
A case study in smartcard security

Analysing Mifare Classic Rev. 1

Bastian Fredriksson

Faculty of IT, Monash University

bfre12@student.monash.edu

May 16, 2016

1 Glossary

Adversary In cryptography, an adversary or at-
tacker is a malicious opponent which tries to break
the security of a system.
Application Specific Integrated Circuit
(ASIC) is an integrated circuit constructed for a
particular purpose.
Bit The smallest amount of information in a tra-
ditional computer. A bit can contain two different
values, usually denoted by 0 and 1 respectively.
Brute-force attack An attack where an adversary
tries to figure out a secret by enumerating all possible
values.
Byte The smallest unit of addressable memory in
a computer. A byte is a group of eight consecutive
bits.
CRYPTO-1 is the algorithm used by the Mifare
Classic card for authentication and encryption.
Field-programmable Gate Array (FPGA) is
an integrated circuit designed to be programmble
by the customer after manufacture. An FPGA
contains a large amount of logic gates and memory
blocks, which makes it suitable for resource-intensive
computations.
International Standards Organisation (ISO) is
an organisation whose purpose is to create interna-
tional standards for various products.
Mifare Classic (originally marketed as Mifare,
not to be confused with Mifare Classic EV1) is
a contactless smart card manufactured by NXP

Semiconductors [10].
Near Field Communication (NFC) can be seen
as an extension of RFID. NFC is mostly used by
cellphones to communicate over short distances.
Psuedo-Random Number Generator (PRNG)
is a cryptographic contruction for generating a
seemingly random sequence of numbers.
Radio Frequency Identification (RFID) is a
technology for wireless authentication where an
RFID tag (PCD) authenticates to an RFID reader
(PICC). The tag can for example be a smart card,
cellphone or a car fob.
Unique Identifier (UID) is a non-unique 4-byte
or unique 7-byte serial number used to differentiate
between two Mifare cards [10].

2 Introduction

Mifare Classic MF1S50YYX, or simply Mifare, re-
leased by Philips (now NXP Semiconductors) in 1994
[7], is a contactless smart card used for cashless vend-
ing applications, access control to buildings, ticket-
ing and payment systems. Most notably it is used
as ticket and payment system in Taiwan (EasyCard
and in the Netherlands (OV-chipkaart), and as pub-
lic transport ticket system in many cities including
London (Oyster Card), Miami (Miami-Dade), Perth
(SmartCard), Buenos Aires (SUBE), Istanbul (Istan-
bul Kart) and Stockholm (SL Access).

1

4 MEMORY LAYOUT

3 Card characteristics

The Mifare Classic smart card is usually manufac-
tured as a 53x85 mm plastic card containing a cop-
per wire acting as antenna, attached to a small RFID
chip as shown in figure 1.

Figure 1: An example of a typical RFID smart card made in
plastic. The silhouettes of the copper wire and the chip can
be seen by letting light shine through the card, for example
by putting a torch behind it. The chip and the wire can be
extracted from the card by melting the plastic with acetone.

The Mifare Classic is a passive RFID tag, meaning
that it does not contain a battery. The RFID reader
emitting an oscillating magnetic field which induces
electricity into the copper wire powering up the chip.
The maximum distance between tag and reader de-
pends on the strength of the magnetic field, but is
typically around 10 cm. Once the chip has powered
up, it communicates on the 13.56 MHz frequency and
offers a transaction speed up to 106 kB/s. A transac-
tion between tag and reader takes approximately 100
ms [10].

The chip itself contains an ASIC microcontroller
and a 1 kB or 4 kB flash memory which can be used
to store data on the card. Mifare Classic with 1 kB
and 4 kB memory is referred to as Mifare Classic 1K
and Mifare Classic 4K respectively.

4 Memory layout

The memory is divided into sectors and blocks. Each
sector is protected by two 48-bit keys, called key A
and key B. The access control bits of each sector de-
termines which key is required for each operation.
Mifare Classic 1K is divided into 16 sectors with 64
bytes each. Every sector is divided into 4 blocks with
16 bytes each. The last block in each sector (called
trailer) contains the keys and the access control AC
bits. The first 6 bytes contains key A, the following 3
bytes contains the access control bits. The next byte
(General Purpose Byte or GPB) is unused and can
be used for storage. The last 6 bytes contains key B.
The last 6 bytes can be used for storage if key B is
not needed.

Mifare Classic 4K is divided into 40 sectors where
the first 32 sectors are identical to the 4-block sectors
found in Mifare Classic 1K. The remaining 18 sectors
contains 16 blocks each, where each block is 16 bytes.
The last block of each sector contains the keys and
access control bits, following the same structure as
for Mifare Classic 1K.

The first block of the first sector (the manufacturer
block) contains the 4-byte or 7-byte UID of the card
followed by a one byte checksum, given by the XOR
of all bytes in the UID. The rest of the bytes in this
block contains manufacturer specific data. The man-
ufacturer block is usually read only [12]. We refer to
figure 2 and 3 for a detailed description of the mem-
ory layout.

