, we can pick  as the point .

Finite field

In practice, we will not do the calculations over , but over a finite field. Typically you
choose a prime field  where  is a prime number, or a binary field  for some .
We can still use the nice formulae mentioned above, but the geometrical representation of 

 will no longer make any sense.

Also, instead of division with , we do multiplication with the multiplicative inverse of 
 (if working in ). This routine is denoted with modInv(x)  in the psuedocode

below, and is typically implemented using the Extended Euclidean Algorithm.

Here follows psuedocode for the implementation of  over the finite field .

add(p, q) 
    if p = INF 
        return q 
    if q = INF 
        return p 
    if p.x = q.x && -p.y = q.y 
        return INF 
    int k // slope 
    if p = q 
        k = 3p.x^2 + a * modInv(2p.y) 
    else 
        k = p.y-q.y * modInv(p.x-q.x) 
    x = k^2 - p.x - q.x mod p 
    y = k(p.x - x) - p.y mod p 
    return (x, y) 

Smooth elliptic curves are groups

The elliptic curves from which we can construct groups, are called smooth. To determine if
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a curve is smooth, we would look for singular points. A singular point is a point  such
that , i.e  contains a double root. A curve is smooth only
if it does not contain any singular points. More generally, we can use a discriminant to
determine if a curve is smooth.

Smooth curves 
An elliptic curve is called smooth only if .

For any such curve, we can verify that the points  on the curve with the unary
operator  forms a group.

1. Closure – Follows from the definition of .
2. Associativity – Can be proved with Bézout’s theorem.
3. Identity element –  is the identity element.
4. Inverse – For a point  we can construct the inverse as .

Trapdoor function

The trapdoor function in ECC is based on the intractability of the discrete logarithm
problem. The discrete logarithm problem for a finite field  is to find the secret number 

, given . Here  denotes a point on the curve, acting as a generator for the
group, and  denotes repeated addition.

Repeated addition can be thought of as multiplication of a point on the curve with an
integer, resulting in another (seemingly random) point. Repeated addition can be made
fast in software using the double-and-add approach sketched below.

multiply(g, s) 
    assert(s > 0) 
    q = INF 
    // b should contain the unsigned binary representation 
    // of s, e.g if s = 9 then b = 1001  
    b = s.toBinary 
    for i = b.length - 1; i >= 0; --i 
        if b[i] = 1 
            q = add(q, g) 
        g = add(g, g) 
    return q 
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Double-and-add should NOT be used on a machine which might be monitored by an
adversary since the algorithm leaks timing information. Thus, it would be possible for an
adversary to mount a side-channel attack and recover information about .

A trapdoor function is commonly used in asymmetric encryption schemes, with a public
and a private key. The secret value  is typically the private key, while the product  is
chosen as the public key.

Standard curves

As we have previously seen, an elliptic curve over the finite field  is described by the
tuple  where  describes the shape of the elliptic curve,  is the order of the
group (the number of points on the curve),  is a generator (base point) for the curve, and 
is a prime defining the finite field .

There are many, more or less, standardized curves. Particularly the curves recommended
by NIST , and SECG .

1. National Security Agency: Mathematical routines for the NIST prime elliptic curves ↩
2. Certicom Research: Standards for Efficient Cryptography - Recommended Elliptic

Curve Domain Parameters, Ver. 1 ↩
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