
Elliptic curve cryptography

Elliptic Curve Cryptography (or ECC for short) is cryptography based on arithmetics over
elliptic curves.

What is an elliptic curve? Imagine that you have an ellipsis. If you squeeze it on the middle,
and cut it open on the right end, bending the two ends of the ellipsis outward, you get an
elliptic curve. The curve might look a bit different depending on how much you “squeeze
and “bend”.

Definition of an elliptic curve

An elliptic curve is described by the Weierstrass equation for a
particular .

From any (smooth) elliptic curve, we can construct an algebraic group consisting of all
points on the curve. Remember that this group with unary operator should have
the following properties:

1. Closure –
2. Associativity –
3. Identity element –
4. Inverse –

Before verifying that is a group we will try to define the unary operator . This operator
has a very nice graphical interpretation over , so let us go from there.

Point addition

= + ax + by2 x3

a, b ∈ N

G
(x, y) +

∀a, b ∈ G : a + b ∈ G
∀a, b, c ∈ G : (a + b) + c = a + (b + c)

∃e ∈ G; ∀a ∈ G : a + e = e + a = a

∀a ∈ G : ∃ ; a + = + a = ea−1 a−1 a−1

G +
R

https://en.wikipedia.org/wiki/Group_%28mathematics%29

Point addition

Say we want to calculate the quantity over the curve , i.e we want to add the points
 and on . To do this, we draw a line crossing and . Since

the curve is a polynomial of third degree, this line will (with one exception) intersect at a
third point . We then define as .

The coordinates and can be described using the formula and
 where and .

When we use to calculate the slope as . This is called point

doubling, and it is a special case of point addition. Here, the variable comes from the
Weierstrass equation.

If and we will end up with a vertical line, without a third intersection
point. To fix this “problem” we introduce a point outside the curve, called the point at
infinity. We then say that is the sum of these two points.

p + q E

p = (,)xp yp q = (,)xq yq E L p q

E

r = (,)xr yr p + q (, −)xr yr

xr −yr = − −xr k2 xp xq

− = k(−) −yr xp xr yp k =
−ya yb

−xa xb
a ≠ b

p = q ()E ′ xp k =
3 +ax2

p

2yp

a

− =yp yq =xp xq

O

O

The point at infinity can be represented in any way you like, as long as it is not a point on
the curve. It might be more convenient to use homogeneous coordinates. However, if we
stick with carthesian coordinates, we can pick as the point .

Finite field

In practice, we will not do the calculations over , but over a finite field. Typically you
choose a prime field where is a prime number, or a binary field for some .
We can still use the nice formulae mentioned above, but the geometrical representation of

 will no longer make any sense.

Also, instead of division with , we do multiplication with the multiplicative inverse of
 (if working in). This routine is denoted with modInv(x) in the psuedocode

below, and is typically implemented using the Extended Euclidean Algorithm.

Here follows psuedocode for the implementation of over the finite field .

add(p, q)
 if p = INF
 return q
 if q = INF
 return p
 if p.x = q.x && -p.y = q.y
 return INF
 int k // slope
 if p = q
 k = 3p.x^2 + a * modInv(2p.y)
 else
 k = p.y-q.y * modInv(p.x-q.x)
 x = k^2 - p.x - q.x mod p
 y = k(p.x - x) - p.y mod p
 return (x, y)

Smooth elliptic curves are groups

The elliptic curves from which we can construct groups, are called smooth. To determine if

O (0, 0)

R
Zp p Z2m m ∈ N

+

x

x mod p Zp

+ Zp

https://en.wikipedia.org/wiki/Homogeneous_coordinates
https://en.wikipedia.org/wiki/Finite_field
http://www.cc.gatech.edu/~mihail/2050Lec10.pdf

a curve is smooth, we would look for singular points. A singular point is a point such
that , i.e contains a double root. A curve is smooth only
if it does not contain any singular points. More generally, we can use a discriminant to
determine if a curve is smooth.

Smooth curves
An elliptic curve is called smooth only if .

For any such curve, we can verify that the points on the curve with the unary
operator forms a group.

1. Closure – Follows from the definition of .
2. Associativity – Can be proved with Bézout’s theorem.
3. Identity element – is the identity element.
4. Inverse – For a point we can construct the inverse as .

Trapdoor function

The trapdoor function in ECC is based on the intractability of the discrete logarithm
problem. The discrete logarithm problem for a finite field is to find the secret number

, given . Here denotes a point on the curve, acting as a generator for the
group, and denotes repeated addition.

Repeated addition can be thought of as multiplication of a point on the curve with an
integer, resulting in another (seemingly random) point. Repeated addition can be made
fast in software using the double-and-add approach sketched below.

multiply(g, s)
 assert(s > 0)
 q = INF
 // b should contain the unsigned binary representation
 // of s, e.g if s = 9 then b = 1001
 b = s.toBinary
 for i = b.length - 1; i >= 0; --i
 if b[i] = 1
 q = add(q, g)
 g = add(g, g)
 return q

(x, y)
y = 0 ∧ f(x) = 0 ∧ (x) = 0f ′ f

−4 − 27 ≠ 0a3 b2

(x, y)
+

+

O

(x, y) (x, −y)

F
s ∈ F g × s g

×

https://en.wikipedia.org/wiki/B%C3%A9zout%27s_theorem
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication

Double-and-add should NOT be used on a machine which might be monitored by an
adversary since the algorithm leaks timing information. Thus, it would be possible for an
adversary to mount a side-channel attack and recover information about .

A trapdoor function is commonly used in asymmetric encryption schemes, with a public
and a private key. The secret value is typically the private key, while the product is
chosen as the public key.

Standard curves

As we have previously seen, an elliptic curve over the finite field is described by the
tuple where describes the shape of the elliptic curve, is the order of the
group (the number of points on the curve), is a generator (base point) for the curve, and
is a prime defining the finite field .

There are many, more or less, standardized curves. Particularly the curves recommended
by NIST , and SECG .

1. National Security Agency: Mathematical routines for the NIST prime elliptic curves ↩
2. Certicom Research: Standards for Efficient Cryptography - Recommended Elliptic

Curve Domain Parameters, Ver. 1 ↩

s

s g × s

Zp

(a, b, n, g, p) a, b n

g p

Zp

1 2

https://www.nsa.gov/ia/_files/nist-routines.pdf
http://www.secg.org/SEC2-Ver-1.0.pdf