Figure 2: Memory layout for a 4-block sector in Mifare Classic
1K and Mifare Classic 4K. The 1K memory contains a total
of 16 sectors. Only sector 0 contains the manufacturer block
(used for storage in the other sectors).

Analysing Mifare Classic Bastian Fredriksson Page 2

4.1 Block types 5 LINEAR FEEDBACK SHIFT REGISTER

Figure 3: Memory layout for a 16-block sector in Mifare Classic
4K. The 4K memory contains a total of 32 sectors with 4 blocks
each (identical to the sectors used in Mifare Classic 1K), and
18 sectors with 16 blocks each as shown above.

Figure 4: Storage format for a value block. The block contains
a 32-bit signed integer x. x denotes x with all bits inverted.
The last four bytes contains the 1-byte address a of the block,
repeated for times. This value is used for backup management
[10].

4.1 Block types

There are two types of blocks, data blocks and value
blocks. Data blocks stores a 16 byte value in raw
format. Value blocks stores a 4-byte signed integer
in a fixed format which features error detection and
correction. The value is stored in in little endian and
negative values are written in two’s complement. The
value is stored three times for security [10]. See figure
4 for details.

Value blocks are often used for storing sensitive
information such as account balance. The purpose of
storing the value three times is to prevent someone
to tamper with the card by flipping individual bits
using radiation.

4.2 Commands

The microcontroller supports the commands read,
write, increment, decrement, transfer, and restore.
Read reads a single block from memory. If the sector
trailer is read, the keys A and B (if present) will be
masked out and replaced by zeroes. Write writes a
single block to memory. The manufacturer block can-
not be written to. Increment and decrement is used
to increase or decrease the value of a value block by
one. Transfer moves a block in memory into the in-
ternal register of the microcontroller. Restore moves
the block stored in the internal register of the micro-
controller to a block in memory.

4.3 Access control

The AC bits (3 bytes in total) defines read and write
access to a sector based on the keys A and B. One
must be careful when setting the AC bits, since the
microcontroller will lock the whole sector if an invalid
format is detected. A triple of bits (C1, C2, C3) de-
fines access conditions for a single block (if the sector
is a 4-block sector) or a chunk of four blocks (if the
sector is a 16-block sector). The bits are stored both
inverted and non-inverted for security purposes. For
the format of the AC bits, see table 6 and figure 10
in the Mifare Classic 1K Data Sheet [10] and Mifare
Classic 4K Data Sheet [11]. For access conditions to
the sector trailer and the data blocks, see table 7 and
table 8 in the data sheet.

5 Linear Feedback Shift Regis-
ter

A Linear Feedback Shift Register (LFSR) is a shift
register used to generate a psuedo-random stream
of bits. Due to its simplicity, it is commonly im-
plemented directly in hardware, yielding a very fast
PRNG. A PRNG based on a single LFSR is not cryp-
tographically secure and should not be used in secu-
rity critical applications. Given an n-bit LFSR it suf-
fices to observe 2n consecutive bits from the output
stream in order to deduce the generating polynomial
[15]. This polynomial, together with the last n bits

Analysing Mifare Classic Bastian Fredriksson Page 3

http://www.nxp.com/documents/data_sheet/MF1S50YYX.pdf
https://www.nxp.com/documents/data_sheet/MF1S70YYX.pdf
https://www.nxp.com/documents/data_sheet/MF1S70YYX.pdf

7 CRYPTO-1

of the output stream can then be used to predict all
subsequent bits.

A LFSR consists of an n-bit register. Each time
a new bit of the output stream is produced (which
normally happens once every clock cycle), a new in-
put bit is created by computing the exclusive or of the
leftmost bit in the register with some fixed bits called
taps. The register is then shifted one step to the right.
The leftmost empty position is filled with the input
bit. The rightmost bit which was shifted out becomes
the output bit, the next bit in the output stream. The
choice of taps corresponds to a polynomial in the ring
Z2[X] \ xn. For example, if the leftmost bit is bit 0
and taps are bit 2, 3 and 5, the generating polyno-
mial becomes p(x) = x5 +x3 +x2 +1. The exponents
indicates to the position of the tap and x0 = 1 at the
end represents the input bit (which is always a tap).

The choice of polynomial is important. One typ-
ically chooses an irreducible polynomial, which is
guaranteed to generate all of the 2n − 1 states be-
fore cycling back to its initial state. An irreducible
polynomial is a polynomial which cannot be written
as a product of two polynomials. Irreducible poly-
nomials in a polynomial ring can be thought of as a
prime number in a Galois field. Note that the state
with all zeroes won’t occur in the generated sequence,
since this would lock up the LFSR.

Although a single LFSR is not cryptographically
secure, it is possible to combine several LFSR to cre-
ate a PRNG which can be used as a building block
for cryptographic primitives such as stream ciphers.
Several encryption algorithms uses an LFSR, includ-
ing A5/1, A5/2, E0 and Trivium [1].

6 Communication protocol

The communication protocol between tag (called
PICC) and reader (called PCD) is loosely based
on ISO/IEC-14443 Type A [10] which describes the
physical characteristics of the PICC and a protocol
stack with three layers. Layer 1 regulates the signal
power and signal interface and is responsible for the
physical transmission of bits over the air [5]. Layer
2 describes an anticollision protocol where the PICC
sends its UID to the PCD, whereby the PCD selects

the card. This makes it possible for more than one
card to operate in the field at the same time [4]. Layer
3 describes the transmission protocol between PIC
and PCD once a connection has been established [6].

7 CRYPTO-1

CRYPTO-1 is a symmetric stream cipher used by
the Mifare Classic card for encryption and authenti-
cation. The cipher uses a 48-bit pre-shared key for
encryption and decryption. Hardware-analysis shows
that the cipher is very small, about 8.5 times smaller
than the most compact AES-implementation. The ci-
pher is also very fast, producing one bit of keystream
each clock cycle. However, cryptoanalysis shows that
the design of the cipher contains serious weaknesses
[9]. A GPLv2 implementation written in C called
CRAPTO-1 was released in 2008.

7.1 Keystream generation

At the heart of the cipher is the keystream genera-
tor depicted in figure 5. The keystream generator is
made up of a 48-bit LFSR holding the cipher state,
and six non-linear functions (f1, f2 . . . f6). At each
clock cycle, the first four odd bits, starting at bit 9,
is fed into f1 - the next four odd bits are fed into
f2 and so on. The last four odd bits are fed into f5.
The output of f1, f2 . . . f5 is fed into f6 which out-
puts one keystream bit. Next, the taps of the LFSR
are combined using exclusive or to produce a new in-
put bit b and the LFSR shifts one step to the left.
The leftmost output bit is discarded and the empty
rightmost bit is filled with b. We refer to [14] section
4.1.1 for formulas to the filter functions f1, f2 . . . f6
and the generating polynomial for the LFSR.

7.2 Psuedo-random number genera-
tor

The Mifare Classic Psuedo-random number genera-
tor is a separate circuit which is responsible for cre-
ating nonces used in the challenge-response protocol
which authenticates tag and reader. The PRNG can

Analysing Mifare Classic Bastian Fredriksson Page 4

7.3 Challenge-response protocol 7 CRYPTO-1

Figure 5: Overview of the PRNG in the Crypto1 stream cipher.
The PRNG consists of a 48-bit LFSR and six non-linear filter
functions.

be seen as a 32-bit register (b1, b2, . . . b31) which con-
tains a 16-bit LFSR. The snapshot of the register at
time i gives nonce number i in the psuedo-random se-
quence. The next number in the sequence is given by
a successor function suc(x). This function is imple-
mented in the Crapto1 library as prng_successor.

Every 9.44 µs the PRNG computes the next state
of the register by computing the exclusive or of the
four taps b16, b18, b19, b21 to form the next input bit
b⊕. The register is then shifted one step to the left
and the new input bit is inserted to the right. Note
that the function prng_successor returns the regis-
ter with each byte shifted one bit to the right. More
formally, if the input state x is x1, x2, x31, the return
value from the function call prng_successor(x, 1)

becomes x8, x1 . . . x7, x16, x9 . . . x15, x24, x17 . . . x23,
x⊕, x25 . . . x31. See figure 7 for more details.

7.3 Challenge-response protocol

We are now ready to describe the challenge-response
protocol, in which the tag and reader proves knowl-
edge of the secret key. After the anti-collision phase
completes, the reader sends a command which tells
the card which sector it wants to authenticate to and
which key it wants to use. The tag responds with a
32-bit tag nonce NT generated using the PRNG. The
reader answers with its own challenge NR and a re-
sponse AT = suc64(NT) (the 64th successor of NT),
both encrypted under the secret key. Note that the
reader challenge NR is supposed to be random in the
real protocol, but this value can be chosen freely by
the attacker.

The tag checks that the reader knows the secret key
by computing Dec(AT) = suc64(NT). If the authen-
tication succeeded, the tag proceeds by answering
with AT = suc96(NT) encrypted using the secret key.
If the authentication failed (Dec(AT) 6= suc64(NT)),
the card remains silent.

After the reader receives AT it checks whether
Dec(AT) = suc96(NT). This completes the
challenge-response protocol, and both tag and reader
can now communicate with each other. Note that
NR is not used directly in this protocol, this value is
shifted into the cipher state and will affect what the
keystream looks like.

7.4 Cipher initialisation

The tag and reader must reach the same cipher state
after the challenge-response protocol has completed
in order to be able to properly encrypt and decrypt
the communication that follows. The parameters
used for cipher initialisation is the 48-bit secret sec-
tor key K, the tag nonce NT , the reader nonce NR

and the UID u of the tag.

The LFSR of the cipher is first initialised using K
with the most significant bit the leftmost position.
NT = (NT0

, NT1
. . . NT31

) and u = (u0, u1 . . . u31) is
then shifted into the register together with the next
feedback bit bi. This means, b ⊕ NTi

⊕ ui is in-
serted into the rightmost position ∀i ∈ [0, 31]. Then
NR = (NR0 , NR1 . . . NR31) is shifted in together with
the feedback bit. Since the reader knows u which is
sent by the tag in the anticollision phase, the secret
K and NT (which is sent unencrypted from the tag),
the reader will be able to initialise the cipher after re-
cieving NT from the tag, and produce the keystream
required to encrypt NR and AR. Since the tag knows
its id u and the secret K, it will be able to produce
32 bits of keystream, enough to decrypt the nonce
NR sent by the reader. This value can then be used
to decrypt AR and finalise the initialisation of the
cipher.

Analysing Mifare Classic Bastian Fredriksson Page 5

8 WEAKNESSES

8 Weaknesses

Reverse engineering of the chip and cryptanalysis of
the cipher has discovered several flaws which will be
discussed below. Some of the flaws are due to the
design of the psuedo-random generator, others has
to to with the protocol or weaknesses with the cipher
itself.

1. Short key length
Problem Since the key is only 48-bits, it will
be possible to brute-force the key in about one
week on a standard PC. As long as the design
of the cipher remained secret, brute-force at-
tacks were not possible due to the slow hard-
ware in Mifare Classic. However, once the al-
gorithm was reverse engineered, it became pos-
sible to implement the cipher in software and
run it on any hardware which speeds up the at-
tack. The cipher is designed to be very small,
and can be implemented very efficiently on an
FPGA [13]. Brute-force attacks on Mifare Clas-
sic is discussed in more detail in section 9.
Mitigation The designers of Mifare Classic
should have used a longer key (arguably, the key
size might have been a security vs cost tradeoff
since the key length affects many other aspects
of the chip, however a 48-bit key is unfortunately
too short to provide any security against an ad-
versary). A proper keysize would be at least 85
bits to be resilient against brute-force attacks.

2. Short PRNG cycle
Problem Although the PRNG spits out a 32-bit
number, since the construction is based upon
a 16-bit LFSR, the efficient amount of entropy
is only 16 bits, not 32 bits. Consequently,
the psuedorandom sequence generated by the
PRNG does only consist of 216 = 65536 num-
bers. Since the PRNG switches state every 9.44
µs, the psuedo-random sequence repeats itself af-
ter ≈ 619 ms.
Mitigation More taps should be chosen for the
generating polynomial, thus if chosen wisely
(such that the corresponding generating polyno-
mial is irreducible) the length of the psuedoran-
dom sequence would be much longer and repeat

itself after about 11 hours. This could be im-
plemented with modest changes to the chip, and
neither the cipher nor the protocol would have
to be changed.

3. NT is easily reproduced
Problem Since the attacker controls time, and
the psuedo-random number generated by the
PRNG only depends on the time elapsed be-
tween the tag being powered up and the time the
tag was challenged, the attacker can efficiently
reproduce the same random number over and
over again [13]. The fact that the PRNG resets
its internal state on startup makes this attack
easier.
Mitigation The designers of the PRNG could
have designed the chip such that it does not reset
its internal state on startup. This would make
the psuedorandom sequence much harder to pre-
dict, and no changes to the protocol or cipher
itself would be required.

4. Leftmost bit of the cipher is not a tap
Problem The leftmost bit x0 of the cipher is not
used to generate the feedback bit. This makes
it possible to create a rollback function (see [3])
which, given the internal state of the cipher at
any point in time, rolls back the internal state
by one step. By repeating this rollback function
several times, one will eventually arrive at the
initial state of the cipher which contains the se-
cret sector key K.
Mitigation The bit x0 should have been used as
a tap in the generating polynomial.

5. Parity bits leaks information
Problem The ISO-14443-A standard discussed in
section 6 mandates that each byte should be ac-
companied by a parity bit. The parity bit is
an error detecting code which should be 1 if the
hamming weight of the byte is odd, and 0 other-
wise. That means, each 32 bit word will be sent
together with four parity bits, one for each byte.
When the tag receives NR and AR encrypted by
the reader, the tag will check the correctness of
the parity bits before validating the responseAR.
If the parity bits are correct, but the response is

Analysing Mifare Classic Bastian Fredriksson Page 6

9 BRUTE-FORCE ATTACK

invalid, the tag will send NACK (0x5) back to the
reader in encrypted form. By XORing the en-
crypted message with the known plaintext, four
keystream bits can be retrieved.
Mitigation The tag should send NACK unen-
crypted or not answer at all.

6. Statistical weaknesses in the cipher
Problem The cipher contains statistical weak-
nesses. This was exploited by Nicolas Curtois
in his Dark Side Attack discussed in [2].
Mitigation This problem is due to the poor con-
struction of the non-linear functions f1, f2 . . . f6
used to mix state of the LFSR. Unfortunately,
this is a major flaw with the cipher itself and
not easily fixed.

7. Nested authentications
Problem If the reader already has authenticated
to one sector, and tries to authenticate to an-
other, the tag will repeat the challenge-response
protocol as discussed in 7.3. However, this time,
the tag nonce is sent encrypted. Due to the
short PRNG cycle, there are only 216 different
nonces. Combined with the parity bit informa-
tion leak, the number of possible nonces can be
reduced to 213 [3]. Once the reader guesses the
correct nonce, 32 bits of keystream can be re-
covered. This information can then be used to
deduce the secret key for the new sector. This
attack is called the nested-authentication attack
and will be discussed in section 10.
Mitigation This problem can be mitigated by al-
ways sending the tag nonce unencrypted. How-
ever, the attack is made possible by a combi-
nation of flaws, both with the PRNG and the
cipher itself.

Apart from the above mentioned problems, there
are some other minor design issues with the Mifare
Classic chip. Since the chips themselves cannot be
reprogrammed, the smartcards themselves should be
replaced by a newer version which is more secure.
Any data on the card should be considered compro-
mised. Any sensitive data stored on the card should
be stored encrypted, so it cannot be tampered with
by an attacker. In practice many systems, such as SL

Access public transport in Stockholm, employs a cen-
tral database which contains a copy of the contents
of the card. Readers which are offline, for example
readers installed on buses, are synced regularly with
the central database. Every time the customer taps
his tag onto the reader, the information stored on
the card is crosschecked with the information stored
in the database. This makes it practically impossible
to cheat if the system is deployed correctly. However,
since the same keys are typically used on all cards, it
is possible for an attacker to wirelessly pickpocket or
clone cards from other customers (using for example
Curtois dark-side attack which does not require in-
teraction with a reader [2]). The SL Acccess-system
mitigates this type of attack by looking for ”impos-
sible travels”. If the same card UID is detected by
a reader on two different stations, and the time be-
tween the taps is in some sense short, the UID will
be blacklisted by the system. This makes it difficult
to travel with a card shared by different users, and
almost impossible to travel using a stolen card, in
particular if the owner of the card travels often.

Customers can also protect someone from stealing
the contents of their card by putting the in a wal-
let with electromagnetic shielding. Many wallets has
uses a foil of metal to achieve this.

9 Brute-force attack

In this section we will briefly discuss how to exploit
the flaws found in section 8. Due to the short key
length, the most obvious attack is a brute-force at-
tack where the attacker tries to guess the correct
sector key. The attacker powers up the tag and re-
ceives its ”random” challenge NT , whereby the at-
tacker answers with eight random bytes for Enc(NT)
and Enc(AR) and eight random parity bits, one for
each byte. For each byte, the probability for the par-
ity bit being correct is exactly 1

2 . That means, the
probability for all parity bits being correct and the
tag responding with NACK will be 1

28 = 1
128 . The

attacker can uniquely determine a key after six suc-
cessful authentication attempts. This means that the
attacker only needs to do on average 256 ∗ 6 = 1536
authentication attempts which takes roughly one sec-

Analysing Mifare Classic Bastian Fredriksson Page 7

10 HACKING TECHNIQUES

ond [3].

The offline attack consists of enumeration of all
possible 248−1 keys. Assuming that the attacker has
recorded each successful authentication attempt in a
table T ; For each key, the attacker shifts in the card
UID and NT into the Crypto1 register and computes
a 32-bit keystream which can be used to decrypt the
reader nonce NR. If the parity bits are valid, the
attacker proceeds by shifting NR into the register
and decrypting AR. If the parity bits of AR are cor-
rect and the response is valid (suc64(NT) = AR), the
attacker proceeds with these checks using the next
authentication attempt. The correct key has been
found the key produces the correct parity bits and
the correct response for each of the six authentica-
tion attempts.

Although an attacker must traverse each of the
248 − 1 different keys, the speed of the attack can be
increased by distributing the computation between
many machines. For a description of the attack in
psuedocode, see the appendix.

Figure 6: Equipment for reading and writing RFID tags. In
this case an Adafruit PN532 breakout board connected via
USB to a ThinkPad X201.

10 Hacking techniques

In this section we will discuss various tools and tech-
niques for hacking Mifare Classic. The most ef-
ficient attacks are the nested-authentication attack
[3] and Curtois dark-side attack [2]. The nested-
authentication attack is faster than Curtois dark-side
attack but requires knowledge of at least one sector
key. There are software implementations available for
both attacks, built on top of the NFC communica-
tion library libnfc and the Crypto1 implementation
Crapto1.

To hardware required to perform the attack is
a laptop or desktop computer (typically running
some distribution of Linux), an RFID reader such as
Proxmark 3, Touchatag ACR122 or Adafruit PN532
breakout board connected via USB or hooked up to
a Raspberry Pi. It is recommended not to run the
attack inside a virtual machine since this the attack
relies heavily on precise timing to generate make the
tag generate the correct tag nonce NT .

If the goal is to make a complete clone of the card,
one also needs an RFID card with a writable sector
0. Such cards can be bought from online retailers
such as eBay or AliExpress. Another useful tool for
reading tags is an NFC powered cellphone such as LG
Nexus 5X with Mifare Classic Tool installed. This
app makes it easy to dump the contents of the card on
the fly and get access conditions in a human-readable
format based on the access bits of a sector. However
these operations requires knowledge of the keys to
the card, as far we can tell, since Android does not
support libnfc out of the box, separate hardware is
required to break the keys.

In a typical attack scenario, the attacker wants
to clone or change the contents of a card containing
some sensitive data such as a public transport ticket
or credits. Assuming that the attacker does not know
anything about the sector keys used and only has ac-
cess to the card itself (that is, the attacker is not able
to sniff the communication between tag and reader),
they would proceed as follows:

1. First determine if the any of the sectors uses
one of the default factory keys. Mifare Classic
Tool with the extended-std.keys list will do

Analysing Mifare Classic Bastian Fredriksson Page 8

11 CONCLUSION

the trick.

2. If at least one key was recovered, use the nested-
authentication attack to recover the rest of the
keys. If not, use Curtois dark-side attack to re-
cover one sector key and then proceed with the
nested-authentication attack.

3. Once the keys are recovered, the attacker has
unlimited R/W access to the card and can dump
the contents of the card to disk, flip individual
bits or clear whole sectors.

Curtois dark-side attack is implemented in the li-
brary MFCUK (Mifare Classic Universal Toolkit) and
the nested-authentication attack is implemented in
the library MFOC (Mifare Classic Offline Cracker) [8].
Before we begin, one should install libnfc. If you
use for example Ubuntu, this library will be avail-
able in the repository as libnfc-dev, but we recom-
mend that you compile the library from scratch since
the pre-compiled package usually lacks the drivers
needed.

1 # Assuming Debian f l avoured d i s t r o
2 sudo apt−get i n s t a l l autoconf l i b t o o l l ibusb

−dev l i b p c s c l i t e −dev bui ld−e s s e n t i a l
3 wget http :// d l . b int ray . com/ nfc−t o o l s / sou r c e s

/ l i b n f c −1 . 7 . 1 . t a r . bz2
4 ta r x f l i b n f c −1 . 7 . 1 . t a r . bz2
5 cd l i b n f c −1.7 .1
6 autorecon f −v i s
7 . / c o n f i g u r e −−with−d r i v e r s=a l l −−s y s c o n f d i r

=/etc −−p r e f i x=/usr
8 make
9 sudo make i n s t a l l

10 sudo mkdir / e t c / n fc
11 sudo mkdir / e t c / n fc / de v i c e s . d
12 # Run t h i s i f you use PN532 c h i p s e t with TTL

−cab l e
13 sudo cp cont r ib / l i b n f c / pn532 v ia uart2usb .

conf . sample / e tc / n fc / d e v i c e s . d/
pn532 v ia uart2usb . conf

Once linfc is installed, connect your RFID reader
and check that the connection is working by issuing
the command nfc-list. Once you have assured that
the connection is working properly, proceed by com-
piling MFCUK and MFOC.

1 wget https : // github . com/ nfc−t o o l s /mfcuk/
arch ive /mfcuk−0 . 3 . 8 . t a r . gz

2 ta r x f mfcuk−0 . 3 . 8 . t a r . gz && cd mfcuk−mfcuk
−0.3.8/

3 automake −−add−miss ing
4 autoconf
5 . / c o n f i g u r e
6 make
7 sudo make i n s t a l l
8 wget https : // github . com/ nfc−t o o l s /mfoc/

a rch ive /mfoc −0 .10 . 7 . ta r . gz
9 ta r x f mfoc −0 .10 . 7 . ta r . gz

10 cd mfoc−mfoc−0.10.7
11 autorecon f −v i s
12 . / c o n f i g u r e
13 make
14 sudo make i n s t a l l
15 # Should output something l i k e / usr / l o c a l /

bin /∗
16 which mfcuk && which mfoc

Typical use of mfcuk would look something like
mfcuk -C -R 0:A -v 2. This will recover key A
from sector 0, the -v flag enables verbose mode to
know what the tool is doing during the attack. Once
a key has been recovered, one can continue to dump
the rest of the keys to file with mfoc -O keys.mfd.

11 Conclusion

The internal machinery of Mifare Classic remained a
trade secret for over ten years, until Nohl et al. [9] re-
verse engineered the chip in 2007. Once the algorithm
and psuedo-random number generator became pub-
lic, cryptographers quickly discovered ways to recover
the secret key. Many different attacks were published,
starting with offline attacks which required precom-
putation of large tables, ending with a total break
where the attacker essentially could recover the se-
cret key in less than a second using his cellphone.

Mifare Classic is quite well covered at this point,
and it is unlikely that any new attacks will be dis-
covered. It is possible that existing attacks will be
refined, but it is not probable since the technology is
considered a legacy product. Mifare Classic is still in
use, but tends to be in disfavour when new systems
are deployed. Hence, researchers have started to look
at the newer products made by NXP, such as Mifare
Plus, Mifare DESFire and Mifare Ultralight. Any at-
tacks for Mifare Classic cannot be extended to these
cards, since NXP has switched to other cryptographic

Analysing Mifare Classic Bastian Fredriksson Page 9

REFERENCES REFERENCES

algorithms. For example, Mifare Plus uses AES with
a 128 bit key and Mifare DESFire and Mifare Ultra-
light uses Triple-DES. These card implementations
appears to be more robust than Mifare Classic, but
time will tell for how long.

References

[1] Canniere, C. D., and Preneel, B. Trivium
specifications. eSTREAM, ECRYPT Stream Ci-
pher Project 2006 (2006).

[2] Courtois, N. T. The Dark Side of Security by
Obscurity and Cloning MiFare Classic Rail and
Building Passes Anywhere, Anytime. Cryptol-
ogy ePrint Archive, Report 2009/137, 2009.

[3] Garcia, F. D., Rossum, P. v., Verdult, R.,
and Schreur, R. W. Wirelessly pickpocketing
a mifare classic card. In Proceedings of the 2009
30th IEEE Symposium on Security and Privacy
(Washington, DC, USA, 2009), SP ’09, IEEE
Computer Society, pp. 3–15.

[4] ISO. Identification cards – Contactless inte-
grated circuit(s) cards – Proximity cards, Ini-
tialization and anticollision. Standard, In-
ternational Organization for Standardization,
Geneva, CH, 11 2008.

[5] ISO. Identification cards – Contactless inte-
grated circuit(s) cards – Proximity cards, Radio
frequency power and signal interface. Standard,
International Organization for Standardization,
Geneva, CH, 11 2008.

[6] ISO. Identification cards – Contactless inte-
grated circuit(s) cards – Proximity cards, Trans-
mission protocol. Standard, International Or-
ganization for Standardization, Geneva, CH, 11
2008.

[7] Keith E. Mayes, C. C. The MIFARE Classic
Story. Information Security Technical Report 15
(February 2010).

[8] Kishan Gupta. Hacking Mifare Classic. http:
//goo.gl/0iDlqW. Accessed: 2016-05-14.

[9] Nohl, K., Evans, D., Starbug, and Plötz,
H. Reverse-engineering a Cryptographic RFID
Tag. In Proceedings of the 17th Conference on
Security Symposium (Berkeley, CA, USA, 2008),
SS’08, USENIX Association, pp. 185–193.

[10] NXP Semiconductors. MIFARE Classic 1K
- Mainstream contactless smart card IC for fast
and easy solution development, 5 2011. Rev. 3.

[11] NXP Semiconductors. MIFARE Classic 4K
- Mainstream contactless smart card IC for fast
and easy solution development, 5 2011. Rev. 3.

[12] NXP Semiconductors. NFC Type MIFARE
Classic Tag Operation, 10 2012. Rev. 1.3.

[13] Plötz, H., and Nohl, K. Little security, de-
spite obscurity.

[14] Tan, W. H. Practical attacks on MIFARE Clas-
sic. Imperial College London (9 2007).

[15] Weisstein, E. W. Berlekamp-Massey Algo-
rithm. From MathWorld — A Wolfram Web Re-
source. Last visited on 23/4/2016.

Analysing Mifare Classic Bastian Fredriksson Page 10

http://goo.gl/0iDlqW
http://goo.gl/0iDlqW

12 APPENDIX

12 Appendix

1 #inc lude <s t d i o . h>
2 #inc lude <s t d i n t . h>
3 #inc lude <s t r i n g . h>
4 #d e f i n e SWAPENDIAN(x) \
5 (x = (x >> 8 & 0 x f f 0 0 f f) | (x & 0 x f f 0 0 f f) << 8 , x = x >> 16 | x << 16)
6 void p r i n t b i t s (s i z e t const s i z e , void const ∗ const ptr) {
7 unsigned char ∗b = (unsigned char ∗) ptr ;
8 unsigned char byte ;
9 i n t i , j ;

10 f o r (i = s i z e −1; i >= 0 ; i−−) {
11 f o r (j = 7 ; j >= 0 ; j−−) {
12 byte = (b [i] >> j) & 1 ;
13 p r i n t f (”%u ” , byte) ;
14 }
15 p r i n t f (” ”) ;
16 }
17 puts (””) ;
18 }
19 /∗ PRNG implementation from crapto1 l i b r a r y ∗/
20 u i n t 3 2 t p rng suc c e s s o r (u i n t 3 2 t x , u i n t 3 2 t n) {
21 SWAPENDIAN(x) ;
22 whi le (n−−) x = x >> 1 | (x >> 16 ˆ x >> 18 ˆ x >> 19 ˆ x >> 21) << 31 ;
23 r e turn SWAPENDIAN(x) ;
24 }
25 i n t main () {
26 i n t i ;
27 u i n t 3 2 t x ;
28 char b u f f e r [3 3] ;
29 b u f f e r [3 2] = ’ \0 ’ ;
30 //x = 0xAAAAAAAA;
31 x = 0 x f f 0 0 f f ;
32 p r i n t f (HEADER) ;
33 p r i n t b i t s (s i z e o f (u i n t 3 2 t) , &x) ;
34 /∗ Compute suc32 (x) and p r i n t inte rmed iary s t a t e s ∗/
35 f o r (i = 0 ; i < 32 ; i++) {
36 x = prng suc c e s s o r (x , 1) ;
37 p r i n t b i t s (s i z e o f (u i n t 3 2 t) , &x) ;
38 }
39 }

Analysing Mifare Classic Bastian Fredriksson Page 11

12 APPENDIX

1 /∗∗
2 ∗ I n i t i a l i s e s the LFSR of crypto1
3 ∗ @param key A 48 b i t key
4 ∗/
5 c r y p t o 1 i n i t (key)
6

7 /∗∗
8 ∗ S h i f t s the LFSR of crypto1 to the l e f t and i n s e r t s
9 ∗ s h i f t b i t ˆ f e e d b a c k b i t in the r ightmost p o s i t i o n .

10 ∗ @param key s h i f t b i t The b i t to s h i f t i n to the s t a t e
11 ∗ @return The next b i t o f the keystream
12 ∗/
13 c r y p t o 1 i n i t (s h i f t b i t)
14

15 /∗∗
16 ∗ Psuedo code f o r brute−f o r c e attack aga in s t Mifare C l a s s i c .
17 ∗ @param auths A l i s t with v a l i d au then t i c a t i on attempts
18 ∗ @param uid The unique i d e n t i f i e r o f the card
19 ∗ @return A v a l i d key
20 ∗/
21 i n t m i f a r e b f (auths , uid) :
22 a s s e r t (auth . s i z e > 5)
23 f o r key = 1 to 2ˆ48
24 f o r each a in auths
25 c r y p t o 1 i n i t (key)
26 array keystream [3 2]
27 // s h i f t in the card uid and tag nonce producing
28 // 32 b i t s o f keystream
29 f o r i = 0 to 31
30 keystream [i] = c r y p t o 1 s h i f t (a . Nt [i] ˆ uid [i])
31 // decrypt the reader nonce
32 Nr = a .{Nr} ˆ keystream
33 i f ! c h e c k p a r i t y b i t s (Nr)
34 t ry next key
35 // s h i f t in the reader nonce , producing another 32
36 // b i t s o f keystream
37 f o r i = 0 to 31
38 keystream [i] = c r y p t o 1 s h i f t (Nr)
39 // decrypt the reader re sponse
40 Ar = {Ar} ˆ keystream
41 i f ! c h e c k p a r i t y b i t s (Ar)
42 t ry next key
43 // check i f the t h i s key produces the c o r r e c t re sponse
44 i f suc (Nt , 64) != Ar
45 t ry next key
46 r e turn key
47 r e turn e r r o r

Psuedocode describing a brute-force attack against the tag. This attack requires 1536 authentication at-
tempts and a large offline computation.

Analysing Mifare Classic Bastian Fredriksson Page 12

12 APPENDIX

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

3 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

4 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

5 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1

6 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1

7 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1

8 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1

9 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 0 1

10 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0

11 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0

12 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0

13 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1

14 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1

15 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0

16 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1

17 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1

18 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0

19 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0

20 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0

21 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1

22 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1

23 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0

24 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0

25 1 1 1 1 1 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0

26 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1

27 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1

28 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0

29 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0

30 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1

31 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1

32 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0

33 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 0

34 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1

35 0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0

36 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1

37 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0

38 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0

39 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1

40 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0

41 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0

42 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0

43 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0

44 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0

45 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0

46 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1

47 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1

48 1 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1

49 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1

50 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 0 1

51 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 0

52 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0

53 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1

54 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0

55 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1

56 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0

57 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1

58 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1

59 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 0

60 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1

61 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1

62 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1

63 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1

64 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1

65 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1

66 1 1 1 1 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1

67 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1

68 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0

69 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1

70 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 0 1

71 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 0

72 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0

73 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 1

74 1 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0

75 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1

76 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0

77 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0

78 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

79 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1

80 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0

81 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1

The first 80 states of the Mifare Classic psuedo-random number generator starting at 0xff00ff. One can
clearly see how the next state is created by shifting the previous state to the left.

Analysing Mifare Classic Bastian Fredriksson Page 13

12 APPENDIX

Figure 7: Design of the psuedo-random number generator in Mifare Classic. The PRNG is based on a 16-bit LFSR with the
tap bits x16, x18, x19, and x21.

Analysing Mifare Classic Bastian Fredriksson Page 14

	Glossary
	Introduction
	Card characteristics
	Memory layout
	Block types
	Commands
	Access control

	Linear Feedback Shift Register
	Communication protocol
	CRYPTO-1
	Keystream generation
	Psuedo-random number generator
	Challenge-response protocol
	Cipher initialisation

	Weaknesses
	Brute-force attack
	Hacking techniques
	Conclusion
	Appendix

